Blame view

ffmpeg-4.2.2/tools/python/convert.py 1.96 KB
aac5773f   hucm   功能基本完成,接口待打磨
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
  # Copyright (c) 2019 Guo Yejun
  #
  # This file is part of FFmpeg.
  #
  # FFmpeg is free software; you can redistribute it and/or
  # modify it under the terms of the GNU Lesser General Public
  # License as published by the Free Software Foundation; either
  # version 2.1 of the License, or (at your option) any later version.
  #
  # FFmpeg is distributed in the hope that it will be useful,
  # but WITHOUT ANY WARRANTY; without even the implied warranty of
  # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  # Lesser General Public License for more details.
  #
  # You should have received a copy of the GNU Lesser General Public
  # License along with FFmpeg; if not, write to the Free Software
  # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  # ==============================================================================
  
  # verified with Python 3.5.2 on Ubuntu 16.04
  import argparse
  import os
  from convert_from_tensorflow import *
  
  def get_arguments():
      parser = argparse.ArgumentParser(description='generate native mode model with weights from deep learning model')
      parser.add_argument('--outdir', type=str, default='./', help='where to put generated files')
      parser.add_argument('--infmt', type=str, default='tensorflow', help='format of the deep learning model')
      parser.add_argument('infile', help='path to the deep learning model with weights')
  
      return parser.parse_args()
  
  def main():
      args = get_arguments()
  
      if not os.path.isfile(args.infile):
          print('the specified input file %s does not exist' % args.infile)
          exit(1)
  
      if not os.path.exists(args.outdir):
          print('create output directory %s' % args.outdir)
          os.mkdir(args.outdir)
  
      basefile = os.path.split(args.infile)[1]
      basefile = os.path.splitext(basefile)[0]
      outfile = os.path.join(args.outdir, basefile) + '.model'
  
      if args.infmt == 'tensorflow':
          convert_from_tensorflow(args.infile, outfile)
  
  if __name__ == '__main__':
      main()