format.h 101 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
/*
 Formatting library for C++

 Copyright (c) 2012 - present, Victor Zverovich

 Permission is hereby granted, free of charge, to any person obtaining
 a copy of this software and associated documentation files (the
 "Software"), to deal in the Software without restriction, including
 without limitation the rights to use, copy, modify, merge, publish,
 distribute, sublicense, and/or sell copies of the Software, and to
 permit persons to whom the Software is furnished to do so, subject to
 the following conditions:

 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 --- Optional exception to the license ---

 As an exception, if, as a result of your compiling your source code, portions
 of this Software are embedded into a machine-executable object form of such
 source code, you may redistribute such embedded portions in such object form
 without including the above copyright and permission notices.
 */

#ifndef FMT_FORMAT_H_
#define FMT_FORMAT_H_

#include <cmath>         // std::signbit
#include <cstdint>       // uint32_t
#include <limits>        // std::numeric_limits
#include <memory>        // std::uninitialized_copy
#include <stdexcept>     // std::runtime_error
#include <system_error>  // std::system_error
#include <utility>       // std::swap

#include "core.h"

#ifdef __INTEL_COMPILER
#  define FMT_ICC_VERSION __INTEL_COMPILER
#elif defined(__ICL)
#  define FMT_ICC_VERSION __ICL
#else
#  define FMT_ICC_VERSION 0
#endif

#ifdef __NVCC__
#  define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__)
#else
#  define FMT_CUDA_VERSION 0
#endif

#ifdef __has_builtin
#  define FMT_HAS_BUILTIN(x) __has_builtin(x)
#else
#  define FMT_HAS_BUILTIN(x) 0
#endif

#if FMT_GCC_VERSION || FMT_CLANG_VERSION
#  define FMT_NOINLINE __attribute__((noinline))
#else
#  define FMT_NOINLINE
#endif

#if FMT_MSC_VER
#  define FMT_MSC_DEFAULT = default
#else
#  define FMT_MSC_DEFAULT
#endif

#ifndef FMT_THROW
#  if FMT_EXCEPTIONS
#    if FMT_MSC_VER || FMT_NVCC
FMT_BEGIN_NAMESPACE
namespace detail {
template <typename Exception> inline void do_throw(const Exception& x) {
  // Silence unreachable code warnings in MSVC and NVCC because these
  // are nearly impossible to fix in a generic code.
  volatile bool b = true;
  if (b) throw x;
}
}  // namespace detail
FMT_END_NAMESPACE
#      define FMT_THROW(x) detail::do_throw(x)
#    else
#      define FMT_THROW(x) throw x
#    endif
#  else
#    define FMT_THROW(x)               \
      do {                             \
        FMT_ASSERT(false, (x).what()); \
      } while (false)
#  endif
#endif

#if FMT_EXCEPTIONS
#  define FMT_TRY try
#  define FMT_CATCH(x) catch (x)
#else
#  define FMT_TRY if (true)
#  define FMT_CATCH(x) if (false)
#endif

#ifndef FMT_DEPRECATED
#  if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VER >= 1900
#    define FMT_DEPRECATED [[deprecated]]
#  else
#    if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__)
#      define FMT_DEPRECATED __attribute__((deprecated))
#    elif FMT_MSC_VER
#      define FMT_DEPRECATED __declspec(deprecated)
#    else
#      define FMT_DEPRECATED /* deprecated */
#    endif
#  endif
#endif

// Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers.
#if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC
#  define FMT_DEPRECATED_ALIAS
#else
#  define FMT_DEPRECATED_ALIAS FMT_DEPRECATED
#endif

#ifndef FMT_USE_USER_DEFINED_LITERALS
// EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
#  if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \
       FMT_MSC_VER >= 1900) &&                                         \
      (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480)
#    define FMT_USE_USER_DEFINED_LITERALS 1
#  else
#    define FMT_USE_USER_DEFINED_LITERALS 0
#  endif
#endif

// Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
// integer formatter template instantiations to just one by only using the
// largest integer type. This results in a reduction in binary size but will
// cause a decrease in integer formatting performance.
#if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
#  define FMT_REDUCE_INT_INSTANTIATIONS 0
#endif

// __builtin_clz is broken in clang with Microsoft CodeGen:
// https://github.com/fmtlib/fmt/issues/519
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clz)) && !FMT_MSC_VER
#  define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
#endif
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clzll)) && !FMT_MSC_VER
#  define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
#endif
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctz))
#  define FMT_BUILTIN_CTZ(n) __builtin_ctz(n)
#endif
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctzll))
#  define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n)
#endif

#if FMT_MSC_VER
#  include <intrin.h>  // _BitScanReverse[64], _BitScanForward[64], _umul128
#endif

// Some compilers masquerade as both MSVC and GCC-likes or otherwise support
// __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
// MSVC intrinsics if the clz and clzll builtins are not available.
#if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && !defined(FMT_BUILTIN_CTZLL)
FMT_BEGIN_NAMESPACE
namespace detail {
// Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
#  if !defined(__clang__)
#    pragma managed(push, off)
#    pragma intrinsic(_BitScanForward)
#    pragma intrinsic(_BitScanReverse)
#    if defined(_WIN64)
#      pragma intrinsic(_BitScanForward64)
#      pragma intrinsic(_BitScanReverse64)
#    endif
#  endif

inline auto clz(uint32_t x) -> int {
  unsigned long r = 0;
  _BitScanReverse(&r, x);
  FMT_ASSERT(x != 0, "");
  // Static analysis complains about using uninitialized data
  // "r", but the only way that can happen is if "x" is 0,
  // which the callers guarantee to not happen.
  FMT_MSC_WARNING(suppress : 6102)
  return 31 ^ static_cast<int>(r);
}
#  define FMT_BUILTIN_CLZ(n) detail::clz(n)

inline auto clzll(uint64_t x) -> int {
  unsigned long r = 0;
#  ifdef _WIN64
  _BitScanReverse64(&r, x);
#  else
  // Scan the high 32 bits.
  if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32))) return 63 ^ (r + 32);
  // Scan the low 32 bits.
  _BitScanReverse(&r, static_cast<uint32_t>(x));
#  endif
  FMT_ASSERT(x != 0, "");
  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
  return 63 ^ static_cast<int>(r);
}
#  define FMT_BUILTIN_CLZLL(n) detail::clzll(n)

inline auto ctz(uint32_t x) -> int {
  unsigned long r = 0;
  _BitScanForward(&r, x);
  FMT_ASSERT(x != 0, "");
  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
  return static_cast<int>(r);
}
#  define FMT_BUILTIN_CTZ(n) detail::ctz(n)

inline auto ctzll(uint64_t x) -> int {
  unsigned long r = 0;
  FMT_ASSERT(x != 0, "");
  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
#  ifdef _WIN64
  _BitScanForward64(&r, x);
#  else
  // Scan the low 32 bits.
  if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r);
  // Scan the high 32 bits.
  _BitScanForward(&r, static_cast<uint32_t>(x >> 32));
  r += 32;
#  endif
  return static_cast<int>(r);
}
#  define FMT_BUILTIN_CTZLL(n) detail::ctzll(n)
#  if !defined(__clang__)
#    pragma managed(pop)
#  endif
}  // namespace detail
FMT_END_NAMESPACE
#endif

FMT_BEGIN_NAMESPACE
namespace detail {

#if __cplusplus >= 202002L || \
    (__cplusplus >= 201709L && FMT_GCC_VERSION >= 1002)
#  define FMT_CONSTEXPR20 constexpr
#else
#  define FMT_CONSTEXPR20
#endif

// An equivalent of `*reinterpret_cast<Dest*>(&source)` that doesn't have
// undefined behavior (e.g. due to type aliasing).
// Example: uint64_t d = bit_cast<uint64_t>(2.718);
template <typename Dest, typename Source>
inline auto bit_cast(const Source& source) -> Dest {
  static_assert(sizeof(Dest) == sizeof(Source), "size mismatch");
  Dest dest;
  std::memcpy(&dest, &source, sizeof(dest));
  return dest;
}

inline auto is_big_endian() -> bool {
  const auto u = 1u;
  struct bytes {
    char data[sizeof(u)];
  };
  return bit_cast<bytes>(u).data[0] == 0;
}

// A fallback implementation of uintptr_t for systems that lack it.
struct fallback_uintptr {
  unsigned char value[sizeof(void*)];

  fallback_uintptr() = default;
  explicit fallback_uintptr(const void* p) {
    *this = bit_cast<fallback_uintptr>(p);
    if (is_big_endian()) {
      for (size_t i = 0, j = sizeof(void*) - 1; i < j; ++i, --j)
        std::swap(value[i], value[j]);
    }
  }
};
#ifdef UINTPTR_MAX
using uintptr_t = ::uintptr_t;
inline auto to_uintptr(const void* p) -> uintptr_t {
  return bit_cast<uintptr_t>(p);
}
#else
using uintptr_t = fallback_uintptr;
inline auto to_uintptr(const void* p) -> fallback_uintptr {
  return fallback_uintptr(p);
}
#endif

// Returns the largest possible value for type T. Same as
// std::numeric_limits<T>::max() but shorter and not affected by the max macro.
template <typename T> constexpr auto max_value() -> T {
  return (std::numeric_limits<T>::max)();
}
template <typename T> constexpr auto num_bits() -> int {
  return std::numeric_limits<T>::digits;
}
// std::numeric_limits<T>::digits may return 0 for 128-bit ints.
template <> constexpr auto num_bits<int128_t>() -> int { return 128; }
template <> constexpr auto num_bits<uint128_t>() -> int { return 128; }
template <> constexpr auto num_bits<fallback_uintptr>() -> int {
  return static_cast<int>(sizeof(void*) *
                          std::numeric_limits<unsigned char>::digits);
}

FMT_INLINE void assume(bool condition) {
  (void)condition;
#if FMT_HAS_BUILTIN(__builtin_assume)
  __builtin_assume(condition);
#endif
}

// An approximation of iterator_t for pre-C++20 systems.
template <typename T>
using iterator_t = decltype(std::begin(std::declval<T&>()));
template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>()));

// A workaround for std::string not having mutable data() until C++17.
template <typename Char>
inline auto get_data(std::basic_string<Char>& s) -> Char* {
  return &s[0];
}
template <typename Container>
inline auto get_data(Container& c) -> typename Container::value_type* {
  return c.data();
}

#if defined(_SECURE_SCL) && _SECURE_SCL
// Make a checked iterator to avoid MSVC warnings.
template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>;
template <typename T> auto make_checked(T* p, size_t size) -> checked_ptr<T> {
  return {p, size};
}
#else
template <typename T> using checked_ptr = T*;
template <typename T> inline auto make_checked(T* p, size_t) -> T* { return p; }
#endif

// Attempts to reserve space for n extra characters in the output range.
// Returns a pointer to the reserved range or a reference to it.
template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
#if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION
__attribute__((no_sanitize("undefined")))
#endif
inline auto
reserve(std::back_insert_iterator<Container> it, size_t n)
    -> checked_ptr<typename Container::value_type> {
  Container& c = get_container(it);
  size_t size = c.size();
  c.resize(size + n);
  return make_checked(get_data(c) + size, n);
}

template <typename T>
inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> {
  buffer<T>& buf = get_container(it);
  buf.try_reserve(buf.size() + n);
  return it;
}

template <typename Iterator>
constexpr auto reserve(Iterator& it, size_t) -> Iterator& {
  return it;
}

template <typename OutputIt>
using reserve_iterator =
    remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;

template <typename T, typename OutputIt>
constexpr auto to_pointer(OutputIt, size_t) -> T* {
  return nullptr;
}
template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* {
  buffer<T>& buf = get_container(it);
  auto size = buf.size();
  if (buf.capacity() < size + n) return nullptr;
  buf.try_resize(size + n);
  return buf.data() + size;
}

template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
inline auto base_iterator(std::back_insert_iterator<Container>& it,
                          checked_ptr<typename Container::value_type>)
    -> std::back_insert_iterator<Container> {
  return it;
}

template <typename Iterator>
constexpr auto base_iterator(Iterator, Iterator it) -> Iterator {
  return it;
}

// <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n
// instead (#1998).
template <typename OutputIt, typename Size, typename T>
FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value)
    -> OutputIt {
  for (Size i = 0; i < count; ++i) *out++ = value;
  return out;
}
template <typename T, typename Size>
FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* {
  if (is_constant_evaluated()) {
    return fill_n<T*, Size, T>(out, count, value);
  }
  std::memset(out, value, to_unsigned(count));
  return out + count;
}

#ifdef __cpp_char8_t
using char8_type = char8_t;
#else
enum char8_type : unsigned char {};
#endif

template <typename OutChar, typename InputIt, typename OutputIt>
FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end,
                                                  OutputIt out) -> OutputIt {
  return copy_str<OutChar>(begin, end, out);
}

// A public domain branchless UTF-8 decoder by Christopher Wellons:
// https://github.com/skeeto/branchless-utf8
/* Decode the next character, c, from s, reporting errors in e.
 *
 * Since this is a branchless decoder, four bytes will be read from the
 * buffer regardless of the actual length of the next character. This
 * means the buffer _must_ have at least three bytes of zero padding
 * following the end of the data stream.
 *
 * Errors are reported in e, which will be non-zero if the parsed
 * character was somehow invalid: invalid byte sequence, non-canonical
 * encoding, or a surrogate half.
 *
 * The function returns a pointer to the next character. When an error
 * occurs, this pointer will be a guess that depends on the particular
 * error, but it will always advance at least one byte.
 */
FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e)
    -> const char* {
  constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
  constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
  constexpr const int shiftc[] = {0, 18, 12, 6, 0};
  constexpr const int shifte[] = {0, 6, 4, 2, 0};

  int len = code_point_length(s);
  const char* next = s + len;

  // Assume a four-byte character and load four bytes. Unused bits are
  // shifted out.
  *c = uint32_t(s[0] & masks[len]) << 18;
  *c |= uint32_t(s[1] & 0x3f) << 12;
  *c |= uint32_t(s[2] & 0x3f) << 6;
  *c |= uint32_t(s[3] & 0x3f) << 0;
  *c >>= shiftc[len];

  // Accumulate the various error conditions.
  using uchar = unsigned char;
  *e = (*c < mins[len]) << 6;       // non-canonical encoding
  *e |= ((*c >> 11) == 0x1b) << 7;  // surrogate half?
  *e |= (*c > 0x10FFFF) << 8;       // out of range?
  *e |= (uchar(s[1]) & 0xc0) >> 2;
  *e |= (uchar(s[2]) & 0xc0) >> 4;
  *e |= uchar(s[3]) >> 6;
  *e ^= 0x2a;  // top two bits of each tail byte correct?
  *e >>= shifte[len];

  return next;
}

template <typename F>
FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) {
  auto decode = [f](const char* p) {
    auto cp = uint32_t();
    auto error = 0;
    p = utf8_decode(p, &cp, &error);
    f(cp, error);
    return p;
  };
  auto p = s.data();
  const size_t block_size = 4;  // utf8_decode always reads blocks of 4 chars.
  if (s.size() >= block_size) {
    for (auto end = p + s.size() - block_size + 1; p < end;) p = decode(p);
  }
  if (auto num_chars_left = s.data() + s.size() - p) {
    char buf[2 * block_size - 1] = {};
    copy_str<char>(p, p + num_chars_left, buf);
    p = buf;
    do {
      p = decode(p);
    } while (p - buf < num_chars_left);
  }
}

template <typename Char>
inline auto compute_width(basic_string_view<Char> s) -> size_t {
  return s.size();
}

// Computes approximate display width of a UTF-8 string.
FMT_CONSTEXPR inline size_t compute_width(string_view s) {
  size_t num_code_points = 0;
  // It is not a lambda for compatibility with C++14.
  struct count_code_points {
    size_t* count;
    FMT_CONSTEXPR void operator()(uint32_t cp, int error) const {
      *count += detail::to_unsigned(
          1 +
          (error == 0 && cp >= 0x1100 &&
           (cp <= 0x115f ||  // Hangul Jamo init. consonants
            cp == 0x2329 ||  // LEFT-POINTING ANGLE BRACKET
            cp == 0x232a ||  // RIGHT-POINTING ANGLE BRACKET
            // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE:
            (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) ||
            (cp >= 0xac00 && cp <= 0xd7a3) ||    // Hangul Syllables
            (cp >= 0xf900 && cp <= 0xfaff) ||    // CJK Compatibility Ideographs
            (cp >= 0xfe10 && cp <= 0xfe19) ||    // Vertical Forms
            (cp >= 0xfe30 && cp <= 0xfe6f) ||    // CJK Compatibility Forms
            (cp >= 0xff00 && cp <= 0xff60) ||    // Fullwidth Forms
            (cp >= 0xffe0 && cp <= 0xffe6) ||    // Fullwidth Forms
            (cp >= 0x20000 && cp <= 0x2fffd) ||  // CJK
            (cp >= 0x30000 && cp <= 0x3fffd) ||
            // Miscellaneous Symbols and Pictographs + Emoticons:
            (cp >= 0x1f300 && cp <= 0x1f64f) ||
            // Supplemental Symbols and Pictographs:
            (cp >= 0x1f900 && cp <= 0x1f9ff))));
    }
  };
  for_each_codepoint(s, count_code_points{&num_code_points});
  return num_code_points;
}

inline auto compute_width(basic_string_view<char8_type> s) -> size_t {
  return compute_width(basic_string_view<char>(
      reinterpret_cast<const char*>(s.data()), s.size()));
}

template <typename Char>
inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t {
  size_t size = s.size();
  return n < size ? n : size;
}

// Calculates the index of the nth code point in a UTF-8 string.
inline auto code_point_index(basic_string_view<char8_type> s, size_t n)
    -> size_t {
  const char8_type* data = s.data();
  size_t num_code_points = 0;
  for (size_t i = 0, size = s.size(); i != size; ++i) {
    if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i;
  }
  return s.size();
}

template <typename T>
using is_fast_float = bool_constant<std::numeric_limits<T>::is_iec559 &&
                                    sizeof(T) <= sizeof(double)>;

#ifndef FMT_USE_FULL_CACHE_DRAGONBOX
#  define FMT_USE_FULL_CACHE_DRAGONBOX 0
#endif

template <typename T>
template <typename U>
void buffer<T>::append(const U* begin, const U* end) {
  while (begin != end) {
    auto count = to_unsigned(end - begin);
    try_reserve(size_ + count);
    auto free_cap = capacity_ - size_;
    if (free_cap < count) count = free_cap;
    std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count));
    size_ += count;
    begin += count;
  }
}

template <typename T, typename Enable = void>
struct is_locale : std::false_type {};
template <typename T>
struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {};
}  // namespace detail

FMT_MODULE_EXPORT_BEGIN

// The number of characters to store in the basic_memory_buffer object itself
// to avoid dynamic memory allocation.
enum { inline_buffer_size = 500 };

/**
  \rst
  A dynamically growing memory buffer for trivially copyable/constructible types
  with the first ``SIZE`` elements stored in the object itself.

  You can use the ``memory_buffer`` type alias for ``char`` instead.

  **Example**::

     fmt::memory_buffer out;
     format_to(out, "The answer is {}.", 42);

  This will append the following output to the ``out`` object:

  .. code-block:: none

     The answer is 42.

  The output can be converted to an ``std::string`` with ``to_string(out)``.
  \endrst
 */
template <typename T, size_t SIZE = inline_buffer_size,
          typename Allocator = std::allocator<T>>
class basic_memory_buffer final : public detail::buffer<T> {
 private:
  T store_[SIZE];

  // Don't inherit from Allocator avoid generating type_info for it.
  Allocator alloc_;

  // Deallocate memory allocated by the buffer.
  void deallocate() {
    T* data = this->data();
    if (data != store_) alloc_.deallocate(data, this->capacity());
  }

 protected:
  void grow(size_t size) final FMT_OVERRIDE;

 public:
  using value_type = T;
  using const_reference = const T&;

  explicit basic_memory_buffer(const Allocator& alloc = Allocator())
      : alloc_(alloc) {
    this->set(store_, SIZE);
  }
  ~basic_memory_buffer() { deallocate(); }

 private:
  // Move data from other to this buffer.
  void move(basic_memory_buffer& other) {
    alloc_ = std::move(other.alloc_);
    T* data = other.data();
    size_t size = other.size(), capacity = other.capacity();
    if (data == other.store_) {
      this->set(store_, capacity);
      std::uninitialized_copy(other.store_, other.store_ + size,
                              detail::make_checked(store_, capacity));
    } else {
      this->set(data, capacity);
      // Set pointer to the inline array so that delete is not called
      // when deallocating.
      other.set(other.store_, 0);
    }
    this->resize(size);
  }

 public:
  /**
    \rst
    Constructs a :class:`fmt::basic_memory_buffer` object moving the content
    of the other object to it.
    \endrst
   */
  basic_memory_buffer(basic_memory_buffer&& other) FMT_NOEXCEPT { move(other); }

  /**
    \rst
    Moves the content of the other ``basic_memory_buffer`` object to this one.
    \endrst
   */
  auto operator=(basic_memory_buffer&& other) FMT_NOEXCEPT
      -> basic_memory_buffer& {
    FMT_ASSERT(this != &other, "");
    deallocate();
    move(other);
    return *this;
  }

  // Returns a copy of the allocator associated with this buffer.
  auto get_allocator() const -> Allocator { return alloc_; }

  /**
    Resizes the buffer to contain *count* elements. If T is a POD type new
    elements may not be initialized.
   */
  void resize(size_t count) { this->try_resize(count); }

  /** Increases the buffer capacity to *new_capacity*. */
  void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }

  // Directly append data into the buffer
  using detail::buffer<T>::append;
  template <typename ContiguousRange>
  void append(const ContiguousRange& range) {
    append(range.data(), range.data() + range.size());
  }
};

template <typename T, size_t SIZE, typename Allocator>
void basic_memory_buffer<T, SIZE, Allocator>::grow(size_t size) {
#ifdef FMT_FUZZ
  if (size > 5000) throw std::runtime_error("fuzz mode - won't grow that much");
#endif
  const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_);
  size_t old_capacity = this->capacity();
  size_t new_capacity = old_capacity + old_capacity / 2;
  if (size > new_capacity)
    new_capacity = size;
  else if (new_capacity > max_size)
    new_capacity = size > max_size ? size : max_size;
  T* old_data = this->data();
  T* new_data =
      std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
  // The following code doesn't throw, so the raw pointer above doesn't leak.
  std::uninitialized_copy(old_data, old_data + this->size(),
                          detail::make_checked(new_data, new_capacity));
  this->set(new_data, new_capacity);
  // deallocate must not throw according to the standard, but even if it does,
  // the buffer already uses the new storage and will deallocate it in
  // destructor.
  if (old_data != store_) alloc_.deallocate(old_data, old_capacity);
}

using memory_buffer = basic_memory_buffer<char>;

template <typename T, size_t SIZE, typename Allocator>
struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
};

namespace detail {
FMT_API void print(std::FILE*, string_view);
}

/** A formatting error such as invalid format string. */
FMT_CLASS_API
class FMT_API format_error : public std::runtime_error {
 public:
  explicit format_error(const char* message) : std::runtime_error(message) {}
  explicit format_error(const std::string& message)
      : std::runtime_error(message) {}
  format_error(const format_error&) = default;
  format_error& operator=(const format_error&) = default;
  format_error(format_error&&) = default;
  format_error& operator=(format_error&&) = default;
  ~format_error() FMT_NOEXCEPT FMT_OVERRIDE FMT_MSC_DEFAULT;
};

/**
  \rst
  Constructs a `~fmt::format_arg_store` object that contains references
  to arguments and can be implicitly converted to `~fmt::format_args`.
  If ``fmt`` is a compile-time string then `make_args_checked` checks
  its validity at compile time.
  \endrst
 */
template <typename... Args, typename S, typename Char = char_t<S>>
FMT_INLINE auto make_args_checked(const S& fmt,
                                  const remove_reference_t<Args>&... args)
    -> format_arg_store<buffer_context<Char>, remove_reference_t<Args>...> {
  static_assert(
      detail::count<(
              std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
              std::is_reference<Args>::value)...>() == 0,
      "passing views as lvalues is disallowed");
  detail::check_format_string<Args...>(fmt);
  return {args...};
}

// compile-time support
namespace detail_exported {
#if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
template <typename Char, size_t N> struct fixed_string {
  constexpr fixed_string(const Char (&str)[N]) {
    detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str),
                                               str + N, data);
  }
  Char data[N]{};
};
#endif

// Converts a compile-time string to basic_string_view.
template <typename Char, size_t N>
constexpr auto compile_string_to_view(const Char (&s)[N])
    -> basic_string_view<Char> {
  // Remove trailing NUL character if needed. Won't be present if this is used
  // with a raw character array (i.e. not defined as a string).
  return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)};
}
template <typename Char>
constexpr auto compile_string_to_view(detail::std_string_view<Char> s)
    -> basic_string_view<Char> {
  return {s.data(), s.size()};
}
}  // namespace detail_exported

FMT_BEGIN_DETAIL_NAMESPACE

inline void throw_format_error(const char* message) {
  FMT_THROW(format_error(message));
}

template <typename T> struct is_integral : std::is_integral<T> {};
template <> struct is_integral<int128_t> : std::true_type {};
template <> struct is_integral<uint128_t> : std::true_type {};

template <typename T>
using is_signed =
    std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
                                     std::is_same<T, int128_t>::value>;

// Returns true if value is negative, false otherwise.
// Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
FMT_CONSTEXPR auto is_negative(T value) -> bool {
  return value < 0;
}
template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
FMT_CONSTEXPR auto is_negative(T) -> bool {
  return false;
}

template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
FMT_CONSTEXPR auto is_supported_floating_point(T) -> uint16_t {
  return (std::is_same<T, float>::value && FMT_USE_FLOAT) ||
         (std::is_same<T, double>::value && FMT_USE_DOUBLE) ||
         (std::is_same<T, long double>::value && FMT_USE_LONG_DOUBLE);
}

// Smallest of uint32_t, uint64_t, uint128_t that is large enough to
// represent all values of an integral type T.
template <typename T>
using uint32_or_64_or_128_t =
    conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS,
                  uint32_t,
                  conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;
template <typename T>
using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>;

#define FMT_POWERS_OF_10(factor)                                             \
  factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
      (factor)*1000000, (factor)*10000000, (factor)*100000000,               \
      (factor)*1000000000

// Static data is placed in this class template for the header-only config.
template <typename T = void> struct basic_data {
  // log10(2) = 0x0.4d104d427de7fbcc...
  static const uint64_t log10_2_significand = 0x4d104d427de7fbcc;

  // GCC generates slightly better code for pairs than chars.
  FMT_API static constexpr const char digits[100][2] = {
      {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
      {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
      {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
      {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
      {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
      {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
      {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
      {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
      {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
      {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
      {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
      {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
      {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
      {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
      {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
      {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
      {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};

  FMT_API static constexpr const char hex_digits[] = "0123456789abcdef";
  FMT_API static constexpr const char signs[4] = {0, '-', '+', ' '};
  FMT_API static constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+',
                                                         0x1000000u | ' '};
  FMT_API static constexpr const char left_padding_shifts[5] = {31, 31, 0, 1,
                                                                0};
  FMT_API static constexpr const char right_padding_shifts[5] = {0, 31, 0, 1,
                                                                 0};
};

#ifdef FMT_SHARED
// Required for -flto, -fivisibility=hidden and -shared to work
extern template struct basic_data<void>;
#endif

// This is a struct rather than an alias to avoid shadowing warnings in gcc.
struct data : basic_data<> {};

template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int {
  int count = 1;
  for (;;) {
    // Integer division is slow so do it for a group of four digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    if (n < 10) return count;
    if (n < 100) return count + 1;
    if (n < 1000) return count + 2;
    if (n < 10000) return count + 3;
    n /= 10000u;
    count += 4;
  }
}
#if FMT_USE_INT128
FMT_CONSTEXPR inline auto count_digits(uint128_t n) -> int {
  return count_digits_fallback(n);
}
#endif

// Returns the number of decimal digits in n. Leading zeros are not counted
// except for n == 0 in which case count_digits returns 1.
FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int {
#ifdef FMT_BUILTIN_CLZLL
  if (!is_constant_evaluated()) {
    // https://github.com/fmtlib/format-benchmark/blob/master/digits10
    // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
    constexpr uint16_t bsr2log10[] = {
        1,  1,  1,  2,  2,  2,  3,  3,  3,  4,  4,  4,  4,  5,  5,  5,
        6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  9,  9,  9,  10, 10, 10,
        10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
        15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20};
    auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63];
    constexpr const uint64_t zero_or_powers_of_10[] = {
        0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL),
        10000000000000000000ULL};
    return t - (n < zero_or_powers_of_10[t]);
  }
#endif
  return count_digits_fallback(n);
}

// Counts the number of digits in n. BITS = log2(radix).
template <int BITS, typename UInt>
FMT_CONSTEXPR auto count_digits(UInt n) -> int {
#ifdef FMT_BUILTIN_CLZ
  if (num_bits<UInt>() == 32)
    return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1;
#endif
  int num_digits = 0;
  do {
    ++num_digits;
  } while ((n >>= BITS) != 0);
  return num_digits;
}

template <> auto count_digits<4>(detail::fallback_uintptr n) -> int;

// It is a separate function rather than a part of count_digits to workaround
// the lack of static constexpr in constexpr functions.
FMT_INLINE uint64_t count_digits_inc(int n) {
  // An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
  // This increments the upper 32 bits (log10(T) - 1) when >= T is added.
#define FMT_INC(T) (((sizeof(#T) - 1ull) << 32) - T)
  static constexpr uint64_t table[] = {
      FMT_INC(0),          FMT_INC(0),          FMT_INC(0),           // 8
      FMT_INC(10),         FMT_INC(10),         FMT_INC(10),          // 64
      FMT_INC(100),        FMT_INC(100),        FMT_INC(100),         // 512
      FMT_INC(1000),       FMT_INC(1000),       FMT_INC(1000),        // 4096
      FMT_INC(10000),      FMT_INC(10000),      FMT_INC(10000),       // 32k
      FMT_INC(100000),     FMT_INC(100000),     FMT_INC(100000),      // 256k
      FMT_INC(1000000),    FMT_INC(1000000),    FMT_INC(1000000),     // 2048k
      FMT_INC(10000000),   FMT_INC(10000000),   FMT_INC(10000000),    // 16M
      FMT_INC(100000000),  FMT_INC(100000000),  FMT_INC(100000000),   // 128M
      FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000),  // 1024M
      FMT_INC(1000000000), FMT_INC(1000000000)                        // 4B
  };
  return table[n];
}

// Optional version of count_digits for better performance on 32-bit platforms.
FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int {
#ifdef FMT_BUILTIN_CLZ
  if (!is_constant_evaluated()) {
    auto inc = count_digits_inc(FMT_BUILTIN_CLZ(n | 1) ^ 31);
    return static_cast<int>((n + inc) >> 32);
  }
#endif
  return count_digits_fallback(n);
}

template <typename Int> constexpr auto digits10() FMT_NOEXCEPT -> int {
  return std::numeric_limits<Int>::digits10;
}
template <> constexpr auto digits10<int128_t>() FMT_NOEXCEPT -> int {
  return 38;
}
template <> constexpr auto digits10<uint128_t>() FMT_NOEXCEPT -> int {
  return 38;
}

template <typename Char> struct thousands_sep_result {
  std::string grouping;
  Char thousands_sep;
};

template <typename Char>
FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>;
template <typename Char>
inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> {
  auto result = thousands_sep_impl<char>(loc);
  return {result.grouping, Char(result.thousands_sep)};
}
template <>
inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> {
  return thousands_sep_impl<wchar_t>(loc);
}

template <typename Char>
FMT_API auto decimal_point_impl(locale_ref loc) -> Char;
template <typename Char> inline auto decimal_point(locale_ref loc) -> Char {
  return Char(decimal_point_impl<char>(loc));
}
template <> inline auto decimal_point(locale_ref loc) -> wchar_t {
  return decimal_point_impl<wchar_t>(loc);
}

// Compares two characters for equality.
template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool {
  return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]);
}
inline auto equal2(const char* lhs, const char* rhs) -> bool {
  return memcmp(lhs, rhs, 2) == 0;
}

// Copies two characters from src to dst.
template <typename Char> void copy2(Char* dst, const char* src) {
  *dst++ = static_cast<Char>(*src++);
  *dst = static_cast<Char>(*src);
}
FMT_INLINE void copy2(char* dst, const char* src) { memcpy(dst, src, 2); }

template <typename Iterator> struct format_decimal_result {
  Iterator begin;
  Iterator end;
};

// Formats a decimal unsigned integer value writing into out pointing to a
// buffer of specified size. The caller must ensure that the buffer is large
// enough.
template <typename Char, typename UInt>
FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size)
    -> format_decimal_result<Char*> {
  FMT_ASSERT(size >= count_digits(value), "invalid digit count");
  out += size;
  Char* end = out;
  if (is_constant_evaluated()) {
    while (value >= 10) {
      *--out = static_cast<Char>('0' + value % 10);
      value /= 10;
    }
    *--out = static_cast<Char>('0' + value);
    return {out, end};
  }
  while (value >= 100) {
    // Integer division is slow so do it for a group of two digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    out -= 2;
    copy2(out, data::digits[value % 100]);
    value /= 100;
  }
  if (value < 10) {
    *--out = static_cast<Char>('0' + value);
    return {out, end};
  }
  out -= 2;
  copy2(out, data::digits[value]);
  return {out, end};
}

template <typename Char, typename UInt, typename Iterator,
          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)>
inline auto format_decimal(Iterator out, UInt value, int size)
    -> format_decimal_result<Iterator> {
  // Buffer is large enough to hold all digits (digits10 + 1).
  Char buffer[digits10<UInt>() + 1];
  auto end = format_decimal(buffer, value, size).end;
  return {out, detail::copy_str_noinline<Char>(buffer, end, out)};
}

template <unsigned BASE_BITS, typename Char, typename UInt>
FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits,
                               bool upper = false) -> Char* {
  buffer += num_digits;
  Char* end = buffer;
  do {
    const char* digits = upper ? "0123456789ABCDEF" : data::hex_digits;
    unsigned digit = (value & ((1 << BASE_BITS) - 1));
    *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit)
                                                : digits[digit]);
  } while ((value >>= BASE_BITS) != 0);
  return end;
}

template <unsigned BASE_BITS, typename Char>
auto format_uint(Char* buffer, detail::fallback_uintptr n, int num_digits,
                 bool = false) -> Char* {
  auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
  int start = (num_digits + char_digits - 1) / char_digits - 1;
  if (int start_digits = num_digits % char_digits) {
    unsigned value = n.value[start--];
    buffer = format_uint<BASE_BITS>(buffer, value, start_digits);
  }
  for (; start >= 0; --start) {
    unsigned value = n.value[start];
    buffer += char_digits;
    auto p = buffer;
    for (int i = 0; i < char_digits; ++i) {
      unsigned digit = (value & ((1 << BASE_BITS) - 1));
      *--p = static_cast<Char>(data::hex_digits[digit]);
      value >>= BASE_BITS;
    }
  }
  return buffer;
}

template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
inline auto format_uint(It out, UInt value, int num_digits, bool upper = false)
    -> It {
  if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
    format_uint<BASE_BITS>(ptr, value, num_digits, upper);
    return out;
  }
  // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
  char buffer[num_bits<UInt>() / BASE_BITS + 1];
  format_uint<BASE_BITS>(buffer, value, num_digits, upper);
  return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out);
}

// A converter from UTF-8 to UTF-16.
class utf8_to_utf16 {
 private:
  basic_memory_buffer<wchar_t> buffer_;

 public:
  FMT_API explicit utf8_to_utf16(string_view s);
  operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; }
  auto size() const -> size_t { return buffer_.size() - 1; }
  auto c_str() const -> const wchar_t* { return &buffer_[0]; }
  auto str() const -> std::wstring { return {&buffer_[0], size()}; }
};

namespace dragonbox {

// Type-specific information that Dragonbox uses.
template <class T> struct float_info;

template <> struct float_info<float> {
  using carrier_uint = uint32_t;
  static const int significand_bits = 23;
  static const int exponent_bits = 8;
  static const int min_exponent = -126;
  static const int max_exponent = 127;
  static const int exponent_bias = -127;
  static const int decimal_digits = 9;
  static const int kappa = 1;
  static const int big_divisor = 100;
  static const int small_divisor = 10;
  static const int min_k = -31;
  static const int max_k = 46;
  static const int cache_bits = 64;
  static const int divisibility_check_by_5_threshold = 39;
  static const int case_fc_pm_half_lower_threshold = -1;
  static const int case_fc_pm_half_upper_threshold = 6;
  static const int case_fc_lower_threshold = -2;
  static const int case_fc_upper_threshold = 6;
  static const int case_shorter_interval_left_endpoint_lower_threshold = 2;
  static const int case_shorter_interval_left_endpoint_upper_threshold = 3;
  static const int shorter_interval_tie_lower_threshold = -35;
  static const int shorter_interval_tie_upper_threshold = -35;
  static const int max_trailing_zeros = 7;
};

template <> struct float_info<double> {
  using carrier_uint = uint64_t;
  static const int significand_bits = 52;
  static const int exponent_bits = 11;
  static const int min_exponent = -1022;
  static const int max_exponent = 1023;
  static const int exponent_bias = -1023;
  static const int decimal_digits = 17;
  static const int kappa = 2;
  static const int big_divisor = 1000;
  static const int small_divisor = 100;
  static const int min_k = -292;
  static const int max_k = 326;
  static const int cache_bits = 128;
  static const int divisibility_check_by_5_threshold = 86;
  static const int case_fc_pm_half_lower_threshold = -2;
  static const int case_fc_pm_half_upper_threshold = 9;
  static const int case_fc_lower_threshold = -4;
  static const int case_fc_upper_threshold = 9;
  static const int case_shorter_interval_left_endpoint_lower_threshold = 2;
  static const int case_shorter_interval_left_endpoint_upper_threshold = 3;
  static const int shorter_interval_tie_lower_threshold = -77;
  static const int shorter_interval_tie_upper_threshold = -77;
  static const int max_trailing_zeros = 16;
};

template <typename T> struct decimal_fp {
  using significand_type = typename float_info<T>::carrier_uint;
  significand_type significand;
  int exponent;
};

template <typename T>
FMT_API auto to_decimal(T x) FMT_NOEXCEPT -> decimal_fp<T>;
}  // namespace dragonbox

template <typename T>
constexpr auto exponent_mask() ->
    typename dragonbox::float_info<T>::carrier_uint {
  using uint = typename dragonbox::float_info<T>::carrier_uint;
  return ((uint(1) << dragonbox::float_info<T>::exponent_bits) - 1)
         << dragonbox::float_info<T>::significand_bits;
}

// Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
template <typename Char, typename It>
auto write_exponent(int exp, It it) -> It {
  FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
  if (exp < 0) {
    *it++ = static_cast<Char>('-');
    exp = -exp;
  } else {
    *it++ = static_cast<Char>('+');
  }
  if (exp >= 100) {
    const char* top = data::digits[exp / 100];
    if (exp >= 1000) *it++ = static_cast<Char>(top[0]);
    *it++ = static_cast<Char>(top[1]);
    exp %= 100;
  }
  const char* d = data::digits[exp];
  *it++ = static_cast<Char>(d[0]);
  *it++ = static_cast<Char>(d[1]);
  return it;
}

template <typename T>
auto format_float(T value, int precision, float_specs specs, buffer<char>& buf)
    -> int;

// Formats a floating-point number with snprintf.
template <typename T>
auto snprintf_float(T value, int precision, float_specs specs,
                    buffer<char>& buf) -> int;

template <typename T> auto promote_float(T value) -> T { return value; }
inline auto promote_float(float value) -> double {
  return static_cast<double>(value);
}

template <typename OutputIt, typename Char>
FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n,
                                     const fill_t<Char>& fill) -> OutputIt {
  auto fill_size = fill.size();
  if (fill_size == 1) return detail::fill_n(it, n, fill[0]);
  auto data = fill.data();
  for (size_t i = 0; i < n; ++i)
    it = copy_str<Char>(data, data + fill_size, it);
  return it;
}

// Writes the output of f, padded according to format specifications in specs.
// size: output size in code units.
// width: output display width in (terminal) column positions.
template <align::type align = align::left, typename OutputIt, typename Char,
          typename F>
FMT_CONSTEXPR auto write_padded(OutputIt out,
                                const basic_format_specs<Char>& specs,
                                size_t size, size_t width, F&& f) -> OutputIt {
  static_assert(align == align::left || align == align::right, "");
  unsigned spec_width = to_unsigned(specs.width);
  size_t padding = spec_width > width ? spec_width - width : 0;
  auto* shifts = align == align::left ? data::left_padding_shifts
                                      : data::right_padding_shifts;
  size_t left_padding = padding >> shifts[specs.align];
  size_t right_padding = padding - left_padding;
  auto it = reserve(out, size + padding * specs.fill.size());
  if (left_padding != 0) it = fill(it, left_padding, specs.fill);
  it = f(it);
  if (right_padding != 0) it = fill(it, right_padding, specs.fill);
  return base_iterator(out, it);
}

template <align::type align = align::left, typename OutputIt, typename Char,
          typename F>
constexpr auto write_padded(OutputIt out, const basic_format_specs<Char>& specs,
                            size_t size, F&& f) -> OutputIt {
  return write_padded<align>(out, specs, size, size, f);
}

template <align::type align = align::left, typename Char, typename OutputIt>
FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes,
                               const basic_format_specs<Char>& specs)
    -> OutputIt {
  return write_padded<align>(
      out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) {
        const char* data = bytes.data();
        return copy_str<Char>(data, data + bytes.size(), it);
      });
}

template <typename Char, typename OutputIt, typename UIntPtr>
auto write_ptr(OutputIt out, UIntPtr value,
               const basic_format_specs<Char>* specs) -> OutputIt {
  int num_digits = count_digits<4>(value);
  auto size = to_unsigned(num_digits) + size_t(2);
  auto write = [=](reserve_iterator<OutputIt> it) {
    *it++ = static_cast<Char>('0');
    *it++ = static_cast<Char>('x');
    return format_uint<4, Char>(it, value, num_digits);
  };
  return specs ? write_padded<align::right>(out, *specs, size, write)
               : base_iterator(out, write(reserve(out, size)));
}

template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write_char(OutputIt out, Char value,
                              const basic_format_specs<Char>& specs)
    -> OutputIt {
  return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) {
    *it++ = value;
    return it;
  });
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, Char value,
                         const basic_format_specs<Char>& specs,
                         locale_ref loc = {}) -> OutputIt {
  return check_char_specs(specs)
             ? write_char(out, value, specs)
             : write(out, static_cast<int>(value), specs, loc);
}

// Data for write_int that doesn't depend on output iterator type. It is used to
// avoid template code bloat.
template <typename Char> struct write_int_data {
  size_t size;
  size_t padding;

  FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix,
                               const basic_format_specs<Char>& specs)
      : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) {
    if (specs.align == align::numeric) {
      auto width = to_unsigned(specs.width);
      if (width > size) {
        padding = width - size;
        size = width;
      }
    } else if (specs.precision > num_digits) {
      size = (prefix >> 24) + to_unsigned(specs.precision);
      padding = to_unsigned(specs.precision - num_digits);
    }
  }
};

// Writes an integer in the format
//   <left-padding><prefix><numeric-padding><digits><right-padding>
// where <digits> are written by write_digits(it).
// prefix contains chars in three lower bytes and the size in the fourth byte.
template <typename OutputIt, typename Char, typename W>
FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits,
                                        unsigned prefix,
                                        const basic_format_specs<Char>& specs,
                                        W write_digits) -> OutputIt {
  // Slightly faster check for specs.width == 0 && specs.precision == -1.
  if ((specs.width | (specs.precision + 1)) == 0) {
    auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24));
    if (prefix != 0) {
      for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
        *it++ = static_cast<Char>(p & 0xff);
    }
    return base_iterator(out, write_digits(it));
  }
  auto data = write_int_data<Char>(num_digits, prefix, specs);
  return write_padded<align::right>(
      out, specs, data.size, [=](reserve_iterator<OutputIt> it) {
        for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
          *it++ = static_cast<Char>(p & 0xff);
        it = detail::fill_n(it, data.padding, static_cast<Char>('0'));
        return write_digits(it);
      });
}

template <typename OutputIt, typename UInt, typename Char>
auto write_int_localized(OutputIt& out, UInt value, unsigned prefix,
                         const basic_format_specs<Char>& specs, locale_ref loc)
    -> bool {
  static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "");
  const auto sep_size = 1;
  auto ts = thousands_sep<Char>(loc);
  if (!ts.thousands_sep) return false;
  int num_digits = count_digits(value);
  int size = num_digits, n = num_digits;
  const std::string& groups = ts.grouping;
  std::string::const_iterator group = groups.cbegin();
  while (group != groups.cend() && n > *group && *group > 0 &&
         *group != max_value<char>()) {
    size += sep_size;
    n -= *group;
    ++group;
  }
  if (group == groups.cend()) size += sep_size * ((n - 1) / groups.back());
  char digits[40];
  format_decimal(digits, value, num_digits);
  basic_memory_buffer<Char> buffer;
  if (prefix != 0) ++size;
  const auto usize = to_unsigned(size);
  buffer.resize(usize);
  basic_string_view<Char> s(&ts.thousands_sep, sep_size);
  // Index of a decimal digit with the least significant digit having index 0.
  int digit_index = 0;
  group = groups.cbegin();
  auto p = buffer.data() + size - 1;
  for (int i = num_digits - 1; i > 0; --i) {
    *p-- = static_cast<Char>(digits[i]);
    if (*group <= 0 || ++digit_index % *group != 0 ||
        *group == max_value<char>())
      continue;
    if (group + 1 != groups.cend()) {
      digit_index = 0;
      ++group;
    }
    std::uninitialized_copy(s.data(), s.data() + s.size(),
                            make_checked(p, s.size()));
    p -= s.size();
  }
  *p-- = static_cast<Char>(*digits);
  if (prefix != 0) *p = static_cast<Char>(prefix);
  auto data = buffer.data();
  out = write_padded<align::right>(
      out, specs, usize, usize, [=](reserve_iterator<OutputIt> it) {
        return copy_str<Char>(data, data + size, it);
      });
  return true;
}

FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
  prefix |= prefix != 0 ? value << 8 : value;
  prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
}

template <typename UInt> struct write_int_arg {
  UInt abs_value;
  unsigned prefix;
};

template <typename T>
FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign)
    -> write_int_arg<uint32_or_64_or_128_t<T>> {
  auto prefix = 0u;
  auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
  if (is_negative(value)) {
    prefix = 0x01000000 | '-';
    abs_value = 0 - abs_value;
  } else {
    prefix = data::prefixes[sign];
  }
  return {abs_value, prefix};
}

template <typename Char, typename OutputIt, typename T>
FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg,
                                        const basic_format_specs<Char>& specs,
                                        locale_ref loc) -> OutputIt {
  static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, "");
  auto abs_value = arg.abs_value;
  auto prefix = arg.prefix;
  auto utype = static_cast<unsigned>(specs.type);
  switch (specs.type) {
  case 0:
  case 'd': {
    if (specs.localized &&
        write_int_localized(out, static_cast<uint64_or_128_t<T>>(abs_value),
                            prefix, specs, loc)) {
      return out;
    }
    auto num_digits = count_digits(abs_value);
    return write_int(
        out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
          return format_decimal<Char>(it, abs_value, num_digits).end;
        });
  }
  case 'x':
  case 'X': {
    if (specs.alt) prefix_append(prefix, (utype << 8) | '0');
    bool upper = specs.type != 'x';
    int num_digits = count_digits<4>(abs_value);
    return write_int(
        out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
          return format_uint<4, Char>(it, abs_value, num_digits, upper);
        });
  }
  case 'b':
  case 'B': {
    if (specs.alt) prefix_append(prefix, (utype << 8) | '0');
    int num_digits = count_digits<1>(abs_value);
    return write_int(out, num_digits, prefix, specs,
                     [=](reserve_iterator<OutputIt> it) {
                       return format_uint<1, Char>(it, abs_value, num_digits);
                     });
  }
  case 'o': {
    int num_digits = count_digits<3>(abs_value);
    if (specs.alt && specs.precision <= num_digits && abs_value != 0) {
      // Octal prefix '0' is counted as a digit, so only add it if precision
      // is not greater than the number of digits.
      prefix_append(prefix, '0');
    }
    return write_int(out, num_digits, prefix, specs,
                     [=](reserve_iterator<OutputIt> it) {
                       return format_uint<3, Char>(it, abs_value, num_digits);
                     });
  }
  case 'c':
    return write_char(out, static_cast<Char>(abs_value), specs);
  default:
    FMT_THROW(format_error("invalid type specifier"));
  }
  return out;
}
template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_integral<T>::value &&
                        !std::is_same<T, bool>::value &&
                        std::is_same<OutputIt, buffer_appender<Char>>::value)>
FMT_CONSTEXPR auto write(OutputIt out, T value,
                         const basic_format_specs<Char>& specs, locale_ref loc)
    -> OutputIt {
  return write_int(out, make_write_int_arg(value, specs.sign), specs, loc);
}
// An inlined version of write used in format string compilation.
template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_integral<T>::value &&
                        !std::is_same<T, bool>::value &&
                        !std::is_same<OutputIt, buffer_appender<Char>>::value)>
FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
                                    const basic_format_specs<Char>& specs,
                                    locale_ref loc) -> OutputIt {
  return write_int(out, make_write_int_arg(value, specs.sign), specs, loc);
}

template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
                         const basic_format_specs<Char>& specs) -> OutputIt {
  auto data = s.data();
  auto size = s.size();
  if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
    size = code_point_index(s, to_unsigned(specs.precision));
  auto width =
      specs.width != 0 ? compute_width(basic_string_view<Char>(data, size)) : 0;
  return write_padded(out, specs, size, width,
                      [=](reserve_iterator<OutputIt> it) {
                        return copy_str<Char>(data, data + size, it);
                      });
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out,
                         basic_string_view<type_identity_t<Char>> s,
                         const basic_format_specs<Char>& specs, locale_ref)
    -> OutputIt {
  check_string_type_spec(specs.type);
  return write(out, s, specs);
}
template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, const Char* s,
                         const basic_format_specs<Char>& specs, locale_ref)
    -> OutputIt {
  return check_cstring_type_spec(specs.type)
             ? write(out, basic_string_view<Char>(s), specs, {})
             : write_ptr<Char>(out, to_uintptr(s), &specs);
}

template <typename Char, typename OutputIt>
auto write_nonfinite(OutputIt out, bool isinf, basic_format_specs<Char> specs,
                     const float_specs& fspecs) -> OutputIt {
  auto str =
      isinf ? (fspecs.upper ? "INF" : "inf") : (fspecs.upper ? "NAN" : "nan");
  constexpr size_t str_size = 3;
  auto sign = fspecs.sign;
  auto size = str_size + (sign ? 1 : 0);
  // Replace '0'-padding with space for non-finite values.
  const bool is_zero_fill =
      specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0');
  if (is_zero_fill) specs.fill[0] = static_cast<Char>(' ');
  return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) {
    if (sign) *it++ = static_cast<Char>(data::signs[sign]);
    return copy_str<Char>(str, str + str_size, it);
  });
}

// A decimal floating-point number significand * pow(10, exp).
struct big_decimal_fp {
  const char* significand;
  int significand_size;
  int exponent;
};

inline auto get_significand_size(const big_decimal_fp& fp) -> int {
  return fp.significand_size;
}
template <typename T>
inline auto get_significand_size(const dragonbox::decimal_fp<T>& fp) -> int {
  return count_digits(fp.significand);
}

template <typename Char, typename OutputIt>
inline auto write_significand(OutputIt out, const char* significand,
                              int& significand_size) -> OutputIt {
  return copy_str<Char>(significand, significand + significand_size, out);
}
template <typename Char, typename OutputIt, typename UInt>
inline auto write_significand(OutputIt out, UInt significand,
                              int significand_size) -> OutputIt {
  return format_decimal<Char>(out, significand, significand_size).end;
}

template <typename Char, typename UInt,
          FMT_ENABLE_IF(std::is_integral<UInt>::value)>
inline auto write_significand(Char* out, UInt significand, int significand_size,
                              int integral_size, Char decimal_point) -> Char* {
  if (!decimal_point)
    return format_decimal(out, significand, significand_size).end;
  auto end = format_decimal(out + 1, significand, significand_size).end;
  if (integral_size == 1) {
    out[0] = out[1];
  } else {
    std::uninitialized_copy_n(out + 1, integral_size,
                              make_checked(out, to_unsigned(integral_size)));
  }
  out[integral_size] = decimal_point;
  return end;
}

template <typename OutputIt, typename UInt, typename Char,
          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)>
inline auto write_significand(OutputIt out, UInt significand,
                              int significand_size, int integral_size,
                              Char decimal_point) -> OutputIt {
  // Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
  Char buffer[digits10<UInt>() + 2];
  auto end = write_significand(buffer, significand, significand_size,
                               integral_size, decimal_point);
  return detail::copy_str_noinline<Char>(buffer, end, out);
}

template <typename OutputIt, typename Char>
inline auto write_significand(OutputIt out, const char* significand,
                              int significand_size, int integral_size,
                              Char decimal_point) -> OutputIt {
  out = detail::copy_str_noinline<Char>(significand,
                                        significand + integral_size, out);
  if (!decimal_point) return out;
  *out++ = decimal_point;
  return detail::copy_str_noinline<Char>(significand + integral_size,
                                         significand + significand_size, out);
}

template <typename OutputIt, typename DecimalFP, typename Char>
auto write_float(OutputIt out, const DecimalFP& fp,
                 const basic_format_specs<Char>& specs, float_specs fspecs,
                 Char decimal_point) -> OutputIt {
  auto significand = fp.significand;
  int significand_size = get_significand_size(fp);
  static const Char zero = static_cast<Char>('0');
  auto sign = fspecs.sign;
  size_t size = to_unsigned(significand_size) + (sign ? 1 : 0);
  using iterator = reserve_iterator<OutputIt>;

  int output_exp = fp.exponent + significand_size - 1;
  auto use_exp_format = [=]() {
    if (fspecs.format == float_format::exp) return true;
    if (fspecs.format != float_format::general) return false;
    // Use the fixed notation if the exponent is in [exp_lower, exp_upper),
    // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
    const int exp_lower = -4, exp_upper = 16;
    return output_exp < exp_lower ||
           output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper);
  };
  if (use_exp_format()) {
    int num_zeros = 0;
    if (fspecs.showpoint) {
      num_zeros = fspecs.precision - significand_size;
      if (num_zeros < 0) num_zeros = 0;
      size += to_unsigned(num_zeros);
    } else if (significand_size == 1) {
      decimal_point = Char();
    }
    auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp;
    int exp_digits = 2;
    if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3;

    size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits);
    char exp_char = fspecs.upper ? 'E' : 'e';
    auto write = [=](iterator it) {
      if (sign) *it++ = static_cast<Char>(data::signs[sign]);
      // Insert a decimal point after the first digit and add an exponent.
      it = write_significand(it, significand, significand_size, 1,
                             decimal_point);
      if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero);
      *it++ = static_cast<Char>(exp_char);
      return write_exponent<Char>(output_exp, it);
    };
    return specs.width > 0 ? write_padded<align::right>(out, specs, size, write)
                           : base_iterator(out, write(reserve(out, size)));
  }

  int exp = fp.exponent + significand_size;
  if (fp.exponent >= 0) {
    // 1234e5 -> 123400000[.0+]
    size += to_unsigned(fp.exponent);
    int num_zeros = fspecs.precision - exp;
#ifdef FMT_FUZZ
    if (num_zeros > 5000)
      throw std::runtime_error("fuzz mode - avoiding excessive cpu use");
#endif
    if (fspecs.showpoint) {
      if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 1;
      if (num_zeros > 0) size += to_unsigned(num_zeros) + 1;
    }
    return write_padded<align::right>(out, specs, size, [&](iterator it) {
      if (sign) *it++ = static_cast<Char>(data::signs[sign]);
      it = write_significand<Char>(it, significand, significand_size);
      it = detail::fill_n(it, fp.exponent, zero);
      if (!fspecs.showpoint) return it;
      *it++ = decimal_point;
      return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
    });
  } else if (exp > 0) {
    // 1234e-2 -> 12.34[0+]
    int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0;
    size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0);
    return write_padded<align::right>(out, specs, size, [&](iterator it) {
      if (sign) *it++ = static_cast<Char>(data::signs[sign]);
      it = write_significand(it, significand, significand_size, exp,
                             decimal_point);
      return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
    });
  }
  // 1234e-6 -> 0.001234
  int num_zeros = -exp;
  if (significand_size == 0 && fspecs.precision >= 0 &&
      fspecs.precision < num_zeros) {
    num_zeros = fspecs.precision;
  }
  bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint;
  size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros);
  return write_padded<align::right>(out, specs, size, [&](iterator it) {
    if (sign) *it++ = static_cast<Char>(data::signs[sign]);
    *it++ = zero;
    if (!pointy) return it;
    *it++ = decimal_point;
    it = detail::fill_n(it, num_zeros, zero);
    return write_significand<Char>(it, significand, significand_size);
  });
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(std::is_floating_point<T>::value)>
auto write(OutputIt out, T value, basic_format_specs<Char> specs,
           locale_ref loc = {}) -> OutputIt {
  if (const_check(!is_supported_floating_point(value))) return out;
  float_specs fspecs = parse_float_type_spec(specs);
  fspecs.sign = specs.sign;
  if (std::signbit(value)) {  // value < 0 is false for NaN so use signbit.
    fspecs.sign = sign::minus;
    value = -value;
  } else if (fspecs.sign == sign::minus) {
    fspecs.sign = sign::none;
  }

  if (!std::isfinite(value))
    return write_nonfinite(out, std::isinf(value), specs, fspecs);

  if (specs.align == align::numeric && fspecs.sign) {
    auto it = reserve(out, 1);
    *it++ = static_cast<Char>(data::signs[fspecs.sign]);
    out = base_iterator(out, it);
    fspecs.sign = sign::none;
    if (specs.width != 0) --specs.width;
  }

  memory_buffer buffer;
  if (fspecs.format == float_format::hex) {
    if (fspecs.sign) buffer.push_back(data::signs[fspecs.sign]);
    snprintf_float(promote_float(value), specs.precision, fspecs, buffer);
    return write_bytes<align::right>(out, {buffer.data(), buffer.size()},
                                     specs);
  }
  int precision = specs.precision >= 0 || !specs.type ? specs.precision : 6;
  if (fspecs.format == float_format::exp) {
    if (precision == max_value<int>())
      FMT_THROW(format_error("number is too big"));
    else
      ++precision;
  }
  if (const_check(std::is_same<T, float>())) fspecs.binary32 = true;
  fspecs.use_grisu = is_fast_float<T>();
  int exp = format_float(promote_float(value), precision, fspecs, buffer);
  fspecs.precision = precision;
  Char point =
      fspecs.locale ? decimal_point<Char>(loc) : static_cast<Char>('.');
  auto fp = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp};
  return write_float(out, fp, specs, fspecs, point);
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_fast_float<T>::value)>
auto write(OutputIt out, T value) -> OutputIt {
  if (const_check(!is_supported_floating_point(value))) return out;

  using floaty = conditional_t<std::is_same<T, long double>::value, double, T>;
  using uint = typename dragonbox::float_info<floaty>::carrier_uint;
  auto bits = bit_cast<uint>(value);

  auto fspecs = float_specs();
  auto sign_bit = bits & (uint(1) << (num_bits<uint>() - 1));
  if (sign_bit != 0) {
    fspecs.sign = sign::minus;
    value = -value;
  }

  static const auto specs = basic_format_specs<Char>();
  uint mask = exponent_mask<floaty>();
  if ((bits & mask) == mask)
    return write_nonfinite(out, std::isinf(value), specs, fspecs);

  auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
  return write_float(out, dec, specs, fspecs, static_cast<Char>('.'));
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(std::is_floating_point<T>::value &&
                        !is_fast_float<T>::value)>
inline auto write(OutputIt out, T value) -> OutputIt {
  return write(out, value, basic_format_specs<Char>());
}

template <typename Char, typename OutputIt>
auto write(OutputIt out, monostate, basic_format_specs<Char> = {},
           locale_ref = {}) -> OutputIt {
  FMT_ASSERT(false, "");
  return out;
}

template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value)
    -> OutputIt {
  auto it = reserve(out, value.size());
  it = copy_str_noinline<Char>(value.begin(), value.end(), it);
  return base_iterator(out, it);
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_string<T>::value)>
constexpr auto write(OutputIt out, const T& value) -> OutputIt {
  return write<Char>(out, to_string_view(value));
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_integral<T>::value &&
                        !std::is_same<T, bool>::value &&
                        !std::is_same<T, Char>::value)>
FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
  auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
  bool negative = is_negative(value);
  // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
  if (negative) abs_value = ~abs_value + 1;
  int num_digits = count_digits(abs_value);
  auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
  auto it = reserve(out, size);
  if (auto ptr = to_pointer<Char>(it, size)) {
    if (negative) *ptr++ = static_cast<Char>('-');
    format_decimal<Char>(ptr, abs_value, num_digits);
    return out;
  }
  if (negative) *it++ = static_cast<Char>('-');
  it = format_decimal<Char>(it, abs_value, num_digits).end;
  return base_iterator(out, it);
}

// FMT_ENABLE_IF() condition separated to workaround MSVC bug
template <
    typename Char, typename OutputIt, typename T,
    bool check =
        std::is_enum<T>::value && !std::is_same<T, Char>::value &&
        mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value !=
            type::custom_type,
    FMT_ENABLE_IF(check)>
FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
  return write<Char>(
      out, static_cast<typename std::underlying_type<T>::type>(value));
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(std::is_same<T, bool>::value)>
FMT_CONSTEXPR auto write(OutputIt out, T value,
                         const basic_format_specs<Char>& specs = {},
                         locale_ref = {}) -> OutputIt {
  return specs.type && specs.type != 's'
             ? write(out, value ? 1 : 0, specs, {})
             : write_bytes(out, value ? "true" : "false", specs);
}

template <typename Char, typename OutputIt>
FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt {
  auto it = reserve(out, 1);
  *it++ = value;
  return base_iterator(out, it);
}

template <typename Char, typename OutputIt>
FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value)
    -> OutputIt {
  if (!value) {
    FMT_THROW(format_error("string pointer is null"));
  } else {
    auto length = std::char_traits<Char>::length(value);
    out = write(out, basic_string_view<Char>(value, length));
  }
  return out;
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(std::is_same<T, void>::value)>
auto write(OutputIt out, const T* value,
           const basic_format_specs<Char>& specs = {}, locale_ref = {})
    -> OutputIt {
  check_pointer_type_spec(specs.type, error_handler());
  return write_ptr<Char>(out, to_uintptr(value), &specs);
}

template <typename Char, typename OutputIt, typename T>
FMT_CONSTEXPR auto write(OutputIt out, const T& value) ->
    typename std::enable_if<
        mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value ==
            type::custom_type,
        OutputIt>::type {
  using context_type = basic_format_context<OutputIt, Char>;
  using formatter_type =
      conditional_t<has_formatter<T, context_type>::value,
                    typename context_type::template formatter_type<T>,
                    fallback_formatter<T, Char>>;
  context_type ctx(out, {}, {});
  return formatter_type().format(value, ctx);
}

// An argument visitor that formats the argument and writes it via the output
// iterator. It's a class and not a generic lambda for compatibility with C++11.
template <typename Char> struct default_arg_formatter {
  using iterator = buffer_appender<Char>;
  using context = buffer_context<Char>;

  iterator out;
  basic_format_args<context> args;
  locale_ref loc;

  template <typename T> auto operator()(T value) -> iterator {
    return write<Char>(out, value);
  }
  auto operator()(typename basic_format_arg<context>::handle h) -> iterator {
    basic_format_parse_context<Char> parse_ctx({});
    context format_ctx(out, args, loc);
    h.format(parse_ctx, format_ctx);
    return format_ctx.out();
  }
};

template <typename Char> struct arg_formatter {
  using iterator = buffer_appender<Char>;
  using context = buffer_context<Char>;

  iterator out;
  const basic_format_specs<Char>& specs;
  locale_ref locale;

  template <typename T>
  FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator {
    return detail::write(out, value, specs, locale);
  }
  auto operator()(typename basic_format_arg<context>::handle) -> iterator {
    // User-defined types are handled separately because they require access
    // to the parse context.
    return out;
  }
};

template <typename Char> struct custom_formatter {
  basic_format_parse_context<Char>& parse_ctx;
  buffer_context<Char>& ctx;

  void operator()(
      typename basic_format_arg<buffer_context<Char>>::handle h) const {
    h.format(parse_ctx, ctx);
  }
  template <typename T> void operator()(T) const {}
};

template <typename T>
using is_integer =
    bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
                  !std::is_same<T, char>::value &&
                  !std::is_same<T, wchar_t>::value>;

template <typename ErrorHandler> class width_checker {
 public:
  explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {}

  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
  FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
    if (is_negative(value)) handler_.on_error("negative width");
    return static_cast<unsigned long long>(value);
  }

  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
  FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
    handler_.on_error("width is not integer");
    return 0;
  }

 private:
  ErrorHandler& handler_;
};

template <typename ErrorHandler> class precision_checker {
 public:
  explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {}

  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
  FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
    if (is_negative(value)) handler_.on_error("negative precision");
    return static_cast<unsigned long long>(value);
  }

  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
  FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
    handler_.on_error("precision is not integer");
    return 0;
  }

 private:
  ErrorHandler& handler_;
};

template <template <typename> class Handler, typename FormatArg,
          typename ErrorHandler>
FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg, ErrorHandler eh) -> int {
  unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg);
  if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big");
  return static_cast<int>(value);
}

template <typename Context, typename ID>
FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) ->
    typename Context::format_arg {
  auto arg = ctx.arg(id);
  if (!arg) ctx.on_error("argument not found");
  return arg;
}

// The standard format specifier handler with checking.
template <typename Char> class specs_handler : public specs_setter<Char> {
 private:
  basic_format_parse_context<Char>& parse_context_;
  buffer_context<Char>& context_;

  // This is only needed for compatibility with gcc 4.4.
  using format_arg = basic_format_arg<buffer_context<Char>>;

  FMT_CONSTEXPR auto get_arg(auto_id) -> format_arg {
    return detail::get_arg(context_, parse_context_.next_arg_id());
  }

  FMT_CONSTEXPR auto get_arg(int arg_id) -> format_arg {
    parse_context_.check_arg_id(arg_id);
    return detail::get_arg(context_, arg_id);
  }

  FMT_CONSTEXPR auto get_arg(basic_string_view<Char> arg_id) -> format_arg {
    parse_context_.check_arg_id(arg_id);
    return detail::get_arg(context_, arg_id);
  }

 public:
  FMT_CONSTEXPR specs_handler(basic_format_specs<Char>& specs,
                              basic_format_parse_context<Char>& parse_ctx,
                              buffer_context<Char>& ctx)
      : specs_setter<Char>(specs), parse_context_(parse_ctx), context_(ctx) {}

  template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) {
    this->specs_.width = get_dynamic_spec<width_checker>(
        get_arg(arg_id), context_.error_handler());
  }

  template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) {
    this->specs_.precision = get_dynamic_spec<precision_checker>(
        get_arg(arg_id), context_.error_handler());
  }

  void on_error(const char* message) { context_.on_error(message); }
};

template <template <typename> class Handler, typename Context>
FMT_CONSTEXPR void handle_dynamic_spec(int& value,
                                       arg_ref<typename Context::char_type> ref,
                                       Context& ctx) {
  switch (ref.kind) {
  case arg_id_kind::none:
    break;
  case arg_id_kind::index:
    value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.index),
                                              ctx.error_handler());
    break;
  case arg_id_kind::name:
    value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.name),
                                              ctx.error_handler());
    break;
  }
}

#define FMT_STRING_IMPL(s, base, explicit)                                 \
  [] {                                                                     \
    /* Use the hidden visibility as a workaround for a GCC bug (#1973). */ \
    /* Use a macro-like name to avoid shadowing warnings. */               \
    struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base {           \
      using char_type = fmt::remove_cvref_t<decltype(s[0])>;               \
      FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit                              \
      operator fmt::basic_string_view<char_type>() const {                 \
        return fmt::detail_exported::compile_string_to_view<char_type>(s); \
      }                                                                    \
    };                                                                     \
    return FMT_COMPILE_STRING();                                           \
  }()

/**
  \rst
  Constructs a compile-time format string from a string literal *s*.

  **Example**::

    // A compile-time error because 'd' is an invalid specifier for strings.
    std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
  \endrst
 */
#define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::compile_string, )

#if FMT_USE_USER_DEFINED_LITERALS
template <typename Char> struct udl_formatter {
  basic_string_view<Char> str;

  template <typename... T>
  auto operator()(T&&... args) const -> std::basic_string<Char> {
    return vformat(str, fmt::make_args_checked<T...>(str, args...));
  }
};

#  if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
template <typename T, typename Char, size_t N,
          fmt::detail_exported::fixed_string<Char, N> Str>
struct statically_named_arg : view {
  static constexpr auto name = Str.data;

  const T& value;
  statically_named_arg(const T& v) : value(v) {}
};

template <typename T, typename Char, size_t N,
          fmt::detail_exported::fixed_string<Char, N> Str>
struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {};

template <typename T, typename Char, size_t N,
          fmt::detail_exported::fixed_string<Char, N> Str>
struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>>
    : std::true_type {};

template <typename Char, size_t N,
          fmt::detail_exported::fixed_string<Char, N> Str>
struct udl_arg {
  template <typename T> auto operator=(T&& value) const {
    return statically_named_arg<T, Char, N, Str>(std::forward<T>(value));
  }
};
#  else
template <typename Char> struct udl_arg {
  const Char* str;

  template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> {
    return {str, std::forward<T>(value)};
  }
};
#  endif
#endif  // FMT_USE_USER_DEFINED_LITERALS

template <typename Locale, typename Char>
auto vformat(const Locale& loc, basic_string_view<Char> format_str,
             basic_format_args<buffer_context<type_identity_t<Char>>> args)
    -> std::basic_string<Char> {
  basic_memory_buffer<Char> buffer;
  detail::vformat_to(buffer, format_str, args, detail::locale_ref(loc));
  return {buffer.data(), buffer.size()};
}

using format_func = void (*)(detail::buffer<char>&, int, const char*);

FMT_API void format_error_code(buffer<char>& out, int error_code,
                               string_view message) FMT_NOEXCEPT;

FMT_API void report_error(format_func func, int error_code,
                          const char* message) FMT_NOEXCEPT;
FMT_END_DETAIL_NAMESPACE

FMT_API auto vsystem_error(int error_code, string_view format_str,
                           format_args args) -> std::system_error;

/**
 \rst
 Constructs :class:`std::system_error` with a message formatted with
 ``fmt::format(fmt, args...)``.
  *error_code* is a system error code as given by ``errno``.

 **Example**::

   // This throws std::system_error with the description
   //   cannot open file 'madeup': No such file or directory
   // or similar (system message may vary).
   const char* filename = "madeup";
   std::FILE* file = std::fopen(filename, "r");
   if (!file)
     throw fmt::system_error(errno, "cannot open file '{}'", filename);
 \endrst
*/
template <typename... T>
auto system_error(int error_code, format_string<T...> fmt, T&&... args)
    -> std::system_error {
  return vsystem_error(error_code, fmt, fmt::make_format_args(args...));
}

/**
  \rst
  Formats an error message for an error returned by an operating system or a
  language runtime, for example a file opening error, and writes it to *out*.
  The format is the same as the one used by ``std::system_error(ec, message)``
  where ``ec`` is ``std::error_code(error_code, std::generic_category()})``.
  It is implementation-defined but normally looks like:

  .. parsed-literal::
     *<message>*: *<system-message>*

  where *<message>* is the passed message and *<system-message>* is the system
  message corresponding to the error code.
  *error_code* is a system error code as given by ``errno``.
  \endrst
 */
FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
                                 const char* message) FMT_NOEXCEPT;

// Reports a system error without throwing an exception.
// Can be used to report errors from destructors.
FMT_API void report_system_error(int error_code,
                                 const char* message) FMT_NOEXCEPT;

/** Fast integer formatter. */
class format_int {
 private:
  // Buffer should be large enough to hold all digits (digits10 + 1),
  // a sign and a null character.
  enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
  mutable char buffer_[buffer_size];
  char* str_;

  template <typename UInt> auto format_unsigned(UInt value) -> char* {
    auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
    return detail::format_decimal(buffer_, n, buffer_size - 1).begin;
  }

  template <typename Int> auto format_signed(Int value) -> char* {
    auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
    bool negative = value < 0;
    if (negative) abs_value = 0 - abs_value;
    auto begin = format_unsigned(abs_value);
    if (negative) *--begin = '-';
    return begin;
  }

 public:
  explicit format_int(int value) : str_(format_signed(value)) {}
  explicit format_int(long value) : str_(format_signed(value)) {}
  explicit format_int(long long value) : str_(format_signed(value)) {}
  explicit format_int(unsigned value) : str_(format_unsigned(value)) {}
  explicit format_int(unsigned long value) : str_(format_unsigned(value)) {}
  explicit format_int(unsigned long long value)
      : str_(format_unsigned(value)) {}

  /** Returns the number of characters written to the output buffer. */
  auto size() const -> size_t {
    return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
  }

  /**
    Returns a pointer to the output buffer content. No terminating null
    character is appended.
   */
  auto data() const -> const char* { return str_; }

  /**
    Returns a pointer to the output buffer content with terminating null
    character appended.
   */
  auto c_str() const -> const char* {
    buffer_[buffer_size - 1] = '\0';
    return str_;
  }

  /**
    \rst
    Returns the content of the output buffer as an ``std::string``.
    \endrst
   */
  auto str() const -> std::string { return std::string(str_, size()); }
};

template <typename T, typename Char>
template <typename FormatContext>
FMT_CONSTEXPR FMT_INLINE auto
formatter<T, Char,
          enable_if_t<detail::type_constant<T, Char>::value !=
                      detail::type::custom_type>>::format(const T& val,
                                                          FormatContext& ctx)
    const -> decltype(ctx.out()) {
  if (specs_.width_ref.kind != detail::arg_id_kind::none ||
      specs_.precision_ref.kind != detail::arg_id_kind::none) {
    auto specs = specs_;
    detail::handle_dynamic_spec<detail::width_checker>(specs.width,
                                                       specs.width_ref, ctx);
    detail::handle_dynamic_spec<detail::precision_checker>(
        specs.precision, specs.precision_ref, ctx);
    return detail::write<Char>(ctx.out(), val, specs, ctx.locale());
  }
  return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
}

#define FMT_FORMAT_AS(Type, Base)                                        \
  template <typename Char>                                               \
  struct formatter<Type, Char> : formatter<Base, Char> {                 \
    template <typename FormatContext>                                    \
    auto format(Type const& val, FormatContext& ctx) const               \
        -> decltype(ctx.out()) {                                         \
      return formatter<Base, Char>::format(static_cast<Base>(val), ctx); \
    }                                                                    \
  }

FMT_FORMAT_AS(signed char, int);
FMT_FORMAT_AS(unsigned char, unsigned);
FMT_FORMAT_AS(short, int);
FMT_FORMAT_AS(unsigned short, unsigned);
FMT_FORMAT_AS(long, long long);
FMT_FORMAT_AS(unsigned long, unsigned long long);
FMT_FORMAT_AS(Char*, const Char*);
FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
FMT_FORMAT_AS(std::nullptr_t, const void*);
FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);

template <typename Char>
struct formatter<void*, Char> : formatter<const void*, Char> {
  template <typename FormatContext>
  auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) {
    return formatter<const void*, Char>::format(val, ctx);
  }
};

template <typename Char, size_t N>
struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {
  template <typename FormatContext>
  FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const
      -> decltype(ctx.out()) {
    return formatter<basic_string_view<Char>, Char>::format(val, ctx);
  }
};

// A formatter for types known only at run time such as variant alternatives.
//
// Usage:
//   using variant = std::variant<int, std::string>;
//   template <>
//   struct formatter<variant>: dynamic_formatter<> {
//     auto format(const variant& v, format_context& ctx) {
//       return visit([&](const auto& val) {
//           return dynamic_formatter<>::format(val, ctx);
//       }, v);
//     }
//   };
template <typename Char = char> class dynamic_formatter {
 private:
  detail::dynamic_format_specs<Char> specs_;
  const Char* format_str_;

  struct null_handler : detail::error_handler {
    void on_align(align_t) {}
    void on_sign(sign_t) {}
    void on_hash() {}
  };

  template <typename Context> void handle_specs(Context& ctx) {
    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
                                                       specs_.width_ref, ctx);
    detail::handle_dynamic_spec<detail::precision_checker>(
        specs_.precision, specs_.precision_ref, ctx);
  }

 public:
  template <typename ParseContext>
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
    format_str_ = ctx.begin();
    // Checks are deferred to formatting time when the argument type is known.
    detail::dynamic_specs_handler<ParseContext> handler(specs_, ctx);
    return detail::parse_format_specs(ctx.begin(), ctx.end(), handler);
  }

  template <typename T, typename FormatContext>
  auto format(const T& val, FormatContext& ctx) -> decltype(ctx.out()) {
    handle_specs(ctx);
    detail::specs_checker<null_handler> checker(
        null_handler(), detail::mapped_type_constant<T, FormatContext>::value);
    checker.on_align(specs_.align);
    if (specs_.sign != sign::none) checker.on_sign(specs_.sign);
    if (specs_.alt) checker.on_hash();
    if (specs_.precision >= 0) checker.end_precision();
    return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
  }
};

/**
  \rst
  Converts ``p`` to ``const void*`` for pointer formatting.

  **Example**::

    auto s = fmt::format("{}", fmt::ptr(p));
  \endrst
 */
template <typename T> auto ptr(T p) -> const void* {
  static_assert(std::is_pointer<T>::value, "");
  return detail::bit_cast<const void*>(p);
}
template <typename T> auto ptr(const std::unique_ptr<T>& p) -> const void* {
  return p.get();
}
template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* {
  return p.get();
}

class bytes {
 private:
  string_view data_;
  friend struct formatter<bytes>;

 public:
  explicit bytes(string_view data) : data_(data) {}
};

template <> struct formatter<bytes> {
 private:
  detail::dynamic_format_specs<char> specs_;

 public:
  template <typename ParseContext>
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
    using handler_type = detail::dynamic_specs_handler<ParseContext>;
    detail::specs_checker<handler_type> handler(handler_type(specs_, ctx),
                                                detail::type::string_type);
    auto it = parse_format_specs(ctx.begin(), ctx.end(), handler);
    detail::check_string_type_spec(specs_.type, ctx.error_handler());
    return it;
  }

  template <typename FormatContext>
  auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) {
    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
                                                       specs_.width_ref, ctx);
    detail::handle_dynamic_spec<detail::precision_checker>(
        specs_.precision, specs_.precision_ref, ctx);
    return detail::write_bytes(ctx.out(), b.data_, specs_);
  }
};

template <typename It, typename Sentinel, typename Char = char>
struct join_view : detail::view {
  It begin;
  Sentinel end;
  basic_string_view<Char> sep;

  join_view(It b, Sentinel e, basic_string_view<Char> s)
      : begin(b), end(e), sep(s) {}
};

template <typename It, typename Sentinel, typename Char>
using arg_join FMT_DEPRECATED_ALIAS = join_view<It, Sentinel, Char>;

template <typename It, typename Sentinel, typename Char>
struct formatter<join_view<It, Sentinel, Char>, Char> {
 private:
  using value_type = typename std::iterator_traits<It>::value_type;
  using context = buffer_context<Char>;
  using mapper = detail::arg_mapper<context>;

  template <typename T, FMT_ENABLE_IF(has_formatter<T, context>::value)>
  static auto map(const T& value) -> const T& {
    return value;
  }
  template <typename T, FMT_ENABLE_IF(!has_formatter<T, context>::value)>
  static auto map(const T& value) -> decltype(mapper().map(value)) {
    return mapper().map(value);
  }

  using formatter_type =
      conditional_t<is_formattable<value_type, Char>::value,
                    formatter<remove_cvref_t<decltype(map(
                                  std::declval<const value_type&>()))>,
                              Char>,
                    detail::fallback_formatter<value_type, Char>>;

  formatter_type value_formatter_;

 public:
  template <typename ParseContext>
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
    return value_formatter_.parse(ctx);
  }

  template <typename FormatContext>
  auto format(const join_view<It, Sentinel, Char>& value, FormatContext& ctx)
      -> decltype(ctx.out()) {
    auto it = value.begin;
    auto out = ctx.out();
    if (it != value.end) {
      out = value_formatter_.format(map(*it++), ctx);
      while (it != value.end) {
        out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out);
        ctx.advance_to(out);
        out = value_formatter_.format(map(*it++), ctx);
      }
    }
    return out;
  }
};

/**
  Returns an object that formats the iterator range `[begin, end)` with
  elements separated by `sep`.
 */
template <typename It, typename Sentinel>
auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> {
  return {begin, end, sep};
}

/**
  \rst
  Returns an object that formats `range` with elements separated by `sep`.

  **Example**::

    std::vector<int> v = {1, 2, 3};
    fmt::print("{}", fmt::join(v, ", "));
    // Output: "1, 2, 3"

  ``fmt::join`` applies passed format specifiers to the range elements::

    fmt::print("{:02}", fmt::join(v, ", "));
    // Output: "01, 02, 03"
  \endrst
 */
template <typename Range>
auto join(Range&& range, string_view sep)
    -> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> {
  return join(std::begin(range), std::end(range), sep);
}

/**
  \rst
  Converts *value* to ``std::string`` using the default format for type *T*.

  **Example**::

    #include <fmt/format.h>

    std::string answer = fmt::to_string(42);
  \endrst
 */
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
inline auto to_string(const T& value) -> std::string {
  auto result = std::string();
  detail::write<char>(std::back_inserter(result), value);
  return result;
}

template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
inline auto to_string(T value) -> std::string {
  // The buffer should be large enough to store the number including the sign
  // or "false" for bool.
  constexpr int max_size = detail::digits10<T>() + 2;
  char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5];
  char* begin = buffer;
  return std::string(begin, detail::write<char>(begin, value));
}

template <typename Char, size_t SIZE>
auto to_string(const basic_memory_buffer<Char, SIZE>& buf)
    -> std::basic_string<Char> {
  auto size = buf.size();
  detail::assume(size < std::basic_string<Char>().max_size());
  return std::basic_string<Char>(buf.data(), size);
}

FMT_BEGIN_DETAIL_NAMESPACE

template <typename Char>
void vformat_to(
    buffer<Char>& buf, basic_string_view<Char> fmt,
    basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args,
    locale_ref loc) {
  // workaround for msvc bug regarding name-lookup in module
  // link names into function scope
  using detail::arg_formatter;
  using detail::buffer_appender;
  using detail::custom_formatter;
  using detail::default_arg_formatter;
  using detail::get_arg;
  using detail::locale_ref;
  using detail::parse_format_specs;
  using detail::specs_checker;
  using detail::specs_handler;
  using detail::to_unsigned;
  using detail::type;
  using detail::write;
  auto out = buffer_appender<Char>(buf);
  if (fmt.size() == 2 && equal2(fmt.data(), "{}")) {
    auto arg = args.get(0);
    if (!arg) error_handler().on_error("argument not found");
    visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg);
    return;
  }

  struct format_handler : error_handler {
    basic_format_parse_context<Char> parse_context;
    buffer_context<Char> context;

    format_handler(buffer_appender<Char> out, basic_string_view<Char> str,
                   basic_format_args<buffer_context<Char>> args, locale_ref loc)
        : parse_context(str), context(out, args, loc) {}

    void on_text(const Char* begin, const Char* end) {
      auto text = basic_string_view<Char>(begin, to_unsigned(end - begin));
      context.advance_to(write<Char>(context.out(), text));
    }

    FMT_CONSTEXPR auto on_arg_id() -> int {
      return parse_context.next_arg_id();
    }
    FMT_CONSTEXPR auto on_arg_id(int id) -> int {
      return parse_context.check_arg_id(id), id;
    }
    FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
      int arg_id = context.arg_id(id);
      if (arg_id < 0) on_error("argument not found");
      return arg_id;
    }

    FMT_INLINE void on_replacement_field(int id, const Char*) {
      auto arg = get_arg(context, id);
      context.advance_to(visit_format_arg(
          default_arg_formatter<Char>{context.out(), context.args(),
                                      context.locale()},
          arg));
    }

    auto on_format_specs(int id, const Char* begin, const Char* end)
        -> const Char* {
      auto arg = get_arg(context, id);
      if (arg.type() == type::custom_type) {
        parse_context.advance_to(parse_context.begin() +
                                 (begin - &*parse_context.begin()));
        visit_format_arg(custom_formatter<Char>{parse_context, context}, arg);
        return parse_context.begin();
      }
      auto specs = basic_format_specs<Char>();
      specs_checker<specs_handler<Char>> handler(
          specs_handler<Char>(specs, parse_context, context), arg.type());
      begin = parse_format_specs(begin, end, handler);
      if (begin == end || *begin != '}')
        on_error("missing '}' in format string");
      auto f = arg_formatter<Char>{context.out(), specs, context.locale()};
      context.advance_to(visit_format_arg(f, arg));
      return begin;
    }
  };
  detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc));
}

#ifndef FMT_HEADER_ONLY
extern template FMT_API auto thousands_sep_impl<char>(locale_ref)
    -> thousands_sep_result<char>;
extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref)
    -> thousands_sep_result<wchar_t>;
extern template FMT_API auto decimal_point_impl(locale_ref) -> char;
extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
extern template auto format_float<double>(double value, int precision,
                                          float_specs specs, buffer<char>& buf)
    -> int;
extern template auto format_float<long double>(long double value, int precision,
                                               float_specs specs,
                                               buffer<char>& buf) -> int;
void snprintf_float(float, int, float_specs, buffer<char>&) = delete;
extern template auto snprintf_float<double>(double value, int precision,
                                            float_specs specs,
                                            buffer<char>& buf) -> int;
extern template auto snprintf_float<long double>(long double value,
                                                 int precision,
                                                 float_specs specs,
                                                 buffer<char>& buf) -> int;
#endif  // FMT_HEADER_ONLY

FMT_END_DETAIL_NAMESPACE

#if FMT_USE_USER_DEFINED_LITERALS
inline namespace literals {
/**
  \rst
  User-defined literal equivalent of :func:`fmt::arg`.

  **Example**::

    using namespace fmt::literals;
    fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
  \endrst
 */
#  if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
template <detail_exported::fixed_string Str>
constexpr auto operator""_a()
    -> detail::udl_arg<remove_cvref_t<decltype(Str.data[0])>,
                       sizeof(Str.data) / sizeof(decltype(Str.data[0])), Str> {
  return {};
}
#  else
constexpr auto operator"" _a(const char* s, size_t) -> detail::udl_arg<char> {
  return {s};
}
#  endif

/**
  \rst
  User-defined literal equivalent of :func:`fmt::format`.

  **Example**::

    using namespace fmt::literals;
    std::string message = "The answer is {}"_format(42);
  \endrst
 */
constexpr auto operator"" _format(const char* s, size_t n)
    -> detail::udl_formatter<char> {
  return {{s, n}};
}
}  // namespace literals
#endif  // FMT_USE_USER_DEFINED_LITERALS

template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
inline auto vformat(const Locale& loc, string_view fmt, format_args args)
    -> std::string {
  return detail::vformat(loc, fmt, args);
}

template <typename Locale, typename... T,
          FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args)
    -> std::string {
  return vformat(loc, string_view(fmt), fmt::make_format_args(args...));
}

template <typename... T, size_t SIZE, typename Allocator>
FMT_DEPRECATED auto format_to(basic_memory_buffer<char, SIZE, Allocator>& buf,
                              format_string<T...> fmt, T&&... args)
    -> appender {
  detail::vformat_to(buf, string_view(fmt), fmt::make_format_args(args...));
  return appender(buf);
}

template <typename OutputIt, typename Locale,
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
                            detail::is_locale<Locale>::value)>
auto vformat_to(OutputIt out, const Locale& loc, string_view fmt,
                format_args args) -> OutputIt {
  using detail::get_buffer;
  auto&& buf = get_buffer<char>(out);
  detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
  return detail::get_iterator(buf);
}

template <typename OutputIt, typename Locale, typename... T,
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
                            detail::is_locale<Locale>::value)>
FMT_INLINE auto format_to(OutputIt out, const Locale& loc,
                          format_string<T...> fmt, T&&... args) -> OutputIt {
  return vformat_to(out, loc, fmt, fmt::make_format_args(args...));
}

FMT_MODULE_EXPORT_END
FMT_END_NAMESPACE

#ifdef FMT_DEPRECATED_INCLUDE_XCHAR
#  include "xchar.h"
#endif

#ifdef FMT_HEADER_ONLY
#  define FMT_FUNC inline
#  include "format-inl.h"
#else
#  define FMT_FUNC
#endif

#endif  // FMT_FORMAT_H_