amrnbdec.c 40.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/*
 * AMR narrowband decoder
 * Copyright (c) 2006-2007 Robert Swain
 * Copyright (c) 2009 Colin McQuillan
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */


/**
 * @file
 * AMR narrowband decoder
 *
 * This decoder uses floats for simplicity and so is not bit-exact. One
 * difference is that differences in phase can accumulate. The test sequences
 * in 3GPP TS 26.074 can still be useful.
 *
 * - Comparing this file's output to the output of the ref decoder gives a
 *   PSNR of 30 to 80. Plotting the output samples shows a difference in
 *   phase in some areas.
 *
 * - Comparing both decoders against their input, this decoder gives a similar
 *   PSNR. If the test sequence homing frames are removed (this decoder does
 *   not detect them), the PSNR is at least as good as the reference on 140
 *   out of 169 tests.
 */


#include <string.h>
#include <math.h>

#include "libavutil/channel_layout.h"
#include "libavutil/float_dsp.h"
#include "avcodec.h"
#include "libavutil/common.h"
#include "libavutil/avassert.h"
#include "celp_math.h"
#include "celp_filters.h"
#include "acelp_filters.h"
#include "acelp_vectors.h"
#include "acelp_pitch_delay.h"
#include "lsp.h"
#include "amr.h"
#include "internal.h"

#include "amrnbdata.h"

#define AMR_BLOCK_SIZE              160   ///< samples per frame
#define AMR_SAMPLE_BOUND        32768.0   ///< threshold for synthesis overflow

/**
 * Scale from constructed speech to [-1,1]
 *
 * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
 * upscales by two (section 6.2.2).
 *
 * Fundamentally, this scale is determined by energy_mean through
 * the fixed vector contribution to the excitation vector.
 */
#define AMR_SAMPLE_SCALE  (2.0 / 32768.0)

/** Prediction factor for 12.2kbit/s mode */
#define PRED_FAC_MODE_12k2             0.65

#define LSF_R_FAC          (8000.0 / 32768.0) ///< LSF residual tables to Hertz
#define MIN_LSF_SPACING    (50.0488 / 8000.0) ///< Ensures stability of LPC filter
#define PITCH_LAG_MIN_MODE_12k2          18   ///< Lower bound on decoded lag search in 12.2kbit/s mode

/** Initial energy in dB. Also used for bad frames (unimplemented). */
#define MIN_ENERGY -14.0

/** Maximum sharpening factor
 *
 * The specification says 0.8, which should be 13107, but the reference C code
 * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
 */
#define SHARP_MAX 0.79449462890625

/** Number of impulse response coefficients used for tilt factor */
#define AMR_TILT_RESPONSE   22
/** Tilt factor = 1st reflection coefficient * gamma_t */
#define AMR_TILT_GAMMA_T   0.8
/** Adaptive gain control factor used in post-filter */
#define AMR_AGC_ALPHA      0.9

typedef struct AMRContext {
    AMRNBFrame                        frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
    uint8_t             bad_frame_indicator; ///< bad frame ? 1 : 0
    enum Mode                cur_frame_mode;

    int16_t     prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
    double          lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
    double   prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame

    float         lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
    float          lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector

    float           lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes

    uint8_t                   pitch_lag_int; ///< integer part of pitch lag from current subframe

    float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
    float                       *excitation; ///< pointer to the current excitation vector in excitation_buf

    float   pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
    float   fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)

    float               prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
    float                     pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
    float                     fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes

    float                              beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
    uint8_t                      diff_count; ///< the number of subframes for which diff has been above 0.65
    uint8_t                      hang_count; ///< the number of subframes since a hangover period started

    float            prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
    uint8_t               prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
    uint8_t                 ir_filter_onset; ///< flag for impulse response filter strength

    float                postfilter_mem[10]; ///< previous intermediate values in the formant filter
    float                          tilt_mem; ///< previous input to tilt compensation filter
    float                    postfilter_agc; ///< previous factor used for adaptive gain control
    float                  high_pass_mem[2]; ///< previous intermediate values in the high-pass filter

    float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples

    ACELPFContext                     acelpf_ctx; ///< context for filters for ACELP-based codecs
    ACELPVContext                     acelpv_ctx; ///< context for vector operations for ACELP-based codecs
    CELPFContext                       celpf_ctx; ///< context for filters for CELP-based codecs
    CELPMContext                       celpm_ctx; ///< context for fixed point math operations

} AMRContext;

/** Double version of ff_weighted_vector_sumf() */
static void weighted_vector_sumd(double *out, const double *in_a,
                                 const double *in_b, double weight_coeff_a,
                                 double weight_coeff_b, int length)
{
    int i;

    for (i = 0; i < length; i++)
        out[i] = weight_coeff_a * in_a[i]
               + weight_coeff_b * in_b[i];
}

static av_cold int amrnb_decode_init(AVCodecContext *avctx)
{
    AMRContext *p = avctx->priv_data;
    int i;

    if (avctx->channels > 1) {
        avpriv_report_missing_feature(avctx, "multi-channel AMR");
        return AVERROR_PATCHWELCOME;
    }

    avctx->channels       = 1;
    avctx->channel_layout = AV_CH_LAYOUT_MONO;
    if (!avctx->sample_rate)
        avctx->sample_rate = 8000;
    avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;

    // p->excitation always points to the same position in p->excitation_buf
    p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];

    for (i = 0; i < LP_FILTER_ORDER; i++) {
        p->prev_lsp_sub4[i] =    lsp_sub4_init[i] * 1000 / (float)(1 << 15);
        p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
    }

    for (i = 0; i < 4; i++)
        p->prediction_error[i] = MIN_ENERGY;

    ff_acelp_filter_init(&p->acelpf_ctx);
    ff_acelp_vectors_init(&p->acelpv_ctx);
    ff_celp_filter_init(&p->celpf_ctx);
    ff_celp_math_init(&p->celpm_ctx);

    return 0;
}


/**
 * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
 *
 * The order of speech bits is specified by 3GPP TS 26.101.
 *
 * @param p the context
 * @param buf               pointer to the input buffer
 * @param buf_size          size of the input buffer
 *
 * @return the frame mode
 */
static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
                                  int buf_size)
{
    enum Mode mode;

    // Decode the first octet.
    mode = buf[0] >> 3 & 0x0F;                      // frame type
    p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit

    if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
        return NO_DATA;
    }

    if (mode < MODE_DTX)
        ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
                           amr_unpacking_bitmaps_per_mode[mode]);

    return mode;
}


/// @name AMR pitch LPC coefficient decoding functions
/// @{

/**
 * Interpolate the LSF vector (used for fixed gain smoothing).
 * The interpolation is done over all four subframes even in MODE_12k2.
 *
 * @param[in]     ctx       The Context
 * @param[in,out] lsf_q     LSFs in [0,1] for each subframe
 * @param[in]     lsf_new   New LSFs in [0,1] for subframe 4
 */
static void interpolate_lsf(ACELPVContext *ctx, float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
{
    int i;

    for (i = 0; i < 4; i++)
        ctx->weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
                                0.25 * (3 - i), 0.25 * (i + 1),
                                LP_FILTER_ORDER);
}

/**
 * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
 *
 * @param p the context
 * @param lsp output LSP vector
 * @param lsf_no_r LSF vector without the residual vector added
 * @param lsf_quantizer pointers to LSF dictionary tables
 * @param quantizer_offset offset in tables
 * @param sign for the 3 dictionary table
 * @param update store data for computing the next frame's LSFs
 */
static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
                                 const float lsf_no_r[LP_FILTER_ORDER],
                                 const int16_t *lsf_quantizer[5],
                                 const int quantizer_offset,
                                 const int sign, const int update)
{
    int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
    float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
    int i;

    for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
        memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
               2 * sizeof(*lsf_r));

    if (sign) {
        lsf_r[4] *= -1;
        lsf_r[5] *= -1;
    }

    if (update)
        memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));

    for (i = 0; i < LP_FILTER_ORDER; i++)
        lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);

    ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);

    if (update)
        interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);

    ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
}

/**
 * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
 *
 * @param p                 pointer to the AMRContext
 */
static void lsf2lsp_5(AMRContext *p)
{
    const uint16_t *lsf_param = p->frame.lsf;
    float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
    const int16_t *lsf_quantizer[5];
    int i;

    lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
    lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
    lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
    lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
    lsf_quantizer[4] = lsf_5_5[lsf_param[4]];

    for (i = 0; i < LP_FILTER_ORDER; i++)
        lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];

    lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
    lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);

    // interpolate LSP vectors at subframes 1 and 3
    weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
    weighted_vector_sumd(p->lsp[2], p->lsp[1]       , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
}

/**
 * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
 *
 * @param p                 pointer to the AMRContext
 */
static void lsf2lsp_3(AMRContext *p)
{
    const uint16_t *lsf_param = p->frame.lsf;
    int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
    float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
    const int16_t *lsf_quantizer;
    int i, j;

    lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
    memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));

    lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
    memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));

    lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
    memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));

    // calculate mean-removed LSF vector and add mean
    for (i = 0; i < LP_FILTER_ORDER; i++)
        lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);

    ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);

    // store data for computing the next frame's LSFs
    interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
    memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));

    ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);

    // interpolate LSP vectors at subframes 1, 2 and 3
    for (i = 1; i <= 3; i++)
        for(j = 0; j < LP_FILTER_ORDER; j++)
            p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
                (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
}

/// @}


/// @name AMR pitch vector decoding functions
/// @{

/**
 * Like ff_decode_pitch_lag(), but with 1/6 resolution
 */
static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
                                 const int prev_lag_int, const int subframe)
{
    if (subframe == 0 || subframe == 2) {
        if (pitch_index < 463) {
            *lag_int  = (pitch_index + 107) * 10923 >> 16;
            *lag_frac = pitch_index - *lag_int * 6 + 105;
        } else {
            *lag_int  = pitch_index - 368;
            *lag_frac = 0;
        }
    } else {
        *lag_int  = ((pitch_index + 5) * 10923 >> 16) - 1;
        *lag_frac = pitch_index - *lag_int * 6 - 3;
        *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
                            PITCH_DELAY_MAX - 9);
    }
}

static void decode_pitch_vector(AMRContext *p,
                                const AMRNBSubframe *amr_subframe,
                                const int subframe)
{
    int pitch_lag_int, pitch_lag_frac;
    enum Mode mode = p->cur_frame_mode;

    if (p->cur_frame_mode == MODE_12k2) {
        decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
                             amr_subframe->p_lag, p->pitch_lag_int,
                             subframe);
    } else {
        ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
                            amr_subframe->p_lag,
                            p->pitch_lag_int, subframe,
                            mode != MODE_4k75 && mode != MODE_5k15,
                            mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
        pitch_lag_frac *= 2;
    }

    p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t

    pitch_lag_int += pitch_lag_frac > 0;

    /* Calculate the pitch vector by interpolating the past excitation at the
       pitch lag using a b60 hamming windowed sinc function.   */
    p->acelpf_ctx.acelp_interpolatef(p->excitation,
                          p->excitation + 1 - pitch_lag_int,
                          ff_b60_sinc, 6,
                          pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
                          10, AMR_SUBFRAME_SIZE);

    memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
}

/// @}


/// @name AMR algebraic code book (fixed) vector decoding functions
/// @{

/**
 * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
 */
static void decode_10bit_pulse(int code, int pulse_position[8],
                               int i1, int i2, int i3)
{
    // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
    // the 3 pulses and the upper 7 bits being coded in base 5
    const uint8_t *positions = base_five_table[code >> 3];
    pulse_position[i1] = (positions[2] << 1) + ( code       & 1);
    pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
    pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
}

/**
 * Decode the algebraic codebook index to pulse positions and signs and
 * construct the algebraic codebook vector for MODE_10k2.
 *
 * @param fixed_index          positions of the eight pulses
 * @param fixed_sparse         pointer to the algebraic codebook vector
 */
static void decode_8_pulses_31bits(const int16_t *fixed_index,
                                   AMRFixed *fixed_sparse)
{
    int pulse_position[8];
    int i, temp;

    decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
    decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);

    // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
    // the 2 pulses and the upper 5 bits being coded in base 5
    temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
    pulse_position[3] = temp % 5;
    pulse_position[7] = temp / 5;
    if (pulse_position[7] & 1)
        pulse_position[3] = 4 - pulse_position[3];
    pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6]       & 1);
    pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);

    fixed_sparse->n = 8;
    for (i = 0; i < 4; i++) {
        const int pos1   = (pulse_position[i]     << 2) + i;
        const int pos2   = (pulse_position[i + 4] << 2) + i;
        const float sign = fixed_index[i] ? -1.0 : 1.0;
        fixed_sparse->x[i    ] = pos1;
        fixed_sparse->x[i + 4] = pos2;
        fixed_sparse->y[i    ] = sign;
        fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
    }
}

/**
 * Decode the algebraic codebook index to pulse positions and signs,
 * then construct the algebraic codebook vector.
 *
 *                              nb of pulses | bits encoding pulses
 * For MODE_4k75 or MODE_5k15,             2 | 1-3, 4-6, 7
 *                  MODE_5k9,              2 | 1,   2-4, 5-6, 7-9
 *                  MODE_6k7,              3 | 1-3, 4,   5-7, 8,  9-11
 *      MODE_7k4 or MODE_7k95,             4 | 1-3, 4-6, 7-9, 10, 11-13
 *
 * @param fixed_sparse pointer to the algebraic codebook vector
 * @param pulses       algebraic codebook indexes
 * @param mode         mode of the current frame
 * @param subframe     current subframe number
 */
static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
                                const enum Mode mode, const int subframe)
{
    av_assert1(MODE_4k75 <= (signed)mode && mode <= MODE_12k2);

    if (mode == MODE_12k2) {
        ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
    } else if (mode == MODE_10k2) {
        decode_8_pulses_31bits(pulses, fixed_sparse);
    } else {
        int *pulse_position = fixed_sparse->x;
        int i, pulse_subset;
        const int fixed_index = pulses[0];

        if (mode <= MODE_5k15) {
            pulse_subset      = ((fixed_index >> 3) & 8)     + (subframe << 1);
            pulse_position[0] = ( fixed_index       & 7) * 5 + track_position[pulse_subset];
            pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
            fixed_sparse->n = 2;
        } else if (mode == MODE_5k9) {
            pulse_subset      = ((fixed_index & 1) << 1) + 1;
            pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
            pulse_subset      = (fixed_index  >> 4) & 3;
            pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
            fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
        } else if (mode == MODE_6k7) {
            pulse_position[0] = (fixed_index        & 7) * 5;
            pulse_subset      = (fixed_index  >> 2) & 2;
            pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
            pulse_subset      = (fixed_index  >> 6) & 2;
            pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
            fixed_sparse->n = 3;
        } else { // mode <= MODE_7k95
            pulse_position[0] = gray_decode[ fixed_index        & 7];
            pulse_position[1] = gray_decode[(fixed_index >> 3)  & 7] + 1;
            pulse_position[2] = gray_decode[(fixed_index >> 6)  & 7] + 2;
            pulse_subset      = (fixed_index >> 9) & 1;
            pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
            fixed_sparse->n = 4;
        }
        for (i = 0; i < fixed_sparse->n; i++)
            fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
    }
}

/**
 * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
 *
 * @param p the context
 * @param subframe unpacked amr subframe
 * @param mode mode of the current frame
 * @param fixed_sparse sparse representation of the fixed vector
 */
static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
                             AMRFixed *fixed_sparse)
{
    // The spec suggests the current pitch gain is always used, but in other
    // modes the pitch and codebook gains are jointly quantized (sec 5.8.2)
    // so the codebook gain cannot depend on the quantized pitch gain.
    if (mode == MODE_12k2)
        p->beta = FFMIN(p->pitch_gain[4], 1.0);

    fixed_sparse->pitch_lag  = p->pitch_lag_int;
    fixed_sparse->pitch_fac  = p->beta;

    // Save pitch sharpening factor for the next subframe
    // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
    // the fact that the gains for two subframes are jointly quantized.
    if (mode != MODE_4k75 || subframe & 1)
        p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
}
/// @}


/// @name AMR gain decoding functions
/// @{

/**
 * fixed gain smoothing
 * Note that where the spec specifies the "spectrum in the q domain"
 * in section 6.1.4, in fact frequencies should be used.
 *
 * @param p the context
 * @param lsf LSFs for the current subframe, in the range [0,1]
 * @param lsf_avg averaged LSFs
 * @param mode mode of the current frame
 *
 * @return fixed gain smoothed
 */
static float fixed_gain_smooth(AMRContext *p , const float *lsf,
                               const float *lsf_avg, const enum Mode mode)
{
    float diff = 0.0;
    int i;

    for (i = 0; i < LP_FILTER_ORDER; i++)
        diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];

    // If diff is large for ten subframes, disable smoothing for a 40-subframe
    // hangover period.
    p->diff_count++;
    if (diff <= 0.65)
        p->diff_count = 0;

    if (p->diff_count > 10) {
        p->hang_count = 0;
        p->diff_count--; // don't let diff_count overflow
    }

    if (p->hang_count < 40) {
        p->hang_count++;
    } else if (mode < MODE_7k4 || mode == MODE_10k2) {
        const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
        const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
                                       p->fixed_gain[2] + p->fixed_gain[3] +
                                       p->fixed_gain[4]) * 0.2;
        return smoothing_factor * p->fixed_gain[4] +
               (1.0 - smoothing_factor) * fixed_gain_mean;
    }
    return p->fixed_gain[4];
}

/**
 * Decode pitch gain and fixed gain factor (part of section 6.1.3).
 *
 * @param p the context
 * @param amr_subframe unpacked amr subframe
 * @param mode mode of the current frame
 * @param subframe current subframe number
 * @param fixed_gain_factor decoded gain correction factor
 */
static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
                         const enum Mode mode, const int subframe,
                         float *fixed_gain_factor)
{
    if (mode == MODE_12k2 || mode == MODE_7k95) {
        p->pitch_gain[4]   = qua_gain_pit [amr_subframe->p_gain    ]
            * (1.0 / 16384.0);
        *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
            * (1.0 /  2048.0);
    } else {
        const uint16_t *gains;

        if (mode >= MODE_6k7) {
            gains = gains_high[amr_subframe->p_gain];
        } else if (mode >= MODE_5k15) {
            gains = gains_low [amr_subframe->p_gain];
        } else {
            // gain index is only coded in subframes 0,2 for MODE_4k75
            gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
        }

        p->pitch_gain[4]   = gains[0] * (1.0 / 16384.0);
        *fixed_gain_factor = gains[1] * (1.0 /  4096.0);
    }
}

/// @}


/// @name AMR preprocessing functions
/// @{

/**
 * Circularly convolve a sparse fixed vector with a phase dispersion impulse
 * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
 *
 * @param out vector with filter applied
 * @param in source vector
 * @param filter phase filter coefficients
 *
 *  out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
 */
static void apply_ir_filter(float *out, const AMRFixed *in,
                            const float *filter)
{
    float filter1[AMR_SUBFRAME_SIZE],     ///< filters at pitch lag*1 and *2
          filter2[AMR_SUBFRAME_SIZE];
    int   lag = in->pitch_lag;
    float fac = in->pitch_fac;
    int i;

    if (lag < AMR_SUBFRAME_SIZE) {
        ff_celp_circ_addf(filter1, filter, filter, lag, fac,
                          AMR_SUBFRAME_SIZE);

        if (lag < AMR_SUBFRAME_SIZE >> 1)
            ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
                              AMR_SUBFRAME_SIZE);
    }

    memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
    for (i = 0; i < in->n; i++) {
        int   x = in->x[i];
        float y = in->y[i];
        const float *filterp;

        if (x >= AMR_SUBFRAME_SIZE - lag) {
            filterp = filter;
        } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
            filterp = filter1;
        } else
            filterp = filter2;

        ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
    }
}

/**
 * Reduce fixed vector sparseness by smoothing with one of three IR filters.
 * Also know as "adaptive phase dispersion".
 *
 * This implements 3GPP TS 26.090 section 6.1(5).
 *
 * @param p the context
 * @param fixed_sparse algebraic codebook vector
 * @param fixed_vector unfiltered fixed vector
 * @param fixed_gain smoothed gain
 * @param out space for modified vector if necessary
 */
static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
                                    const float *fixed_vector,
                                    float fixed_gain, float *out)
{
    int ir_filter_nr;

    if (p->pitch_gain[4] < 0.6) {
        ir_filter_nr = 0;      // strong filtering
    } else if (p->pitch_gain[4] < 0.9) {
        ir_filter_nr = 1;      // medium filtering
    } else
        ir_filter_nr = 2;      // no filtering

    // detect 'onset'
    if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
        p->ir_filter_onset = 2;
    } else if (p->ir_filter_onset)
        p->ir_filter_onset--;

    if (!p->ir_filter_onset) {
        int i, count = 0;

        for (i = 0; i < 5; i++)
            if (p->pitch_gain[i] < 0.6)
                count++;
        if (count > 2)
            ir_filter_nr = 0;

        if (ir_filter_nr > p->prev_ir_filter_nr + 1)
            ir_filter_nr--;
    } else if (ir_filter_nr < 2)
        ir_filter_nr++;

    // Disable filtering for very low level of fixed_gain.
    // Note this step is not specified in the technical description but is in
    // the reference source in the function Ph_disp.
    if (fixed_gain < 5.0)
        ir_filter_nr = 2;

    if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
         && ir_filter_nr < 2) {
        apply_ir_filter(out, fixed_sparse,
                        (p->cur_frame_mode == MODE_7k95 ?
                             ir_filters_lookup_MODE_7k95 :
                             ir_filters_lookup)[ir_filter_nr]);
        fixed_vector = out;
    }

    // update ir filter strength history
    p->prev_ir_filter_nr       = ir_filter_nr;
    p->prev_sparse_fixed_gain  = fixed_gain;

    return fixed_vector;
}

/// @}


/// @name AMR synthesis functions
/// @{

/**
 * Conduct 10th order linear predictive coding synthesis.
 *
 * @param p             pointer to the AMRContext
 * @param lpc           pointer to the LPC coefficients
 * @param fixed_gain    fixed codebook gain for synthesis
 * @param fixed_vector  algebraic codebook vector
 * @param samples       pointer to the output speech samples
 * @param overflow      16-bit overflow flag
 */
static int synthesis(AMRContext *p, float *lpc,
                     float fixed_gain, const float *fixed_vector,
                     float *samples, uint8_t overflow)
{
    int i;
    float excitation[AMR_SUBFRAME_SIZE];

    // if an overflow has been detected, the pitch vector is scaled down by a
    // factor of 4
    if (overflow)
        for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
            p->pitch_vector[i] *= 0.25;

    p->acelpv_ctx.weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
                            p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);

    // emphasize pitch vector contribution
    if (p->pitch_gain[4] > 0.5 && !overflow) {
        float energy = p->celpm_ctx.dot_productf(excitation, excitation,
                                                    AMR_SUBFRAME_SIZE);
        float pitch_factor =
            p->pitch_gain[4] *
            (p->cur_frame_mode == MODE_12k2 ?
                0.25 * FFMIN(p->pitch_gain[4], 1.0) :
                0.5  * FFMIN(p->pitch_gain[4], SHARP_MAX));

        for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
            excitation[i] += pitch_factor * p->pitch_vector[i];

        ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
                                                AMR_SUBFRAME_SIZE);
    }

    p->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
                                 AMR_SUBFRAME_SIZE,
                                 LP_FILTER_ORDER);

    // detect overflow
    for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
        if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
            return 1;
        }

    return 0;
}

/// @}


/// @name AMR update functions
/// @{

/**
 * Update buffers and history at the end of decoding a subframe.
 *
 * @param p             pointer to the AMRContext
 */
static void update_state(AMRContext *p)
{
    memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));

    memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
            (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));

    memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
    memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));

    memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
            LP_FILTER_ORDER * sizeof(float));
}

/// @}


/// @name AMR Postprocessing functions
/// @{

/**
 * Get the tilt factor of a formant filter from its transfer function
 *
 * @param p     The Context
 * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
 * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
 */
static float tilt_factor(AMRContext *p, float *lpc_n, float *lpc_d)
{
    float rh0, rh1; // autocorrelation at lag 0 and 1

    // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
    float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
    float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response

    hf[0] = 1.0;
    memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
    p->celpf_ctx.celp_lp_synthesis_filterf(hf, lpc_d, hf,
                                 AMR_TILT_RESPONSE,
                                 LP_FILTER_ORDER);

    rh0 = p->celpm_ctx.dot_productf(hf, hf,     AMR_TILT_RESPONSE);
    rh1 = p->celpm_ctx.dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);

    // The spec only specifies this check for 12.2 and 10.2 kbit/s
    // modes. But in the ref source the tilt is always non-negative.
    return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
}

/**
 * Perform adaptive post-filtering to enhance the quality of the speech.
 * See section 6.2.1.
 *
 * @param p             pointer to the AMRContext
 * @param lpc           interpolated LP coefficients for this subframe
 * @param buf_out       output of the filter
 */
static void postfilter(AMRContext *p, float *lpc, float *buf_out)
{
    int i;
    float *samples          = p->samples_in + LP_FILTER_ORDER; // Start of input

    float speech_gain       = p->celpm_ctx.dot_productf(samples, samples,
                                                           AMR_SUBFRAME_SIZE);

    float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER];  // Output of pole filter
    const float *gamma_n, *gamma_d;                       // Formant filter factor table
    float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients

    if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
        gamma_n = ff_pow_0_7;
        gamma_d = ff_pow_0_75;
    } else {
        gamma_n = ff_pow_0_55;
        gamma_d = ff_pow_0_7;
    }

    for (i = 0; i < LP_FILTER_ORDER; i++) {
         lpc_n[i] = lpc[i] * gamma_n[i];
         lpc_d[i] = lpc[i] * gamma_d[i];
    }

    memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
    p->celpf_ctx.celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
                                 AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
    memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
           sizeof(float) * LP_FILTER_ORDER);

    p->celpf_ctx.celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
                                      pole_out + LP_FILTER_ORDER,
                                      AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);

    ff_tilt_compensation(&p->tilt_mem, tilt_factor(p, lpc_n, lpc_d), buf_out,
                         AMR_SUBFRAME_SIZE);

    ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
                             AMR_AGC_ALPHA, &p->postfilter_agc);
}

/// @}

static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
                              int *got_frame_ptr, AVPacket *avpkt)
{

    AMRContext *p = avctx->priv_data;        // pointer to private data
    AVFrame *frame     = data;
    const uint8_t *buf = avpkt->data;
    int buf_size       = avpkt->size;
    float *buf_out;                          // pointer to the output data buffer
    int i, subframe, ret;
    float fixed_gain_factor;
    AMRFixed fixed_sparse = {0};             // fixed vector up to anti-sparseness processing
    float spare_vector[AMR_SUBFRAME_SIZE];   // extra stack space to hold result from anti-sparseness processing
    float synth_fixed_gain;                  // the fixed gain that synthesis should use
    const float *synth_fixed_vector;         // pointer to the fixed vector that synthesis should use

    /* get output buffer */
    frame->nb_samples = AMR_BLOCK_SIZE;
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
        return ret;
    buf_out = (float *)frame->data[0];

    p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
    if (p->cur_frame_mode == NO_DATA) {
        av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
        return AVERROR_INVALIDDATA;
    }
    if (p->cur_frame_mode == MODE_DTX) {
        avpriv_report_missing_feature(avctx, "dtx mode");
        av_log(avctx, AV_LOG_INFO, "Note: libopencore_amrnb supports dtx\n");
        return AVERROR_PATCHWELCOME;
    }

    if (p->cur_frame_mode == MODE_12k2) {
        lsf2lsp_5(p);
    } else
        lsf2lsp_3(p);

    for (i = 0; i < 4; i++)
        ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);

    for (subframe = 0; subframe < 4; subframe++) {
        const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];

        decode_pitch_vector(p, amr_subframe, subframe);

        decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
                            p->cur_frame_mode, subframe);

        // The fixed gain (section 6.1.3) depends on the fixed vector
        // (section 6.1.2), but the fixed vector calculation uses
        // pitch sharpening based on the on the pitch gain (section 6.1.3).
        // So the correct order is: pitch gain, pitch sharpening, fixed gain.
        decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
                     &fixed_gain_factor);

        pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);

        if (fixed_sparse.pitch_lag == 0) {
            av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
            return AVERROR_INVALIDDATA;
        }
        ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
                            AMR_SUBFRAME_SIZE);

        p->fixed_gain[4] =
            ff_amr_set_fixed_gain(fixed_gain_factor,
                       p->celpm_ctx.dot_productf(p->fixed_vector,
                                                               p->fixed_vector,
                                                               AMR_SUBFRAME_SIZE) /
                                  AMR_SUBFRAME_SIZE,
                       p->prediction_error,
                       energy_mean[p->cur_frame_mode], energy_pred_fac);

        // The excitation feedback is calculated without any processing such
        // as fixed gain smoothing. This isn't mentioned in the specification.
        for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
            p->excitation[i] *= p->pitch_gain[4];
        ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
                            AMR_SUBFRAME_SIZE);

        // In the ref decoder, excitation is stored with no fractional bits.
        // This step prevents buzz in silent periods. The ref encoder can
        // emit long sequences with pitch factor greater than one. This
        // creates unwanted feedback if the excitation vector is nonzero.
        // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
        for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
            p->excitation[i] = truncf(p->excitation[i]);

        // Smooth fixed gain.
        // The specification is ambiguous, but in the reference source, the
        // smoothed value is NOT fed back into later fixed gain smoothing.
        synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
                                             p->lsf_avg, p->cur_frame_mode);

        synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
                                             synth_fixed_gain, spare_vector);

        if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
                      synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
            // overflow detected -> rerun synthesis scaling pitch vector down
            // by a factor of 4, skipping pitch vector contribution emphasis
            // and adaptive gain control
            synthesis(p, p->lpc[subframe], synth_fixed_gain,
                      synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);

        postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);

        // update buffers and history
        ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
        update_state(p);
    }

    p->acelpf_ctx.acelp_apply_order_2_transfer_function(buf_out,
                                             buf_out, highpass_zeros,
                                             highpass_poles,
                                             highpass_gain * AMR_SAMPLE_SCALE,
                                             p->high_pass_mem, AMR_BLOCK_SIZE);

    /* Update averaged lsf vector (used for fixed gain smoothing).
     *
     * Note that lsf_avg should not incorporate the current frame's LSFs
     * for fixed_gain_smooth.
     * The specification has an incorrect formula: the reference decoder uses
     * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
    p->acelpv_ctx.weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
                            0.84, 0.16, LP_FILTER_ORDER);

    *got_frame_ptr = 1;

    /* return the amount of bytes consumed if everything was OK */
    return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
}


AVCodec ff_amrnb_decoder = {
    .name           = "amrnb",
    .long_name      = NULL_IF_CONFIG_SMALL("AMR-NB (Adaptive Multi-Rate NarrowBand)"),
    .type           = AVMEDIA_TYPE_AUDIO,
    .id             = AV_CODEC_ID_AMR_NB,
    .priv_data_size = sizeof(AMRContext),
    .init           = amrnb_decode_init,
    .decode         = amrnb_decode_frame,
    .capabilities   = AV_CODEC_CAP_DR1,
    .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
                                                     AV_SAMPLE_FMT_NONE },
};