dcaenc.c 41.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
/*
 * DCA encoder
 * Copyright (C) 2008-2012 Alexander E. Patrakov
 *               2010 Benjamin Larsson
 *               2011 Xiang Wang
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#define FFT_FLOAT 0
#define FFT_FIXED_32 1

#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/common.h"
#include "libavutil/ffmath.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "dca.h"
#include "dcaadpcm.h"
#include "dcamath.h"
#include "dca_core.h"
#include "dcadata.h"
#include "dcaenc.h"
#include "fft.h"
#include "internal.h"
#include "mathops.h"
#include "put_bits.h"

#define MAX_CHANNELS 6
#define DCA_MAX_FRAME_SIZE 16384
#define DCA_HEADER_SIZE 13
#define DCA_LFE_SAMPLES 8

#define DCAENC_SUBBANDS 32
#define SUBFRAMES 1
#define SUBSUBFRAMES 2
#define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8)
#define AUBANDS 25

#define COS_T(x) (c->cos_table[(x) & 2047])

typedef struct CompressionOptions {
    int adpcm_mode;
} CompressionOptions;

typedef struct DCAEncContext {
    AVClass *class;
    PutBitContext pb;
    DCAADPCMEncContext adpcm_ctx;
    FFTContext mdct;
    CompressionOptions options;
    int frame_size;
    int frame_bits;
    int fullband_channels;
    int channels;
    int lfe_channel;
    int samplerate_index;
    int bitrate_index;
    int channel_config;
    const int32_t *band_interpolation;
    const int32_t *band_spectrum;
    int lfe_scale_factor;
    softfloat lfe_quant;
    int32_t lfe_peak_cb;
    const int8_t *channel_order_tab;  ///< channel reordering table, lfe and non lfe

    int32_t prediction_mode[MAX_CHANNELS][DCAENC_SUBBANDS];
    int32_t adpcm_history[MAX_CHANNELS][DCAENC_SUBBANDS][DCA_ADPCM_COEFFS * 2];
    int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */
    int32_t *subband[MAX_CHANNELS][DCAENC_SUBBANDS];
    int32_t quantized[MAX_CHANNELS][DCAENC_SUBBANDS][SUBBAND_SAMPLES];
    int32_t peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS];
    int32_t diff_peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; ///< expected peak of residual signal
    int32_t downsampled_lfe[DCA_LFE_SAMPLES];
    int32_t masking_curve_cb[SUBSUBFRAMES][256];
    int32_t bit_allocation_sel[MAX_CHANNELS];
    int abits[MAX_CHANNELS][DCAENC_SUBBANDS];
    int scale_factor[MAX_CHANNELS][DCAENC_SUBBANDS];
    softfloat quant[MAX_CHANNELS][DCAENC_SUBBANDS];
    int32_t quant_index_sel[MAX_CHANNELS][DCA_CODE_BOOKS];
    int32_t eff_masking_curve_cb[256];
    int32_t band_masking_cb[32];
    int32_t worst_quantization_noise;
    int32_t worst_noise_ever;
    int consumed_bits;
    int consumed_adpcm_bits; ///< Number of bits to transmit ADPCM related info

    int32_t cos_table[2048];
    int32_t band_interpolation_tab[2][512];
    int32_t band_spectrum_tab[2][8];
    int32_t auf[9][AUBANDS][256];
    int32_t cb_to_add[256];
    int32_t cb_to_level[2048];
    int32_t lfe_fir_64i[512];
} DCAEncContext;

/* Transfer function of outer and middle ear, Hz -> dB */
static double hom(double f)
{
    double f1 = f / 1000;

    return -3.64 * pow(f1, -0.8)
           + 6.8 * exp(-0.6 * (f1 - 3.4) * (f1 - 3.4))
           - 6.0 * exp(-0.15 * (f1 - 8.7) * (f1 - 8.7))
           - 0.0006 * (f1 * f1) * (f1 * f1);
}

static double gammafilter(int i, double f)
{
    double h = (f - fc[i]) / erb[i];

    h = 1 + h * h;
    h = 1 / (h * h);
    return 20 * log10(h);
}

static int subband_bufer_alloc(DCAEncContext *c)
{
    int ch, band;
    int32_t *bufer = av_calloc(MAX_CHANNELS * DCAENC_SUBBANDS *
                               (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS),
                               sizeof(int32_t));
    if (!bufer)
        return AVERROR(ENOMEM);

    /* we need a place for DCA_ADPCM_COEFF samples from previous frame
     * to calc prediction coefficients for each subband */
    for (ch = 0; ch < MAX_CHANNELS; ch++) {
        for (band = 0; band < DCAENC_SUBBANDS; band++) {
            c->subband[ch][band] = bufer +
                                   ch * DCAENC_SUBBANDS * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) +
                                   band * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) + DCA_ADPCM_COEFFS;
        }
    }
    return 0;
}

static void subband_bufer_free(DCAEncContext *c)
{
    if (c->subband[0][0]) {
        int32_t *bufer = c->subband[0][0] - DCA_ADPCM_COEFFS;
        av_free(bufer);
        c->subband[0][0] = NULL;
    }
}

static int encode_init(AVCodecContext *avctx)
{
    DCAEncContext *c = avctx->priv_data;
    uint64_t layout = avctx->channel_layout;
    int i, j, k, min_frame_bits;
    int ret;

    if ((ret = subband_bufer_alloc(c)) < 0)
        return ret;

    c->fullband_channels = c->channels = avctx->channels;
    c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6);
    c->band_interpolation = c->band_interpolation_tab[1];
    c->band_spectrum = c->band_spectrum_tab[1];
    c->worst_quantization_noise = -2047;
    c->worst_noise_ever = -2047;
    c->consumed_adpcm_bits = 0;

    if (ff_dcaadpcm_init(&c->adpcm_ctx))
        return AVERROR(ENOMEM);

    if (!layout) {
        av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
                                      "encoder will guess the layout, but it "
                                      "might be incorrect.\n");
        layout = av_get_default_channel_layout(avctx->channels);
    }
    switch (layout) {
    case AV_CH_LAYOUT_MONO:         c->channel_config = 0; break;
    case AV_CH_LAYOUT_STEREO:       c->channel_config = 2; break;
    case AV_CH_LAYOUT_2_2:          c->channel_config = 8; break;
    case AV_CH_LAYOUT_5POINT0:      c->channel_config = 9; break;
    case AV_CH_LAYOUT_5POINT1:      c->channel_config = 9; break;
    default:
        av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout!\n");
        return AVERROR_PATCHWELCOME;
    }

    if (c->lfe_channel) {
        c->fullband_channels--;
        c->channel_order_tab = channel_reorder_lfe[c->channel_config];
    } else {
        c->channel_order_tab = channel_reorder_nolfe[c->channel_config];
    }

    for (i = 0; i < MAX_CHANNELS; i++) {
        for (j = 0; j < DCA_CODE_BOOKS; j++) {
            c->quant_index_sel[i][j] = ff_dca_quant_index_group_size[j];
        }
        /* 6 - no Huffman */
        c->bit_allocation_sel[i] = 6;

        for (j = 0; j < DCAENC_SUBBANDS; j++) {
            /* -1 - no ADPCM */
            c->prediction_mode[i][j] = -1;
            memset(c->adpcm_history[i][j], 0, sizeof(int32_t)*DCA_ADPCM_COEFFS);
        }
    }

    for (i = 0; i < 9; i++) {
        if (sample_rates[i] == avctx->sample_rate)
            break;
    }
    if (i == 9)
        return AVERROR(EINVAL);
    c->samplerate_index = i;

    if (avctx->bit_rate < 32000 || avctx->bit_rate > 3840000) {
        av_log(avctx, AV_LOG_ERROR, "Bit rate %"PRId64" not supported.", avctx->bit_rate);
        return AVERROR(EINVAL);
    }
    for (i = 0; ff_dca_bit_rates[i] < avctx->bit_rate; i++)
        ;
    c->bitrate_index = i;
    c->frame_bits = FFALIGN((avctx->bit_rate * 512 + avctx->sample_rate - 1) / avctx->sample_rate, 32);
    min_frame_bits = 132 + (493 + 28 * 32) * c->fullband_channels + c->lfe_channel * 72;
    if (c->frame_bits < min_frame_bits || c->frame_bits > (DCA_MAX_FRAME_SIZE << 3))
        return AVERROR(EINVAL);

    c->frame_size = (c->frame_bits + 7) / 8;

    avctx->frame_size = 32 * SUBBAND_SAMPLES;

    if ((ret = ff_mdct_init(&c->mdct, 9, 0, 1.0)) < 0)
        return ret;

    /* Init all tables */
    c->cos_table[0] = 0x7fffffff;
    c->cos_table[512] = 0;
    c->cos_table[1024] = -c->cos_table[0];
    for (i = 1; i < 512; i++) {
        c->cos_table[i]   = (int32_t)(0x7fffffff * cos(M_PI * i / 1024));
        c->cos_table[1024-i] = -c->cos_table[i];
        c->cos_table[1024+i] = -c->cos_table[i];
        c->cos_table[2048-i] = +c->cos_table[i];
    }

    for (i = 0; i < 2048; i++)
        c->cb_to_level[i] = (int32_t)(0x7fffffff * ff_exp10(-0.005 * i));

    for (k = 0; k < 32; k++) {
        for (j = 0; j < 8; j++) {
            c->lfe_fir_64i[64 * j + k] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
            c->lfe_fir_64i[64 * (7-j) + (63 - k)] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
        }
    }

    for (i = 0; i < 512; i++) {
        c->band_interpolation_tab[0][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_perfect[i]);
        c->band_interpolation_tab[1][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_nonperfect[i]);
    }

    for (i = 0; i < 9; i++) {
        for (j = 0; j < AUBANDS; j++) {
            for (k = 0; k < 256; k++) {
                double freq = sample_rates[i] * (k + 0.5) / 512;

                c->auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq)));
            }
        }
    }

    for (i = 0; i < 256; i++) {
        double add = 1 + ff_exp10(-0.01 * i);
        c->cb_to_add[i] = (int32_t)(100 * log10(add));
    }
    for (j = 0; j < 8; j++) {
        double accum = 0;
        for (i = 0; i < 512; i++) {
            double reconst = ff_dca_fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1);
            accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
        }
        c->band_spectrum_tab[0][j] = (int32_t)(200 * log10(accum));
    }
    for (j = 0; j < 8; j++) {
        double accum = 0;
        for (i = 0; i < 512; i++) {
            double reconst = ff_dca_fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1);
            accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
        }
        c->band_spectrum_tab[1][j] = (int32_t)(200 * log10(accum));
    }

    return 0;
}

static av_cold int encode_close(AVCodecContext *avctx)
{
    DCAEncContext *c = avctx->priv_data;
    ff_mdct_end(&c->mdct);
    subband_bufer_free(c);
    ff_dcaadpcm_free(&c->adpcm_ctx);

    return 0;
}

static void subband_transform(DCAEncContext *c, const int32_t *input)
{
    int ch, subs, i, k, j;

    for (ch = 0; ch < c->fullband_channels; ch++) {
        /* History is copied because it is also needed for PSY */
        int32_t hist[512];
        int hist_start = 0;
        const int chi = c->channel_order_tab[ch];

        memcpy(hist, &c->history[ch][0], 512 * sizeof(int32_t));

        for (subs = 0; subs < SUBBAND_SAMPLES; subs++) {
            int32_t accum[64];
            int32_t resp;
            int band;

            /* Calculate the convolutions at once */
            memset(accum, 0, 64 * sizeof(int32_t));

            for (k = 0, i = hist_start, j = 0;
                    i < 512; k = (k + 1) & 63, i++, j++)
                accum[k] += mul32(hist[i], c->band_interpolation[j]);
            for (i = 0; i < hist_start; k = (k + 1) & 63, i++, j++)
                accum[k] += mul32(hist[i], c->band_interpolation[j]);

            for (k = 16; k < 32; k++)
                accum[k] = accum[k] - accum[31 - k];
            for (k = 32; k < 48; k++)
                accum[k] = accum[k] + accum[95 - k];

            for (band = 0; band < 32; band++) {
                resp = 0;
                for (i = 16; i < 48; i++) {
                    int s = (2 * band + 1) * (2 * (i + 16) + 1);
                    resp += mul32(accum[i], COS_T(s << 3)) >> 3;
                }

                c->subband[ch][band][subs] = ((band + 1) & 2) ? -resp : resp;
            }

            /* Copy in 32 new samples from input */
            for (i = 0; i < 32; i++)
                hist[i + hist_start] = input[(subs * 32 + i) * c->channels + chi];

            hist_start = (hist_start + 32) & 511;
        }
    }
}

static void lfe_downsample(DCAEncContext *c, const int32_t *input)
{
    /* FIXME: make 128x LFE downsampling possible */
    const int lfech = lfe_index[c->channel_config];
    int i, j, lfes;
    int32_t hist[512];
    int32_t accum;
    int hist_start = 0;

    memcpy(hist, &c->history[c->channels - 1][0], 512 * sizeof(int32_t));

    for (lfes = 0; lfes < DCA_LFE_SAMPLES; lfes++) {
        /* Calculate the convolution */
        accum = 0;

        for (i = hist_start, j = 0; i < 512; i++, j++)
            accum += mul32(hist[i], c->lfe_fir_64i[j]);
        for (i = 0; i < hist_start; i++, j++)
            accum += mul32(hist[i], c->lfe_fir_64i[j]);

        c->downsampled_lfe[lfes] = accum;

        /* Copy in 64 new samples from input */
        for (i = 0; i < 64; i++)
            hist[i + hist_start] = input[(lfes * 64 + i) * c->channels + lfech];

        hist_start = (hist_start + 64) & 511;
    }
}

static int32_t get_cb(DCAEncContext *c, int32_t in)
{
    int i, res = 0;
    in = FFABS(in);

    for (i = 1024; i > 0; i >>= 1) {
        if (c->cb_to_level[i + res] >= in)
            res += i;
    }
    return -res;
}

static int32_t add_cb(DCAEncContext *c, int32_t a, int32_t b)
{
    if (a < b)
        FFSWAP(int32_t, a, b);

    if (a - b >= 256)
        return a;
    return a + c->cb_to_add[a - b];
}

static void calc_power(DCAEncContext *c,
                       const int32_t in[2 * 256], int32_t power[256])
{
    int i;
    LOCAL_ALIGNED_32(int32_t, data,  [512]);
    LOCAL_ALIGNED_32(int32_t, coeff, [256]);

    for (i = 0; i < 512; i++)
        data[i] = norm__(mul32(in[i], 0x3fffffff - (COS_T(4 * i + 2) >> 1)), 4);

    c->mdct.mdct_calc(&c->mdct, coeff, data);
    for (i = 0; i < 256; i++) {
        const int32_t cb = get_cb(c, coeff[i]);
        power[i] = add_cb(c, cb, cb);
    }
}

static void adjust_jnd(DCAEncContext *c,
                       const int32_t in[512], int32_t out_cb[256])
{
    int32_t power[256];
    int32_t out_cb_unnorm[256];
    int32_t denom;
    const int32_t ca_cb = -1114;
    const int32_t cs_cb = 928;
    const int samplerate_index = c->samplerate_index;
    int i, j;

    calc_power(c, in, power);

    for (j = 0; j < 256; j++)
        out_cb_unnorm[j] = -2047; /* and can only grow */

    for (i = 0; i < AUBANDS; i++) {
        denom = ca_cb; /* and can only grow */
        for (j = 0; j < 256; j++)
            denom = add_cb(c, denom, power[j] + c->auf[samplerate_index][i][j]);
        for (j = 0; j < 256; j++)
            out_cb_unnorm[j] = add_cb(c, out_cb_unnorm[j],
                                      -denom + c->auf[samplerate_index][i][j]);
    }

    for (j = 0; j < 256; j++)
        out_cb[j] = add_cb(c, out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb);
}

typedef void (*walk_band_t)(DCAEncContext *c, int band1, int band2, int f,
                            int32_t spectrum1, int32_t spectrum2, int channel,
                            int32_t * arg);

static void walk_band_low(DCAEncContext *c, int band, int channel,
                          walk_band_t walk, int32_t *arg)
{
    int f;

    if (band == 0) {
        for (f = 0; f < 4; f++)
            walk(c, 0, 0, f, 0, -2047, channel, arg);
    } else {
        for (f = 0; f < 8; f++)
            walk(c, band, band - 1, 8 * band - 4 + f,
                    c->band_spectrum[7 - f], c->band_spectrum[f], channel, arg);
    }
}

static void walk_band_high(DCAEncContext *c, int band, int channel,
                           walk_band_t walk, int32_t *arg)
{
    int f;

    if (band == 31) {
        for (f = 0; f < 4; f++)
            walk(c, 31, 31, 256 - 4 + f, 0, -2047, channel, arg);
    } else {
        for (f = 0; f < 8; f++)
            walk(c, band, band + 1, 8 * band + 4 + f,
                    c->band_spectrum[f], c->band_spectrum[7 - f], channel, arg);
    }
}

static void update_band_masking(DCAEncContext *c, int band1, int band2,
                                int f, int32_t spectrum1, int32_t spectrum2,
                                int channel, int32_t * arg)
{
    int32_t value = c->eff_masking_curve_cb[f] - spectrum1;

    if (value < c->band_masking_cb[band1])
        c->band_masking_cb[band1] = value;
}

static void calc_masking(DCAEncContext *c, const int32_t *input)
{
    int i, k, band, ch, ssf;
    int32_t data[512];

    for (i = 0; i < 256; i++)
        for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
            c->masking_curve_cb[ssf][i] = -2047;

    for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
        for (ch = 0; ch < c->fullband_channels; ch++) {
            const int chi = c->channel_order_tab[ch];

            for (i = 0, k = 128 + 256 * ssf; k < 512; i++, k++)
                data[i] = c->history[ch][k];
            for (k -= 512; i < 512; i++, k++)
                data[i] = input[k * c->channels + chi];
            adjust_jnd(c, data, c->masking_curve_cb[ssf]);
        }
    for (i = 0; i < 256; i++) {
        int32_t m = 2048;

        for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
            if (c->masking_curve_cb[ssf][i] < m)
                m = c->masking_curve_cb[ssf][i];
        c->eff_masking_curve_cb[i] = m;
    }

    for (band = 0; band < 32; band++) {
        c->band_masking_cb[band] = 2048;
        walk_band_low(c, band, 0, update_band_masking, NULL);
        walk_band_high(c, band, 0, update_band_masking, NULL);
    }
}

static inline int32_t find_peak(DCAEncContext *c, const int32_t *in, int len)
{
    int sample;
    int32_t m = 0;
    for (sample = 0; sample < len; sample++) {
        int32_t s = abs(in[sample]);
        if (m < s)
            m = s;
    }
    return get_cb(c, m);
}

static void find_peaks(DCAEncContext *c)
{
    int band, ch;

    for (ch = 0; ch < c->fullband_channels; ch++) {
        for (band = 0; band < 32; band++)
            c->peak_cb[ch][band] = find_peak(c, c->subband[ch][band],
                                             SUBBAND_SAMPLES);
    }

    if (c->lfe_channel)
        c->lfe_peak_cb = find_peak(c, c->downsampled_lfe, DCA_LFE_SAMPLES);
}

static void adpcm_analysis(DCAEncContext *c)
{
    int ch, band;
    int pred_vq_id;
    int32_t *samples;
    int32_t estimated_diff[SUBBAND_SAMPLES];

    c->consumed_adpcm_bits = 0;
    for (ch = 0; ch < c->fullband_channels; ch++) {
        for (band = 0; band < 32; band++) {
            samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
            pred_vq_id = ff_dcaadpcm_subband_analysis(&c->adpcm_ctx, samples,
                                                      SUBBAND_SAMPLES, estimated_diff);
            if (pred_vq_id >= 0) {
                c->prediction_mode[ch][band] = pred_vq_id;
                c->consumed_adpcm_bits += 12; //12 bits to transmit prediction vq index
                c->diff_peak_cb[ch][band] = find_peak(c, estimated_diff, 16);
            } else {
                c->prediction_mode[ch][band] = -1;
            }
        }
    }
}

static const int snr_fudge = 128;
#define USED_1ABITS 1
#define USED_26ABITS 4

static inline int32_t get_step_size(DCAEncContext *c, int ch, int band)
{
    int32_t step_size;

    if (c->bitrate_index == 3)
        step_size = ff_dca_lossless_quant[c->abits[ch][band]];
    else
        step_size = ff_dca_lossy_quant[c->abits[ch][band]];

    return step_size;
}

static int calc_one_scale(DCAEncContext *c, int32_t peak_cb, int abits,
                          softfloat *quant)
{
    int32_t peak;
    int our_nscale, try_remove;
    softfloat our_quant;

    av_assert0(peak_cb <= 0);
    av_assert0(peak_cb >= -2047);

    our_nscale = 127;
    peak = c->cb_to_level[-peak_cb];

    for (try_remove = 64; try_remove > 0; try_remove >>= 1) {
        if (scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e <= 17)
            continue;
        our_quant.m = mul32(scalefactor_inv[our_nscale - try_remove].m, stepsize_inv[abits].m);
        our_quant.e = scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e - 17;
        if ((ff_dca_quant_levels[abits] - 1) / 2 < quantize_value(peak, our_quant))
            continue;
        our_nscale -= try_remove;
    }

    if (our_nscale >= 125)
        our_nscale = 124;

    quant->m = mul32(scalefactor_inv[our_nscale].m, stepsize_inv[abits].m);
    quant->e = scalefactor_inv[our_nscale].e + stepsize_inv[abits].e - 17;
    av_assert0((ff_dca_quant_levels[abits] - 1) / 2 >= quantize_value(peak, *quant));

    return our_nscale;
}

static inline void quantize_adpcm_subband(DCAEncContext *c, int ch, int band)
{
    int32_t step_size;
    int32_t diff_peak_cb = c->diff_peak_cb[ch][band];
    c->scale_factor[ch][band] = calc_one_scale(c, diff_peak_cb,
                                               c->abits[ch][band],
                                               &c->quant[ch][band]);

    step_size = get_step_size(c, ch, band);
    ff_dcaadpcm_do_real(c->prediction_mode[ch][band],
                        c->quant[ch][band],
                        ff_dca_scale_factor_quant7[c->scale_factor[ch][band]],
                        step_size, c->adpcm_history[ch][band], c->subband[ch][band],
                        c->adpcm_history[ch][band] + 4, c->quantized[ch][band],
                        SUBBAND_SAMPLES, c->cb_to_level[-diff_peak_cb]);
}

static void quantize_adpcm(DCAEncContext *c)
{
    int band, ch;

    for (ch = 0; ch < c->fullband_channels; ch++)
        for (band = 0; band < 32; band++)
            if (c->prediction_mode[ch][band] >= 0)
                quantize_adpcm_subband(c, ch, band);
}

static void quantize_pcm(DCAEncContext *c)
{
    int sample, band, ch;

    for (ch = 0; ch < c->fullband_channels; ch++) {
        for (band = 0; band < 32; band++) {
            if (c->prediction_mode[ch][band] == -1) {
                for (sample = 0; sample < SUBBAND_SAMPLES; sample++) {
                    int32_t val = quantize_value(c->subband[ch][band][sample],
                                                 c->quant[ch][band]);
                    c->quantized[ch][band][sample] = val;
                }
            }
        }
    }
}

static void accumulate_huff_bit_consumption(int abits, int32_t *quantized,
                                            uint32_t *result)
{
    uint8_t sel, id = abits - 1;
    for (sel = 0; sel < ff_dca_quant_index_group_size[id]; sel++)
        result[sel] += ff_dca_vlc_calc_quant_bits(quantized, SUBBAND_SAMPLES,
                                                  sel, id);
}

static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7],
                              uint32_t clc_bits[DCA_CODE_BOOKS],
                              int32_t res[DCA_CODE_BOOKS])
{
    uint8_t i, sel;
    uint32_t best_sel_bits[DCA_CODE_BOOKS];
    int32_t best_sel_id[DCA_CODE_BOOKS];
    uint32_t t, bits = 0;

    for (i = 0; i < DCA_CODE_BOOKS; i++) {

        av_assert0(!((!!vlc_bits[i][0]) ^ (!!clc_bits[i])));
        if (vlc_bits[i][0] == 0) {
            /* do not transmit adjustment index for empty codebooks */
            res[i] = ff_dca_quant_index_group_size[i];
            /* and skip it */
            continue;
        }

        best_sel_bits[i] = vlc_bits[i][0];
        best_sel_id[i] = 0;
        for (sel = 0; sel < ff_dca_quant_index_group_size[i]; sel++) {
            if (best_sel_bits[i] > vlc_bits[i][sel] && vlc_bits[i][sel]) {
                best_sel_bits[i] = vlc_bits[i][sel];
                best_sel_id[i] = sel;
            }
        }

        /* 2 bits to transmit scale factor adjustment index */
        t = best_sel_bits[i] + 2;
        if (t < clc_bits[i]) {
            res[i] = best_sel_id[i];
            bits += t;
        } else {
            res[i] = ff_dca_quant_index_group_size[i];
            bits += clc_bits[i];
        }
    }
    return bits;
}

static uint32_t set_best_abits_code(int abits[DCAENC_SUBBANDS], int bands,
                                    int32_t *res)
{
    uint8_t i;
    uint32_t t;
    int32_t best_sel = 6;
    int32_t best_bits = bands * 5;

    /* Check do we have subband which cannot be encoded by Huffman tables */
    for (i = 0; i < bands; i++) {
        if (abits[i] > 12 || abits[i] == 0) {
            *res = best_sel;
            return best_bits;
        }
    }

    for (i = 0; i < DCA_BITALLOC_12_COUNT; i++) {
        t = ff_dca_vlc_calc_alloc_bits(abits, bands, i);
        if (t < best_bits) {
            best_bits = t;
            best_sel = i;
        }
    }

    *res = best_sel;
    return best_bits;
}

static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero)
{
    int ch, band, ret = USED_26ABITS | USED_1ABITS;
    uint32_t huff_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS][7];
    uint32_t clc_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS];
    uint32_t bits_counter = 0;

    c->consumed_bits = 132 + 333 * c->fullband_channels;
    c->consumed_bits += c->consumed_adpcm_bits;
    if (c->lfe_channel)
        c->consumed_bits += 72;

    /* attempt to guess the bit distribution based on the prevoius frame */
    for (ch = 0; ch < c->fullband_channels; ch++) {
        for (band = 0; band < 32; band++) {
            int snr_cb = c->peak_cb[ch][band] - c->band_masking_cb[band] - noise;

            if (snr_cb >= 1312) {
                c->abits[ch][band] = 26;
                ret &= ~USED_1ABITS;
            } else if (snr_cb >= 222) {
                c->abits[ch][band] = 8 + mul32(snr_cb - 222, 69000000);
                ret &= ~(USED_26ABITS | USED_1ABITS);
            } else if (snr_cb >= 0) {
                c->abits[ch][band] = 2 + mul32(snr_cb, 106000000);
                ret &= ~(USED_26ABITS | USED_1ABITS);
            } else if (forbid_zero || snr_cb >= -140) {
                c->abits[ch][band] = 1;
                ret &= ~USED_26ABITS;
            } else {
                c->abits[ch][band] = 0;
                ret &= ~(USED_26ABITS | USED_1ABITS);
            }
        }
        c->consumed_bits += set_best_abits_code(c->abits[ch], 32,
                                                &c->bit_allocation_sel[ch]);
    }

    /* Recalc scale_factor each time to get bits consumption in case of Huffman coding.
       It is suboptimal solution */
    /* TODO: May be cache scaled values */
    for (ch = 0; ch < c->fullband_channels; ch++) {
        for (band = 0; band < 32; band++) {
            if (c->prediction_mode[ch][band] == -1) {
                c->scale_factor[ch][band] = calc_one_scale(c, c->peak_cb[ch][band],
                                                           c->abits[ch][band],
                                                           &c->quant[ch][band]);
            }
        }
    }
    quantize_adpcm(c);
    quantize_pcm(c);

    memset(huff_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * 7 * sizeof(uint32_t));
    memset(clc_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * sizeof(uint32_t));
    for (ch = 0; ch < c->fullband_channels; ch++) {
        for (band = 0; band < 32; band++) {
            if (c->abits[ch][band] && c->abits[ch][band] <= DCA_CODE_BOOKS) {
                accumulate_huff_bit_consumption(c->abits[ch][band],
                                                c->quantized[ch][band],
                                                huff_bit_count_accum[ch][c->abits[ch][band] - 1]);
                clc_bit_count_accum[ch][c->abits[ch][band] - 1] += bit_consumption[c->abits[ch][band]];
            } else {
                bits_counter += bit_consumption[c->abits[ch][band]];
            }
        }
    }

    for (ch = 0; ch < c->fullband_channels; ch++) {
        bits_counter += set_best_code(huff_bit_count_accum[ch],
                                      clc_bit_count_accum[ch],
                                      c->quant_index_sel[ch]);
    }

    c->consumed_bits += bits_counter;

    return ret;
}

static void assign_bits(DCAEncContext *c)
{
    /* Find the bounds where the binary search should work */
    int low, high, down;
    int used_abits = 0;
    int forbid_zero = 1;
restart:
    init_quantization_noise(c, c->worst_quantization_noise, forbid_zero);
    low = high = c->worst_quantization_noise;
    if (c->consumed_bits > c->frame_bits) {
        while (c->consumed_bits > c->frame_bits) {
            if (used_abits == USED_1ABITS && forbid_zero) {
                forbid_zero = 0;
                goto restart;
            }
            low = high;
            high += snr_fudge;
            used_abits = init_quantization_noise(c, high, forbid_zero);
        }
    } else {
        while (c->consumed_bits <= c->frame_bits) {
            high = low;
            if (used_abits == USED_26ABITS)
                goto out; /* The requested bitrate is too high, pad with zeros */
            low -= snr_fudge;
            used_abits = init_quantization_noise(c, low, forbid_zero);
        }
    }

    /* Now do a binary search between low and high to see what fits */
    for (down = snr_fudge >> 1; down; down >>= 1) {
        init_quantization_noise(c, high - down, forbid_zero);
        if (c->consumed_bits <= c->frame_bits)
            high -= down;
    }
    init_quantization_noise(c, high, forbid_zero);
out:
    c->worst_quantization_noise = high;
    if (high > c->worst_noise_ever)
        c->worst_noise_ever = high;
}

static void shift_history(DCAEncContext *c, const int32_t *input)
{
    int k, ch;

    for (k = 0; k < 512; k++)
        for (ch = 0; ch < c->channels; ch++) {
            const int chi = c->channel_order_tab[ch];

            c->history[ch][k] = input[k * c->channels + chi];
        }
}

static void fill_in_adpcm_bufer(DCAEncContext *c)
{
     int ch, band;
     int32_t step_size;
     /* We fill in ADPCM work buffer for subbands which hasn't been ADPCM coded
      * in current frame - we need this data if subband of next frame is
      * ADPCM
      */
     for (ch = 0; ch < c->channels; ch++) {
        for (band = 0; band < 32; band++) {
            int32_t *samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
            if (c->prediction_mode[ch][band] == -1) {
                step_size = get_step_size(c, ch, band);

                ff_dca_core_dequantize(c->adpcm_history[ch][band],
                                       c->quantized[ch][band]+12, step_size,
                                       ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], 0, 4);
            } else {
                AV_COPY128U(c->adpcm_history[ch][band], c->adpcm_history[ch][band]+4);
            }
            /* Copy dequantized values for LPC analysis.
             * It reduces artifacts in case of extreme quantization,
             * example: in current frame abits is 1 and has no prediction flag,
             * but end of this frame is sine like signal. In this case, if LPC analysis uses
             * original values, likely LPC analysis returns good prediction gain, and sets prediction flag.
             * But there are no proper value in decoder history, so likely result will be no good.
             * Bitstream has "Predictor history flag switch", but this flag disables history for all subbands
             */
            samples[0] = c->adpcm_history[ch][band][0] << 7;
            samples[1] = c->adpcm_history[ch][band][1] << 7;
            samples[2] = c->adpcm_history[ch][band][2] << 7;
            samples[3] = c->adpcm_history[ch][band][3] << 7;
        }
     }
}

static void calc_lfe_scales(DCAEncContext *c)
{
    if (c->lfe_channel)
        c->lfe_scale_factor = calc_one_scale(c, c->lfe_peak_cb, 11, &c->lfe_quant);
}

static void put_frame_header(DCAEncContext *c)
{
    /* SYNC */
    put_bits(&c->pb, 16, 0x7ffe);
    put_bits(&c->pb, 16, 0x8001);

    /* Frame type: normal */
    put_bits(&c->pb, 1, 1);

    /* Deficit sample count: none */
    put_bits(&c->pb, 5, 31);

    /* CRC is not present */
    put_bits(&c->pb, 1, 0);

    /* Number of PCM sample blocks */
    put_bits(&c->pb, 7, SUBBAND_SAMPLES - 1);

    /* Primary frame byte size */
    put_bits(&c->pb, 14, c->frame_size - 1);

    /* Audio channel arrangement */
    put_bits(&c->pb, 6, c->channel_config);

    /* Core audio sampling frequency */
    put_bits(&c->pb, 4, bitstream_sfreq[c->samplerate_index]);

    /* Transmission bit rate */
    put_bits(&c->pb, 5, c->bitrate_index);

    /* Embedded down mix: disabled */
    put_bits(&c->pb, 1, 0);

    /* Embedded dynamic range flag: not present */
    put_bits(&c->pb, 1, 0);

    /* Embedded time stamp flag: not present */
    put_bits(&c->pb, 1, 0);

    /* Auxiliary data flag: not present */
    put_bits(&c->pb, 1, 0);

    /* HDCD source: no */
    put_bits(&c->pb, 1, 0);

    /* Extension audio ID: N/A */
    put_bits(&c->pb, 3, 0);

    /* Extended audio data: not present */
    put_bits(&c->pb, 1, 0);

    /* Audio sync word insertion flag: after each sub-frame */
    put_bits(&c->pb, 1, 0);

    /* Low frequency effects flag: not present or 64x subsampling */
    put_bits(&c->pb, 2, c->lfe_channel ? 2 : 0);

    /* Predictor history switch flag: on */
    put_bits(&c->pb, 1, 1);

    /* No CRC */
    /* Multirate interpolator switch: non-perfect reconstruction */
    put_bits(&c->pb, 1, 0);

    /* Encoder software revision: 7 */
    put_bits(&c->pb, 4, 7);

    /* Copy history: 0 */
    put_bits(&c->pb, 2, 0);

    /* Source PCM resolution: 16 bits, not DTS ES */
    put_bits(&c->pb, 3, 0);

    /* Front sum/difference coding: no */
    put_bits(&c->pb, 1, 0);

    /* Surrounds sum/difference coding: no */
    put_bits(&c->pb, 1, 0);

    /* Dialog normalization: 0 dB */
    put_bits(&c->pb, 4, 0);
}

static void put_primary_audio_header(DCAEncContext *c)
{
    int ch, i;
    /* Number of subframes */
    put_bits(&c->pb, 4, SUBFRAMES - 1);

    /* Number of primary audio channels */
    put_bits(&c->pb, 3, c->fullband_channels - 1);

    /* Subband activity count */
    for (ch = 0; ch < c->fullband_channels; ch++)
        put_bits(&c->pb, 5, DCAENC_SUBBANDS - 2);

    /* High frequency VQ start subband */
    for (ch = 0; ch < c->fullband_channels; ch++)
        put_bits(&c->pb, 5, DCAENC_SUBBANDS - 1);

    /* Joint intensity coding index: 0, 0 */
    for (ch = 0; ch < c->fullband_channels; ch++)
        put_bits(&c->pb, 3, 0);

    /* Transient mode codebook: A4, A4 (arbitrary) */
    for (ch = 0; ch < c->fullband_channels; ch++)
        put_bits(&c->pb, 2, 0);

    /* Scale factor code book: 7 bit linear, 7-bit sqrt table (for each channel) */
    for (ch = 0; ch < c->fullband_channels; ch++)
        put_bits(&c->pb, 3, 6);

    /* Bit allocation quantizer select: linear 5-bit */
    for (ch = 0; ch < c->fullband_channels; ch++)
        put_bits(&c->pb, 3, c->bit_allocation_sel[ch]);

    /* Quantization index codebook select */
    for (i = 0; i < DCA_CODE_BOOKS; i++)
        for (ch = 0; ch < c->fullband_channels; ch++)
            put_bits(&c->pb, ff_dca_quant_index_sel_nbits[i], c->quant_index_sel[ch][i]);

    /* Scale factor adjustment index: transmitted in case of Huffman coding */
    for (i = 0; i < DCA_CODE_BOOKS; i++)
        for (ch = 0; ch < c->fullband_channels; ch++)
            if (c->quant_index_sel[ch][i] < ff_dca_quant_index_group_size[i])
                put_bits(&c->pb, 2, 0);

    /* Audio header CRC check word: not transmitted */
}

static void put_subframe_samples(DCAEncContext *c, int ss, int band, int ch)
{
    int i, j, sum, bits, sel;
    if (c->abits[ch][band] <= DCA_CODE_BOOKS) {
        av_assert0(c->abits[ch][band] > 0);
        sel = c->quant_index_sel[ch][c->abits[ch][band] - 1];
        // Huffman codes
        if (sel < ff_dca_quant_index_group_size[c->abits[ch][band] - 1]) {
            ff_dca_vlc_enc_quant(&c->pb, &c->quantized[ch][band][ss * 8], 8,
                                 sel, c->abits[ch][band] - 1);
            return;
        }

        // Block codes
        if (c->abits[ch][band] <= 7) {
            for (i = 0; i < 8; i += 4) {
                sum = 0;
                for (j = 3; j >= 0; j--) {
                    sum *= ff_dca_quant_levels[c->abits[ch][band]];
                    sum += c->quantized[ch][band][ss * 8 + i + j];
                    sum += (ff_dca_quant_levels[c->abits[ch][band]] - 1) / 2;
                }
                put_bits(&c->pb, bit_consumption[c->abits[ch][band]] / 4, sum);
            }
            return;
        }
    }

    for (i = 0; i < 8; i++) {
        bits = bit_consumption[c->abits[ch][band]] / 16;
        put_sbits(&c->pb, bits, c->quantized[ch][band][ss * 8 + i]);
    }
}

static void put_subframe(DCAEncContext *c, int subframe)
{
    int i, band, ss, ch;

    /* Subsubframes count */
    put_bits(&c->pb, 2, SUBSUBFRAMES -1);

    /* Partial subsubframe sample count: dummy */
    put_bits(&c->pb, 3, 0);

    /* Prediction mode: no ADPCM, in each channel and subband */
    for (ch = 0; ch < c->fullband_channels; ch++)
        for (band = 0; band < DCAENC_SUBBANDS; band++)
            put_bits(&c->pb, 1, !(c->prediction_mode[ch][band] == -1));

    /* Prediction VQ address */
    for (ch = 0; ch < c->fullband_channels; ch++)
        for (band = 0; band < DCAENC_SUBBANDS; band++)
            if (c->prediction_mode[ch][band] >= 0)
                put_bits(&c->pb, 12, c->prediction_mode[ch][band]);

    /* Bit allocation index */
    for (ch = 0; ch < c->fullband_channels; ch++) {
        if (c->bit_allocation_sel[ch] == 6) {
            for (band = 0; band < DCAENC_SUBBANDS; band++) {
                put_bits(&c->pb, 5, c->abits[ch][band]);
            }
        } else {
            ff_dca_vlc_enc_alloc(&c->pb, c->abits[ch], DCAENC_SUBBANDS,
                                 c->bit_allocation_sel[ch]);
        }
    }

    if (SUBSUBFRAMES > 1) {
        /* Transition mode: none for each channel and subband */
        for (ch = 0; ch < c->fullband_channels; ch++)
            for (band = 0; band < DCAENC_SUBBANDS; band++)
                if (c->abits[ch][band])
                    put_bits(&c->pb, 1, 0); /* codebook A4 */
    }

    /* Scale factors */
    for (ch = 0; ch < c->fullband_channels; ch++)
        for (band = 0; band < DCAENC_SUBBANDS; band++)
            if (c->abits[ch][band])
                put_bits(&c->pb, 7, c->scale_factor[ch][band]);

    /* Joint subband scale factor codebook select: not transmitted */
    /* Scale factors for joint subband coding: not transmitted */
    /* Stereo down-mix coefficients: not transmitted */
    /* Dynamic range coefficient: not transmitted */
    /* Stde information CRC check word: not transmitted */
    /* VQ encoded high frequency subbands: not transmitted */

    /* LFE data: 8 samples and scalefactor */
    if (c->lfe_channel) {
        for (i = 0; i < DCA_LFE_SAMPLES; i++)
            put_bits(&c->pb, 8, quantize_value(c->downsampled_lfe[i], c->lfe_quant) & 0xff);
        put_bits(&c->pb, 8, c->lfe_scale_factor);
    }

    /* Audio data (subsubframes) */
    for (ss = 0; ss < SUBSUBFRAMES ; ss++)
        for (ch = 0; ch < c->fullband_channels; ch++)
            for (band = 0; band < DCAENC_SUBBANDS; band++)
                if (c->abits[ch][band])
                    put_subframe_samples(c, ss, band, ch);

    /* DSYNC */
    put_bits(&c->pb, 16, 0xffff);
}

static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
                        const AVFrame *frame, int *got_packet_ptr)
{
    DCAEncContext *c = avctx->priv_data;
    const int32_t *samples;
    int ret, i;

    if ((ret = ff_alloc_packet2(avctx, avpkt, c->frame_size, 0)) < 0)
        return ret;

    samples = (const int32_t *)frame->data[0];

    subband_transform(c, samples);
    if (c->lfe_channel)
        lfe_downsample(c, samples);

    calc_masking(c, samples);
    if (c->options.adpcm_mode)
        adpcm_analysis(c);
    find_peaks(c);
    assign_bits(c);
    calc_lfe_scales(c);
    shift_history(c, samples);

    init_put_bits(&c->pb, avpkt->data, avpkt->size);
    fill_in_adpcm_bufer(c);
    put_frame_header(c);
    put_primary_audio_header(c);
    for (i = 0; i < SUBFRAMES; i++)
        put_subframe(c, i);


    for (i = put_bits_count(&c->pb); i < 8*c->frame_size; i++)
        put_bits(&c->pb, 1, 0);

    flush_put_bits(&c->pb);

    avpkt->pts      = frame->pts;
    avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
    avpkt->size     = put_bits_count(&c->pb) >> 3;
    *got_packet_ptr = 1;
    return 0;
}

#define DCAENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM

static const AVOption options[] = {
    { "dca_adpcm", "Use ADPCM encoding", offsetof(DCAEncContext, options.adpcm_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, DCAENC_FLAGS },
    { NULL },
};

static const AVClass dcaenc_class = {
    .class_name = "DCA (DTS Coherent Acoustics)",
    .item_name = av_default_item_name,
    .option = options,
    .version = LIBAVUTIL_VERSION_INT,
};

static const AVCodecDefault defaults[] = {
    { "b",          "1411200" },
    { NULL },
};

AVCodec ff_dca_encoder = {
    .name                  = "dca",
    .long_name             = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
    .type                  = AVMEDIA_TYPE_AUDIO,
    .id                    = AV_CODEC_ID_DTS,
    .priv_data_size        = sizeof(DCAEncContext),
    .init                  = encode_init,
    .close                 = encode_close,
    .encode2               = encode_frame,
    .capabilities          = AV_CODEC_CAP_EXPERIMENTAL,
    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
    .sample_fmts           = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32,
                                                            AV_SAMPLE_FMT_NONE },
    .supported_samplerates = sample_rates,
    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_MONO,
                                                  AV_CH_LAYOUT_STEREO,
                                                  AV_CH_LAYOUT_2_2,
                                                  AV_CH_LAYOUT_5POINT0,
                                                  AV_CH_LAYOUT_5POINT1,
                                                  0 },
    .defaults              = defaults,
    .priv_class            = &dcaenc_class,
};