eac3dec.c 23.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
/*
 * E-AC-3 decoder
 * Copyright (c) 2007 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
 * Copyright (c) 2008 Justin Ruggles
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/*
 * There are several features of E-AC-3 that this decoder does not yet support.
 *
 * Enhanced Coupling
 *     No known samples exist.  If any ever surface, this feature should not be
 *     too difficult to implement.
 *
 * Reduced Sample Rates
 *     No known samples exist.  The spec also does not give clear information
 *     on how this is to be implemented.
 *
 * Transient Pre-noise Processing
 *     This is side information which a decoder should use to reduce artifacts
 *     caused by transients.  There are samples which are known to have this
 *     information, but this decoder currently ignores it.
 */


#include "avcodec.h"
#include "internal.h"
#include "aac_ac3_parser.h"
#include "ac3.h"
#include "ac3dec.h"
#include "ac3dec_data.h"
#include "eac3_data.h"

/** gain adaptive quantization mode */
typedef enum {
    EAC3_GAQ_NO =0,
    EAC3_GAQ_12,
    EAC3_GAQ_14,
    EAC3_GAQ_124
} EAC3GaqMode;

#define EAC3_SR_CODE_REDUCED  3

static void ff_eac3_apply_spectral_extension(AC3DecodeContext *s)
{
    int bin, bnd, ch, i;
    uint8_t wrapflag[SPX_MAX_BANDS]={1,0,}, num_copy_sections, copy_sizes[SPX_MAX_BANDS];
    float rms_energy[SPX_MAX_BANDS];

    /* Set copy index mapping table. Set wrap flags to apply a notch filter at
       wrap points later on. */
    bin = s->spx_dst_start_freq;
    num_copy_sections = 0;
    for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
        int copysize;
        int bandsize = s->spx_band_sizes[bnd];
        if (bin + bandsize > s->spx_src_start_freq) {
            copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
            bin = s->spx_dst_start_freq;
            wrapflag[bnd] = 1;
        }
        for (i = 0; i < bandsize; i += copysize) {
            if (bin == s->spx_src_start_freq) {
                copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
                bin = s->spx_dst_start_freq;
            }
            copysize = FFMIN(bandsize - i, s->spx_src_start_freq - bin);
            bin += copysize;
        }
    }
    copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;

    for (ch = 1; ch <= s->fbw_channels; ch++) {
        if (!s->channel_uses_spx[ch])
            continue;

        /* Copy coeffs from normal bands to extension bands */
        bin = s->spx_src_start_freq;
        for (i = 0; i < num_copy_sections; i++) {
            memcpy(&s->transform_coeffs[ch][bin],
                   &s->transform_coeffs[ch][s->spx_dst_start_freq],
                   copy_sizes[i]*sizeof(INTFLOAT));
            bin += copy_sizes[i];
        }

        /* Calculate RMS energy for each SPX band. */
        bin = s->spx_src_start_freq;
        for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
            int bandsize = s->spx_band_sizes[bnd];
            float accum = 0.0f;
            for (i = 0; i < bandsize; i++) {
                float coeff = s->transform_coeffs[ch][bin++];
                accum += coeff * coeff;
            }
            rms_energy[bnd] = sqrtf(accum / bandsize);
        }

        /* Apply a notch filter at transitions between normal and extension
           bands and at all wrap points. */
        if (s->spx_atten_code[ch] >= 0) {
            const float *atten_tab = ff_eac3_spx_atten_tab[s->spx_atten_code[ch]];
            bin = s->spx_src_start_freq - 2;
            for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
                if (wrapflag[bnd]) {
                    INTFLOAT *coeffs = &s->transform_coeffs[ch][bin];
                    coeffs[0] *= atten_tab[0];
                    coeffs[1] *= atten_tab[1];
                    coeffs[2] *= atten_tab[2];
                    coeffs[3] *= atten_tab[1];
                    coeffs[4] *= atten_tab[0];
                }
                bin += s->spx_band_sizes[bnd];
            }
        }

        /* Apply noise-blended coefficient scaling based on previously
           calculated RMS energy, blending factors, and SPX coordinates for
           each band. */
        bin = s->spx_src_start_freq;
        for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
            float nscale = s->spx_noise_blend[ch][bnd] * rms_energy[bnd] * (1.0f / INT32_MIN);
            float sscale = s->spx_signal_blend[ch][bnd];
#if USE_FIXED
            // spx_noise_blend and spx_signal_blend are both FP.23
            nscale *= 1.0 / (1<<23);
            sscale *= 1.0 / (1<<23);
#endif
            for (i = 0; i < s->spx_band_sizes[bnd]; i++) {
                float noise  = nscale * (int32_t)av_lfg_get(&s->dith_state);
                s->transform_coeffs[ch][bin]   *= sscale;
                s->transform_coeffs[ch][bin++] += noise;
            }
        }
    }
}


/** lrint(M_SQRT2*cos(2*M_PI/12)*(1<<23)) */
#define COEFF_0 10273905LL

/** lrint(M_SQRT2*cos(0*M_PI/12)*(1<<23)) = lrint(M_SQRT2*(1<<23)) */
#define COEFF_1 11863283LL

/** lrint(M_SQRT2*cos(5*M_PI/12)*(1<<23)) */
#define COEFF_2  3070444LL

/**
 * Calculate 6-point IDCT of the pre-mantissas.
 * All calculations are 24-bit fixed-point.
 */
static void idct6(int pre_mant[6])
{
    int tmp;
    int even0, even1, even2, odd0, odd1, odd2;

    odd1 = pre_mant[1] - pre_mant[3] - pre_mant[5];

    even2 = ( pre_mant[2]                * COEFF_0) >> 23;
    tmp   = ( pre_mant[4]                * COEFF_1) >> 23;
    odd0  = ((pre_mant[1] + pre_mant[5]) * COEFF_2) >> 23;

    even0 = pre_mant[0] + (tmp >> 1);
    even1 = pre_mant[0] - tmp;

    tmp = even0;
    even0 = tmp + even2;
    even2 = tmp - even2;

    tmp = odd0;
    odd0 = tmp + pre_mant[1] + pre_mant[3];
    odd2 = tmp + pre_mant[5] - pre_mant[3];

    pre_mant[0] = even0 + odd0;
    pre_mant[1] = even1 + odd1;
    pre_mant[2] = even2 + odd2;
    pre_mant[3] = even2 - odd2;
    pre_mant[4] = even1 - odd1;
    pre_mant[5] = even0 - odd0;
}

static void ff_eac3_decode_transform_coeffs_aht_ch(AC3DecodeContext *s, int ch)
{
    int bin, blk, gs;
    int end_bap, gaq_mode;
    GetBitContext *gbc = &s->gbc;
    int gaq_gain[AC3_MAX_COEFS];

    gaq_mode = get_bits(gbc, 2);
    end_bap = (gaq_mode < 2) ? 12 : 17;

    /* if GAQ gain is used, decode gain codes for bins with hebap between
       8 and end_bap */
    gs = 0;
    if (gaq_mode == EAC3_GAQ_12 || gaq_mode == EAC3_GAQ_14) {
        /* read 1-bit GAQ gain codes */
        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
            if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < end_bap)
                gaq_gain[gs++] = get_bits1(gbc) << (gaq_mode-1);
        }
    } else if (gaq_mode == EAC3_GAQ_124) {
        /* read 1.67-bit GAQ gain codes (3 codes in 5 bits) */
        int gc = 2;
        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
            if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < 17) {
                if (gc++ == 2) {
                    int group_code = get_bits(gbc, 5);
                    if (group_code > 26) {
                        av_log(s->avctx, AV_LOG_WARNING, "GAQ gain group code out-of-range\n");
                        group_code = 26;
                    }
                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][0];
                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][1];
                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][2];
                    gc = 0;
                }
            }
        }
    }

    gs=0;
    for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
        int hebap = s->bap[ch][bin];
        int bits = ff_eac3_bits_vs_hebap[hebap];
        if (!hebap) {
            /* zero-mantissa dithering */
            for (blk = 0; blk < 6; blk++) {
                s->pre_mantissa[ch][bin][blk] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
            }
        } else if (hebap < 8) {
            /* Vector Quantization */
            int v = get_bits(gbc, bits);
            for (blk = 0; blk < 6; blk++) {
                s->pre_mantissa[ch][bin][blk] = ff_eac3_mantissa_vq[hebap][v][blk] * (1 << 8);
            }
        } else {
            /* Gain Adaptive Quantization */
            int gbits, log_gain;
            if (gaq_mode != EAC3_GAQ_NO && hebap < end_bap) {
                log_gain = gaq_gain[gs++];
            } else {
                log_gain = 0;
            }
            gbits = bits - log_gain;

            for (blk = 0; blk < 6; blk++) {
                int mant = get_sbits(gbc, gbits);
                if (log_gain && mant == -(1 << (gbits-1))) {
                    /* large mantissa */
                    int b;
                    int mbits = bits - (2 - log_gain);
                    mant = get_sbits(gbc, mbits);
                    mant = ((unsigned)mant) << (23 - (mbits - 1));
                    /* remap mantissa value to correct for asymmetric quantization */
                    if (mant >= 0)
                        b = 1 << (23 - log_gain);
                    else
                        b = ff_eac3_gaq_remap_2_4_b[hebap-8][log_gain-1] * (1 << 8);
                    mant += ((ff_eac3_gaq_remap_2_4_a[hebap-8][log_gain-1] * (int64_t)mant) >> 15) + b;
                } else {
                    /* small mantissa, no GAQ, or Gk=1 */
                    mant *= (1 << 24 - bits);
                    if (!log_gain) {
                        /* remap mantissa value for no GAQ or Gk=1 */
                        mant += (ff_eac3_gaq_remap_1[hebap-8] * (int64_t)mant) >> 15;
                    }
                }
                s->pre_mantissa[ch][bin][blk] = mant;
            }
        }
        idct6(s->pre_mantissa[ch][bin]);
    }
}

static int ff_eac3_parse_header(AC3DecodeContext *s)
{
    int i, blk, ch;
    int ac3_exponent_strategy, parse_aht_info, parse_spx_atten_data;
    int parse_transient_proc_info;
    int num_cpl_blocks;
    GetBitContext *gbc = &s->gbc;

    /* An E-AC-3 stream can have multiple independent streams which the
       application can select from. each independent stream can also contain
       dependent streams which are used to add or replace channels. */
    if (s->frame_type == EAC3_FRAME_TYPE_RESERVED) {
        av_log(s->avctx, AV_LOG_ERROR, "Reserved frame type\n");
        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
    }

    /* The substream id indicates which substream this frame belongs to. each
       independent stream has its own substream id, and the dependent streams
       associated to an independent stream have matching substream id's. */
    if (s->substreamid) {
        /* only decode substream with id=0. skip any additional substreams. */
        if (!s->eac3_subsbtreamid_found) {
            s->eac3_subsbtreamid_found = 1;
            avpriv_request_sample(s->avctx, "Additional substreams");
        }
        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
    }

    if (s->bit_alloc_params.sr_code == EAC3_SR_CODE_REDUCED) {
        /* The E-AC-3 specification does not tell how to handle reduced sample
           rates in bit allocation.  The best assumption would be that it is
           handled like AC-3 DolbyNet, but we cannot be sure until we have a
           sample which utilizes this feature. */
        avpriv_request_sample(s->avctx, "Reduced sampling rate");
        return AVERROR_PATCHWELCOME;
    }
    skip_bits(gbc, 5); // skip bitstream id

    /* volume control params */
    for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
        s->dialog_normalization[i] = -get_bits(gbc, 5);
        if (s->dialog_normalization[i] == 0) {
            s->dialog_normalization[i] = -31;
        }
        if (s->target_level != 0) {
            s->level_gain[i] = powf(2.0f,
                (float)(s->target_level - s->dialog_normalization[i])/6.0f);
        }
        s->compression_exists[i] = get_bits1(gbc);
        if (s->compression_exists[i]) {
            s->heavy_dynamic_range[i] = AC3_HEAVY_RANGE(get_bits(gbc, 8));
        }
    }

    /* dependent stream channel map */
    if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
        if (get_bits1(gbc)) {
            int64_t channel_layout = 0;
            int channel_map = get_bits(gbc, 16);
            av_log(s->avctx, AV_LOG_DEBUG, "channel_map: %0X\n", channel_map);

            for (i = 0; i < 16; i++)
                if (channel_map & (1 << (EAC3_MAX_CHANNELS - i - 1)))
                    channel_layout |= ff_eac3_custom_channel_map_locations[i][1];

            if (av_popcount64(channel_layout) > EAC3_MAX_CHANNELS) {
                return AVERROR_INVALIDDATA;
            }
            s->channel_map = channel_map;
        }
    }

    /* mixing metadata */
    if (get_bits1(gbc)) {
        /* center and surround mix levels */
        if (s->channel_mode > AC3_CHMODE_STEREO) {
            s->preferred_downmix = get_bits(gbc, 2);
            if (s->channel_mode & 1) {
                /* if three front channels exist */
                s->center_mix_level_ltrt = get_bits(gbc, 3);
                s->center_mix_level      = get_bits(gbc, 3);
            }
            if (s->channel_mode & 4) {
                /* if a surround channel exists */
                s->surround_mix_level_ltrt = av_clip(get_bits(gbc, 3), 3, 7);
                s->surround_mix_level      = av_clip(get_bits(gbc, 3), 3, 7);
            }
        }

        /* lfe mix level */
        if (s->lfe_on && (s->lfe_mix_level_exists = get_bits1(gbc))) {
            s->lfe_mix_level = get_bits(gbc, 5);
        }

        /* info for mixing with other streams and substreams */
        if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT) {
            for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
                // TODO: apply program scale factor
                if (get_bits1(gbc)) {
                    skip_bits(gbc, 6);  // skip program scale factor
                }
            }
            if (get_bits1(gbc)) {
                skip_bits(gbc, 6);  // skip external program scale factor
            }
            /* skip mixing parameter data */
            switch(get_bits(gbc, 2)) {
                case 1: skip_bits(gbc, 5);  break;
                case 2: skip_bits(gbc, 12); break;
                case 3: {
                    int mix_data_size = (get_bits(gbc, 5) + 2) << 3;
                    skip_bits_long(gbc, mix_data_size);
                    break;
                }
            }
            /* skip pan information for mono or dual mono source */
            if (s->channel_mode < AC3_CHMODE_STEREO) {
                for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
                    if (get_bits1(gbc)) {
                        /* note: this is not in the ATSC A/52B specification
                           reference: ETSI TS 102 366 V1.1.1
                                      section: E.1.3.1.25 */
                        skip_bits(gbc, 8);  // skip pan mean direction index
                        skip_bits(gbc, 6);  // skip reserved paninfo bits
                    }
                }
            }
            /* skip mixing configuration information */
            if (get_bits1(gbc)) {
                for (blk = 0; blk < s->num_blocks; blk++) {
                    if (s->num_blocks == 1 || get_bits1(gbc)) {
                        skip_bits(gbc, 5);
                    }
                }
            }
        }
    }

    /* informational metadata */
    if (get_bits1(gbc)) {
        s->bitstream_mode = get_bits(gbc, 3);
        skip_bits(gbc, 2); // skip copyright bit and original bitstream bit
        if (s->channel_mode == AC3_CHMODE_STEREO) {
            s->dolby_surround_mode  = get_bits(gbc, 2);
            s->dolby_headphone_mode = get_bits(gbc, 2);
        }
        if (s->channel_mode >= AC3_CHMODE_2F2R) {
            s->dolby_surround_ex_mode = get_bits(gbc, 2);
        }
        for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
            if (get_bits1(gbc)) {
                skip_bits(gbc, 8); // skip mix level, room type, and A/D converter type
            }
        }
        if (s->bit_alloc_params.sr_code != EAC3_SR_CODE_REDUCED) {
            skip_bits1(gbc); // skip source sample rate code
        }
    }

    /* converter synchronization flag
       If frames are less than six blocks, this bit should be turned on
       once every 6 blocks to indicate the start of a frame set.
       reference: RFC 4598, Section 2.1.3  Frame Sets */
    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && s->num_blocks != 6) {
        skip_bits1(gbc); // skip converter synchronization flag
    }

    /* original frame size code if this stream was converted from AC-3 */
    if (s->frame_type == EAC3_FRAME_TYPE_AC3_CONVERT &&
            (s->num_blocks == 6 || get_bits1(gbc))) {
        skip_bits(gbc, 6); // skip frame size code
    }

    /* additional bitstream info */
    if (get_bits1(gbc)) {
        int addbsil = get_bits(gbc, 6);
        for (i = 0; i < addbsil + 1; i++) {
            skip_bits(gbc, 8); // skip additional bit stream info
        }
    }

    /* audio frame syntax flags, strategy data, and per-frame data */

    if (s->num_blocks == 6) {
        ac3_exponent_strategy = get_bits1(gbc);
        parse_aht_info        = get_bits1(gbc);
    } else {
        /* less than 6 blocks, so use AC-3-style exponent strategy syntax, and
           do not use AHT */
        ac3_exponent_strategy = 1;
        parse_aht_info = 0;
    }

    s->snr_offset_strategy    = get_bits(gbc, 2);
    parse_transient_proc_info = get_bits1(gbc);

    s->block_switch_syntax = get_bits1(gbc);
    if (!s->block_switch_syntax)
        memset(s->block_switch, 0, sizeof(s->block_switch));

    s->dither_flag_syntax = get_bits1(gbc);
    if (!s->dither_flag_syntax) {
        for (ch = 1; ch <= s->fbw_channels; ch++)
            s->dither_flag[ch] = 1;
    }
    s->dither_flag[CPL_CH] = s->dither_flag[s->lfe_ch] = 0;

    s->bit_allocation_syntax = get_bits1(gbc);
    if (!s->bit_allocation_syntax) {
        /* set default bit allocation parameters */
        s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[2];
        s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[1];
        s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab [1];
        s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[2];
        s->bit_alloc_params.floor      = ff_ac3_floor_tab     [7];
    }

    s->fast_gain_syntax  = get_bits1(gbc);
    s->dba_syntax        = get_bits1(gbc);
    s->skip_syntax       = get_bits1(gbc);
    parse_spx_atten_data = get_bits1(gbc);

    /* coupling strategy occurrence and coupling use per block */
    num_cpl_blocks = 0;
    if (s->channel_mode > 1) {
        for (blk = 0; blk < s->num_blocks; blk++) {
            s->cpl_strategy_exists[blk] = (!blk || get_bits1(gbc));
            if (s->cpl_strategy_exists[blk]) {
                s->cpl_in_use[blk] = get_bits1(gbc);
            } else {
                s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
            }
            num_cpl_blocks += s->cpl_in_use[blk];
        }
    } else {
        memset(s->cpl_in_use, 0, sizeof(s->cpl_in_use));
    }

    /* exponent strategy data */
    if (ac3_exponent_strategy) {
        /* AC-3-style exponent strategy syntax */
        for (blk = 0; blk < s->num_blocks; blk++) {
            for (ch = !s->cpl_in_use[blk]; ch <= s->fbw_channels; ch++) {
                s->exp_strategy[blk][ch] = get_bits(gbc, 2);
            }
        }
    } else {
        /* LUT-based exponent strategy syntax */
        for (ch = !((s->channel_mode > 1) && num_cpl_blocks); ch <= s->fbw_channels; ch++) {
            int frmchexpstr = get_bits(gbc, 5);
            for (blk = 0; blk < 6; blk++) {
                s->exp_strategy[blk][ch] = ff_eac3_frm_expstr[frmchexpstr][blk];
            }
        }
    }
    /* LFE exponent strategy */
    if (s->lfe_on) {
        for (blk = 0; blk < s->num_blocks; blk++) {
            s->exp_strategy[blk][s->lfe_ch] = get_bits1(gbc);
        }
    }
    /* original exponent strategies if this stream was converted from AC-3 */
    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT &&
            (s->num_blocks == 6 || get_bits1(gbc))) {
        skip_bits(gbc, 5 * s->fbw_channels); // skip converter channel exponent strategy
    }

    /* determine which channels use AHT */
    if (parse_aht_info) {
        /* For AHT to be used, all non-zero blocks must reuse exponents from
           the first block.  Furthermore, for AHT to be used in the coupling
           channel, all blocks must use coupling and use the same coupling
           strategy. */
        s->channel_uses_aht[CPL_CH]=0;
        for (ch = (num_cpl_blocks != 6); ch <= s->channels; ch++) {
            int use_aht = 1;
            for (blk = 1; blk < 6; blk++) {
                if ((s->exp_strategy[blk][ch] != EXP_REUSE) ||
                        (!ch && s->cpl_strategy_exists[blk])) {
                    use_aht = 0;
                    break;
                }
            }
            s->channel_uses_aht[ch] = use_aht && get_bits1(gbc);
        }
    } else {
        memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
    }

    /* per-frame SNR offset */
    if (!s->snr_offset_strategy) {
        int csnroffst = (get_bits(gbc, 6) - 15) << 4;
        int snroffst = (csnroffst + get_bits(gbc, 4)) << 2;
        for (ch = 0; ch <= s->channels; ch++)
            s->snr_offset[ch] = snroffst;
    }

    /* transient pre-noise processing data */
    if (parse_transient_proc_info) {
        for (ch = 1; ch <= s->fbw_channels; ch++) {
            if (get_bits1(gbc)) { // channel in transient processing
                skip_bits(gbc, 10); // skip transient processing location
                skip_bits(gbc, 8);  // skip transient processing length
            }
        }
    }

    /* spectral extension attenuation data */
    for (ch = 1; ch <= s->fbw_channels; ch++) {
        if (parse_spx_atten_data && get_bits1(gbc)) {
            s->spx_atten_code[ch] = get_bits(gbc, 5);
        } else {
            s->spx_atten_code[ch] = -1;
        }
    }

    /* block start information */
    if (s->num_blocks > 1 && get_bits1(gbc)) {
        /* reference: Section E2.3.2.27
           nblkstrtbits = (numblks - 1) * (4 + ceiling(log2(words_per_frame)))
           The spec does not say what this data is or what it's used for.
           It is likely the offset of each block within the frame. */
        int block_start_bits = (s->num_blocks-1) * (4 + av_log2(s->frame_size-2));
        skip_bits_long(gbc, block_start_bits);
        avpriv_request_sample(s->avctx, "Block start info");
    }

    /* syntax state initialization */
    for (ch = 1; ch <= s->fbw_channels; ch++) {
        s->first_spx_coords[ch] = 1;
        s->first_cpl_coords[ch] = 1;
    }
    s->first_cpl_leak = 1;

    return 0;
}