indeo3.c 41 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/*
 * Indeo Video v3 compatible decoder
 * Copyright (c) 2009 - 2011 Maxim Poliakovski
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * This is a decoder for Intel Indeo Video v3.
 * It is based on vector quantization, run-length coding and motion compensation.
 * Known container formats: .avi and .mov
 * Known FOURCCs: 'IV31', 'IV32'
 *
 * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
 */

#include "libavutil/imgutils.h"
#include "libavutil/intreadwrite.h"
#include "avcodec.h"
#include "copy_block.h"
#include "bytestream.h"
#include "get_bits.h"
#include "hpeldsp.h"
#include "internal.h"

#include "indeo3data.h"

/* RLE opcodes. */
enum {
    RLE_ESC_F9    = 249, ///< same as RLE_ESC_FA + do the same with next block
    RLE_ESC_FA    = 250, ///< INTRA: skip block, INTER: copy data from reference
    RLE_ESC_FB    = 251, ///< apply null delta to N blocks / skip N blocks
    RLE_ESC_FC    = 252, ///< same as RLE_ESC_FD + do the same with next block
    RLE_ESC_FD    = 253, ///< apply null delta to all remaining lines of this block
    RLE_ESC_FE    = 254, ///< apply null delta to all lines up to the 3rd line
    RLE_ESC_FF    = 255  ///< apply null delta to all lines up to the 2nd line
};


/* Some constants for parsing frame bitstream flags. */
#define BS_8BIT_PEL     (1 << 1) ///< 8-bit pixel bitdepth indicator
#define BS_KEYFRAME     (1 << 2) ///< intra frame indicator
#define BS_MV_Y_HALF    (1 << 4) ///< vertical mv halfpel resolution indicator
#define BS_MV_X_HALF    (1 << 5) ///< horizontal mv halfpel resolution indicator
#define BS_NONREF       (1 << 8) ///< nonref (discardable) frame indicator
#define BS_BUFFER        9       ///< indicates which of two frame buffers should be used


typedef struct Plane {
    uint8_t         *buffers[2];
    uint8_t         *pixels[2]; ///< pointer to the actual pixel data of the buffers above
    uint32_t        width;
    uint32_t        height;
    ptrdiff_t       pitch;
} Plane;

#define CELL_STACK_MAX  20

typedef struct Cell {
    int16_t         xpos;       ///< cell coordinates in 4x4 blocks
    int16_t         ypos;
    int16_t         width;      ///< cell width  in 4x4 blocks
    int16_t         height;     ///< cell height in 4x4 blocks
    uint8_t         tree;       ///< tree id: 0- MC tree, 1 - VQ tree
    const int8_t    *mv_ptr;    ///< ptr to the motion vector if any
} Cell;

typedef struct Indeo3DecodeContext {
    AVCodecContext *avctx;
    HpelDSPContext  hdsp;

    GetBitContext   gb;
    int             need_resync;
    int             skip_bits;
    const uint8_t   *next_cell_data;
    const uint8_t   *last_byte;
    const int8_t    *mc_vectors;
    unsigned        num_vectors;    ///< number of motion vectors in mc_vectors

    int16_t         width, height;
    uint32_t        frame_num;      ///< current frame number (zero-based)
    int             data_size;      ///< size of the frame data in bytes
    uint16_t        frame_flags;    ///< frame properties
    uint8_t         cb_offset;      ///< needed for selecting VQ tables
    uint8_t         buf_sel;        ///< active frame buffer: 0 - primary, 1 -secondary
    const uint8_t   *y_data_ptr;
    const uint8_t   *v_data_ptr;
    const uint8_t   *u_data_ptr;
    int32_t         y_data_size;
    int32_t         v_data_size;
    int32_t         u_data_size;
    const uint8_t   *alt_quant;     ///< secondary VQ table set for the modes 1 and 4
    Plane           planes[3];
} Indeo3DecodeContext;


static uint8_t requant_tab[8][128];

/*
 *  Build the static requantization table.
 *  This table is used to remap pixel values according to a specific
 *  quant index and thus avoid overflows while adding deltas.
 */
static av_cold void build_requant_tab(void)
{
    static const int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
    static const int8_t deltas [8] = { 0, 1, 0,  4,  4, 1, 0, 1 };

    int i, j, step;

    for (i = 0; i < 8; i++) {
        step = i + 2;
        for (j = 0; j < 128; j++)
                requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
    }

    /* some last elements calculated above will have values >= 128 */
    /* pixel values shall never exceed 127 so set them to non-overflowing values */
    /* according with the quantization step of the respective section */
    requant_tab[0][127] = 126;
    requant_tab[1][119] = 118;
    requant_tab[1][120] = 118;
    requant_tab[2][126] = 124;
    requant_tab[2][127] = 124;
    requant_tab[6][124] = 120;
    requant_tab[6][125] = 120;
    requant_tab[6][126] = 120;
    requant_tab[6][127] = 120;

    /* Patch for compatibility with the Intel's binary decoders */
    requant_tab[1][7] = 10;
    requant_tab[4][8] = 10;
}


static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
{
    int p;

    ctx->width = ctx->height = 0;

    for (p = 0; p < 3; p++) {
        av_freep(&ctx->planes[p].buffers[0]);
        av_freep(&ctx->planes[p].buffers[1]);
        ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
    }
}


static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
                                          AVCodecContext *avctx, int luma_width, int luma_height)
{
    int p, chroma_width, chroma_height;
    int luma_size, chroma_size;
    ptrdiff_t luma_pitch, chroma_pitch;

    if (luma_width  < 16 || luma_width  > 640 ||
        luma_height < 16 || luma_height > 480 ||
        luma_width  &  3 || luma_height &   3) {
        av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
               luma_width, luma_height);
        return AVERROR_INVALIDDATA;
    }

    ctx->width  = luma_width ;
    ctx->height = luma_height;

    chroma_width  = FFALIGN(luma_width  >> 2, 4);
    chroma_height = FFALIGN(luma_height >> 2, 4);

    luma_pitch   = FFALIGN(luma_width,   16);
    chroma_pitch = FFALIGN(chroma_width, 16);

    /* Calculate size of the luminance plane.  */
    /* Add one line more for INTRA prediction. */
    luma_size = luma_pitch * (luma_height + 1);

    /* Calculate size of a chrominance planes. */
    /* Add one line more for INTRA prediction. */
    chroma_size = chroma_pitch * (chroma_height + 1);

    /* allocate frame buffers */
    for (p = 0; p < 3; p++) {
        ctx->planes[p].pitch  = !p ? luma_pitch  : chroma_pitch;
        ctx->planes[p].width  = !p ? luma_width  : chroma_width;
        ctx->planes[p].height = !p ? luma_height : chroma_height;

        ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
        ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);

        if (!ctx->planes[p].buffers[0] || !ctx->planes[p].buffers[1]) {
            free_frame_buffers(ctx);
            return AVERROR(ENOMEM);
        }

        /* fill the INTRA prediction lines with the middle pixel value = 64 */
        memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
        memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);

        /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
        ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
        ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
        memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
        memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
    }

    return 0;
}

/**
 *  Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
 *  the cell(x, y) in the current frame.
 *
 *  @param ctx      pointer to the decoder context
 *  @param plane    pointer to the plane descriptor
 *  @param cell     pointer to the cell  descriptor
 */
static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
{
    int     h, w, mv_x, mv_y, offset, offset_dst;
    uint8_t *src, *dst;

    /* setup output and reference pointers */
    offset_dst  = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
    dst         = plane->pixels[ctx->buf_sel] + offset_dst;
    if(cell->mv_ptr){
    mv_y        = cell->mv_ptr[0];
    mv_x        = cell->mv_ptr[1];
    }else
        mv_x= mv_y= 0;

    /* -1 because there is an extra line on top for prediction */
    if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
        ((cell->ypos + cell->height) << 2) + mv_y > plane->height     ||
        ((cell->xpos + cell->width)  << 2) + mv_x > plane->width) {
        av_log(ctx->avctx, AV_LOG_ERROR,
               "Motion vectors point out of the frame.\n");
        return AVERROR_INVALIDDATA;
    }

    offset      = offset_dst + mv_y * plane->pitch + mv_x;
    src         = plane->pixels[ctx->buf_sel ^ 1] + offset;

    h = cell->height << 2;

    for (w = cell->width; w > 0;) {
        /* copy using 16xH blocks */
        if (!((cell->xpos << 2) & 15) && w >= 4) {
            for (; w >= 4; src += 16, dst += 16, w -= 4)
                ctx->hdsp.put_pixels_tab[0][0](dst, src, plane->pitch, h);
        }

        /* copy using 8xH blocks */
        if (!((cell->xpos << 2) & 7) && w >= 2) {
            ctx->hdsp.put_pixels_tab[1][0](dst, src, plane->pitch, h);
            w -= 2;
            src += 8;
            dst += 8;
        } else if (w >= 1) {
            ctx->hdsp.put_pixels_tab[2][0](dst, src, plane->pitch, h);
            w--;
            src += 4;
            dst += 4;
        }
    }

    return 0;
}


/* Average 4/8 pixels at once without rounding using SWAR */
#define AVG_32(dst, src, ref) \
    AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL)

#define AVG_64(dst, src, ref) \
    AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)


/*
 *  Replicate each even pixel as follows:
 *  ABCDEFGH -> AACCEEGG
 */
static inline uint64_t replicate64(uint64_t a) {
#if HAVE_BIGENDIAN
    a &= 0xFF00FF00FF00FF00ULL;
    a |= a >> 8;
#else
    a &= 0x00FF00FF00FF00FFULL;
    a |= a << 8;
#endif
    return a;
}

static inline uint32_t replicate32(uint32_t a) {
#if HAVE_BIGENDIAN
    a &= 0xFF00FF00UL;
    a |= a >> 8;
#else
    a &= 0x00FF00FFUL;
    a |= a << 8;
#endif
    return a;
}


/* Fill n lines with 64-bit pixel value pix */
static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
                           int32_t row_offset)
{
    for (; n > 0; dst += row_offset, n--)
        AV_WN64A(dst, pix);
}


/* Error codes for cell decoding. */
enum {
    IV3_NOERR       = 0,
    IV3_BAD_RLE     = 1,
    IV3_BAD_DATA    = 2,
    IV3_BAD_COUNTER = 3,
    IV3_UNSUPPORTED = 4,
    IV3_OUT_OF_DATA = 5
};


#define BUFFER_PRECHECK \
if (*data_ptr >= last_ptr) \
    return IV3_OUT_OF_DATA; \

#define RLE_BLOCK_COPY \
    if (cell->mv_ptr || !skip_flag) \
        copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)

#define RLE_BLOCK_COPY_8 \
    pix64 = AV_RN64(ref);\
    if (is_first_row) {/* special prediction case: top line of a cell */\
        pix64 = replicate64(pix64);\
        fill_64(dst + row_offset, pix64, 7, row_offset);\
        AVG_64(dst, ref, dst + row_offset);\
    } else \
        fill_64(dst, pix64, 8, row_offset)

#define RLE_LINES_COPY \
    copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)

#define RLE_LINES_COPY_M10 \
    pix64 = AV_RN64(ref);\
    if (is_top_of_cell) {\
        pix64 = replicate64(pix64);\
        fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
        AVG_64(dst, ref, dst + row_offset);\
    } else \
        fill_64(dst, pix64, num_lines << 1, row_offset)

#define APPLY_DELTA_4 \
    AV_WN16A(dst + line_offset    ,\
             (AV_RN16(ref    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
    AV_WN16A(dst + line_offset + 2,\
             (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
    if (mode >= 3) {\
        if (is_top_of_cell && !cell->ypos) {\
            AV_COPY32U(dst, dst + row_offset);\
        } else {\
            AVG_32(dst, ref, dst + row_offset);\
        }\
    }

#define APPLY_DELTA_8 \
    /* apply two 32-bit VQ deltas to next even line */\
    if (is_top_of_cell) { \
        AV_WN32A(dst + row_offset    , \
                 (replicate32(AV_RN32(ref    )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
        AV_WN32A(dst + row_offset + 4, \
                 (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
    } else { \
        AV_WN32A(dst + row_offset    , \
                 (AV_RN32(ref    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
        AV_WN32A(dst + row_offset + 4, \
                 (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
    } \
    /* odd lines are not coded but rather interpolated/replicated */\
    /* first line of the cell on the top of image? - replicate */\
    /* otherwise - interpolate */\
    if (is_top_of_cell && !cell->ypos) {\
        AV_COPY64U(dst, dst + row_offset);\
    } else \
        AVG_64(dst, ref, dst + row_offset);


#define APPLY_DELTA_1011_INTER \
    if (mode == 10) { \
        AV_WN32A(dst                 , \
                 (AV_RN32(dst                 ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
        AV_WN32A(dst + 4             , \
                 (AV_RN32(dst + 4             ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
        AV_WN32A(dst + row_offset    , \
                 (AV_RN32(dst + row_offset    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
        AV_WN32A(dst + row_offset + 4, \
                 (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
    } else { \
        AV_WN16A(dst                 , \
                 (AV_RN16(dst                 ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
        AV_WN16A(dst + 2             , \
                 (AV_RN16(dst + 2             ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
        AV_WN16A(dst + row_offset    , \
                 (AV_RN16(dst + row_offset    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
        AV_WN16A(dst + row_offset + 2, \
                 (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
    }


static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell,
                            uint8_t *block, uint8_t *ref_block,
                            ptrdiff_t row_offset, int h_zoom, int v_zoom, int mode,
                            const vqEntry *delta[2], int swap_quads[2],
                            const uint8_t **data_ptr, const uint8_t *last_ptr)
{
    int           x, y, line, num_lines;
    int           rle_blocks = 0;
    uint8_t       code, *dst, *ref;
    const vqEntry *delta_tab;
    unsigned int  dyad1, dyad2;
    uint64_t      pix64;
    int           skip_flag = 0, is_top_of_cell, is_first_row = 1;
    int           blk_row_offset, line_offset;

    blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
    line_offset    = v_zoom ? row_offset : 0;

    if (cell->height & v_zoom || cell->width & h_zoom)
        return IV3_BAD_DATA;

    for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
        for (x = 0; x < cell->width; x += 1 + h_zoom) {
            ref = ref_block;
            dst = block;

            if (rle_blocks > 0) {
                if (mode <= 4) {
                    RLE_BLOCK_COPY;
                } else if (mode == 10 && !cell->mv_ptr) {
                    RLE_BLOCK_COPY_8;
                }
                rle_blocks--;
            } else {
                for (line = 0; line < 4;) {
                    num_lines = 1;
                    is_top_of_cell = is_first_row && !line;

                    /* select primary VQ table for odd, secondary for even lines */
                    if (mode <= 4)
                        delta_tab = delta[line & 1];
                    else
                        delta_tab = delta[1];
                    BUFFER_PRECHECK;
                    code = bytestream_get_byte(data_ptr);
                    if (code < 248) {
                        if (code < delta_tab->num_dyads) {
                            BUFFER_PRECHECK;
                            dyad1 = bytestream_get_byte(data_ptr);
                            dyad2 = code;
                            if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
                                return IV3_BAD_DATA;
                        } else {
                            /* process QUADS */
                            code -= delta_tab->num_dyads;
                            dyad1 = code / delta_tab->quad_exp;
                            dyad2 = code % delta_tab->quad_exp;
                            if (swap_quads[line & 1])
                                FFSWAP(unsigned int, dyad1, dyad2);
                        }
                        if (mode <= 4) {
                            APPLY_DELTA_4;
                        } else if (mode == 10 && !cell->mv_ptr) {
                            APPLY_DELTA_8;
                        } else {
                            APPLY_DELTA_1011_INTER;
                        }
                    } else {
                        /* process RLE codes */
                        switch (code) {
                        case RLE_ESC_FC:
                            skip_flag  = 0;
                            rle_blocks = 1;
                            code       = 253;
                            /* FALLTHROUGH */
                        case RLE_ESC_FF:
                        case RLE_ESC_FE:
                        case RLE_ESC_FD:
                            num_lines = 257 - code - line;
                            if (num_lines <= 0)
                                return IV3_BAD_RLE;
                            if (mode <= 4) {
                                RLE_LINES_COPY;
                            } else if (mode == 10 && !cell->mv_ptr) {
                                RLE_LINES_COPY_M10;
                            }
                            break;
                        case RLE_ESC_FB:
                            BUFFER_PRECHECK;
                            code = bytestream_get_byte(data_ptr);
                            rle_blocks = (code & 0x1F) - 1; /* set block counter */
                            if (code >= 64 || rle_blocks < 0)
                                return IV3_BAD_COUNTER;
                            skip_flag = code & 0x20;
                            num_lines = 4 - line; /* enforce next block processing */
                            if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
                                if (mode <= 4) {
                                    RLE_LINES_COPY;
                                } else if (mode == 10 && !cell->mv_ptr) {
                                    RLE_LINES_COPY_M10;
                                }
                            }
                            break;
                        case RLE_ESC_F9:
                            skip_flag  = 1;
                            rle_blocks = 1;
                            /* FALLTHROUGH */
                        case RLE_ESC_FA:
                            if (line)
                                return IV3_BAD_RLE;
                            num_lines = 4; /* enforce next block processing */
                            if (cell->mv_ptr) {
                                if (mode <= 4) {
                                    RLE_LINES_COPY;
                                } else if (mode == 10 && !cell->mv_ptr) {
                                    RLE_LINES_COPY_M10;
                                }
                            }
                            break;
                        default:
                            return IV3_UNSUPPORTED;
                        }
                    }

                    line += num_lines;
                    ref  += row_offset * (num_lines << v_zoom);
                    dst  += row_offset * (num_lines << v_zoom);
                }
            }

            /* move to next horizontal block */
            block     += 4 << h_zoom;
            ref_block += 4 << h_zoom;
        }

        /* move to next line of blocks */
        ref_block += blk_row_offset;
        block     += blk_row_offset;
    }
    return IV3_NOERR;
}


/**
 *  Decode a vector-quantized cell.
 *  It consists of several routines, each of which handles one or more "modes"
 *  with which a cell can be encoded.
 *
 *  @param ctx      pointer to the decoder context
 *  @param avctx    ptr to the AVCodecContext
 *  @param plane    pointer to the plane descriptor
 *  @param cell     pointer to the cell  descriptor
 *  @param data_ptr pointer to the compressed data
 *  @param last_ptr pointer to the last byte to catch reads past end of buffer
 *  @return         number of consumed bytes or negative number in case of error
 */
static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
                       Plane *plane, Cell *cell, const uint8_t *data_ptr,
                       const uint8_t *last_ptr)
{
    int           x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
    int           zoom_fac;
    int           offset, error = 0, swap_quads[2];
    uint8_t       code, *block, *ref_block = 0;
    const vqEntry *delta[2];
    const uint8_t *data_start = data_ptr;

    /* get coding mode and VQ table index from the VQ descriptor byte */
    code     = *data_ptr++;
    mode     = code >> 4;
    vq_index = code & 0xF;

    /* setup output and reference pointers */
    offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
    block  =  plane->pixels[ctx->buf_sel] + offset;

    if (!cell->mv_ptr) {
        /* use previous line as reference for INTRA cells */
        ref_block = block - plane->pitch;
    } else if (mode >= 10) {
        /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
        /* so we don't need to do data copying for each RLE code later */
        int ret = copy_cell(ctx, plane, cell);
        if (ret < 0)
            return ret;
    } else {
        /* set the pointer to the reference pixels for modes 0-4 INTER */
        mv_y      = cell->mv_ptr[0];
        mv_x      = cell->mv_ptr[1];

        /* -1 because there is an extra line on top for prediction */
        if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
            ((cell->ypos + cell->height) << 2) + mv_y > plane->height     ||
            ((cell->xpos + cell->width)  << 2) + mv_x > plane->width) {
            av_log(ctx->avctx, AV_LOG_ERROR,
                   "Motion vectors point out of the frame.\n");
            return AVERROR_INVALIDDATA;
        }

        offset   += mv_y * plane->pitch + mv_x;
        ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
    }

    /* select VQ tables as follows: */
    /* modes 0 and 3 use only the primary table for all lines in a block */
    /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
    if (mode == 1 || mode == 4) {
        code        = ctx->alt_quant[vq_index];
        prim_indx   = (code >> 4)  + ctx->cb_offset;
        second_indx = (code & 0xF) + ctx->cb_offset;
    } else {
        vq_index += ctx->cb_offset;
        prim_indx = second_indx = vq_index;
    }

    if (prim_indx >= 24 || second_indx >= 24) {
        av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
               prim_indx, second_indx);
        return AVERROR_INVALIDDATA;
    }

    delta[0] = &vq_tab[second_indx];
    delta[1] = &vq_tab[prim_indx];
    swap_quads[0] = second_indx >= 16;
    swap_quads[1] = prim_indx   >= 16;

    /* requantize the prediction if VQ index of this cell differs from VQ index */
    /* of the predicted cell in order to avoid overflows. */
    if (vq_index >= 8 && ref_block) {
        for (x = 0; x < cell->width << 2; x++)
            ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
    }

    error = IV3_NOERR;

    switch (mode) {
    case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
    case 1:
    case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
    case 4:
        if (mode >= 3 && cell->mv_ptr) {
            av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
            return AVERROR_INVALIDDATA;
        }

        zoom_fac = mode >= 3;
        error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
                                 0, zoom_fac, mode, delta, swap_quads,
                                 &data_ptr, last_ptr);
        break;
    case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
    case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
        if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
            error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
                                     1, 1, mode, delta, swap_quads,
                                     &data_ptr, last_ptr);
        } else { /* mode 10 and 11 INTER processing */
            if (mode == 11 && !cell->mv_ptr) {
               av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
               return AVERROR_INVALIDDATA;
            }

            zoom_fac = mode == 10;
            error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
                                     zoom_fac, 1, mode, delta, swap_quads,
                                     &data_ptr, last_ptr);
        }
        break;
    default:
        av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
        return AVERROR_INVALIDDATA;
    }//switch mode

    switch (error) {
    case IV3_BAD_RLE:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
               mode, data_ptr[-1]);
        return AVERROR_INVALIDDATA;
    case IV3_BAD_DATA:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
        return AVERROR_INVALIDDATA;
    case IV3_BAD_COUNTER:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
        return AVERROR_INVALIDDATA;
    case IV3_UNSUPPORTED:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
        return AVERROR_INVALIDDATA;
    case IV3_OUT_OF_DATA:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
        return AVERROR_INVALIDDATA;
    }

    return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
}


/* Binary tree codes. */
enum {
    H_SPLIT    = 0,
    V_SPLIT    = 1,
    INTRA_NULL = 2,
    INTER_DATA = 3
};


#define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1

#define UPDATE_BITPOS(n) \
    ctx->skip_bits  += (n); \
    ctx->need_resync = 1

#define RESYNC_BITSTREAM \
    if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
        skip_bits_long(&ctx->gb, ctx->skip_bits);              \
        ctx->skip_bits   = 0;                                  \
        ctx->need_resync = 0;                                  \
    }

#define CHECK_CELL \
    if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) ||               \
        curr_cell.ypos + curr_cell.height > (plane->height >> 2)) {             \
        av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n",   \
               curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
        return AVERROR_INVALIDDATA;                                                              \
    }


static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
                         Plane *plane, int code, Cell *ref_cell,
                         const int depth, const int strip_width)
{
    Cell    curr_cell;
    int     bytes_used, ret;

    if (depth <= 0) {
        av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
        return AVERROR_INVALIDDATA; // unwind recursion
    }

    curr_cell = *ref_cell; // clone parent cell
    if (code == H_SPLIT) {
        SPLIT_CELL(ref_cell->height, curr_cell.height);
        ref_cell->ypos   += curr_cell.height;
        ref_cell->height -= curr_cell.height;
        if (ref_cell->height <= 0 || curr_cell.height <= 0)
            return AVERROR_INVALIDDATA;
    } else if (code == V_SPLIT) {
        if (curr_cell.width > strip_width) {
            /* split strip */
            curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
        } else
            SPLIT_CELL(ref_cell->width, curr_cell.width);
        ref_cell->xpos  += curr_cell.width;
        ref_cell->width -= curr_cell.width;
        if (ref_cell->width <= 0 || curr_cell.width <= 0)
            return AVERROR_INVALIDDATA;
    }

    while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
        RESYNC_BITSTREAM;
        switch (code = get_bits(&ctx->gb, 2)) {
        case H_SPLIT:
        case V_SPLIT:
            if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
                return AVERROR_INVALIDDATA;
            break;
        case INTRA_NULL:
            if (!curr_cell.tree) { /* MC tree INTRA code */
                curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
                curr_cell.tree   = 1; /* enter the VQ tree */
            } else { /* VQ tree NULL code */
                RESYNC_BITSTREAM;
                code = get_bits(&ctx->gb, 2);
                if (code >= 2) {
                    av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
                    return AVERROR_INVALIDDATA;
                }
                if (code == 1)
                    av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");

                CHECK_CELL
                if (!curr_cell.mv_ptr)
                    return AVERROR_INVALIDDATA;

                ret = copy_cell(ctx, plane, &curr_cell);
                return ret;
            }
            break;
        case INTER_DATA:
            if (!curr_cell.tree) { /* MC tree INTER code */
                unsigned mv_idx;
                /* get motion vector index and setup the pointer to the mv set */
                if (!ctx->need_resync)
                    ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
                if (ctx->next_cell_data >= ctx->last_byte) {
                    av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
                    return AVERROR_INVALIDDATA;
                }
                mv_idx = *(ctx->next_cell_data++);
                if (mv_idx >= ctx->num_vectors) {
                    av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
                    return AVERROR_INVALIDDATA;
                }
                curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
                curr_cell.tree   = 1; /* enter the VQ tree */
                UPDATE_BITPOS(8);
            } else { /* VQ tree DATA code */
                if (!ctx->need_resync)
                    ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];

                CHECK_CELL
                bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
                                         ctx->next_cell_data, ctx->last_byte);
                if (bytes_used < 0)
                    return AVERROR_INVALIDDATA;

                UPDATE_BITPOS(bytes_used << 3);
                ctx->next_cell_data += bytes_used;
                return 0;
            }
            break;
        }
    }//while

    return AVERROR_INVALIDDATA;
}


static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
                        Plane *plane, const uint8_t *data, int32_t data_size,
                        int32_t strip_width)
{
    Cell            curr_cell;
    unsigned        num_vectors;

    /* each plane data starts with mc_vector_count field, */
    /* an optional array of motion vectors followed by the vq data */
    num_vectors = bytestream_get_le32(&data); data_size -= 4;
    if (num_vectors > 256) {
        av_log(ctx->avctx, AV_LOG_ERROR,
               "Read invalid number of motion vectors %d\n", num_vectors);
        return AVERROR_INVALIDDATA;
    }
    if (num_vectors * 2 > data_size)
        return AVERROR_INVALIDDATA;

    ctx->num_vectors = num_vectors;
    ctx->mc_vectors  = num_vectors ? data : 0;

    /* init the bitreader */
    init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
    ctx->skip_bits   = 0;
    ctx->need_resync = 0;

    ctx->last_byte = data + data_size;

    /* initialize the 1st cell and set its dimensions to whole plane */
    curr_cell.xpos   = curr_cell.ypos = 0;
    curr_cell.width  = plane->width  >> 2;
    curr_cell.height = plane->height >> 2;
    curr_cell.tree   = 0; // we are in the MC tree now
    curr_cell.mv_ptr = 0; // no motion vector = INTRA cell

    return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
}


#define OS_HDR_ID   MKBETAG('F', 'R', 'M', 'H')

static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
                                const uint8_t *buf, int buf_size)
{
    GetByteContext gb;
    const uint8_t   *bs_hdr;
    uint32_t        frame_num, word2, check_sum, data_size;
    int             y_offset, u_offset, v_offset;
    uint32_t        starts[3], ends[3];
    uint16_t        height, width;
    int             i, j;

    bytestream2_init(&gb, buf, buf_size);

    /* parse and check the OS header */
    frame_num = bytestream2_get_le32(&gb);
    word2     = bytestream2_get_le32(&gb);
    check_sum = bytestream2_get_le32(&gb);
    data_size = bytestream2_get_le32(&gb);

    if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
        av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
        return AVERROR_INVALIDDATA;
    }

    /* parse the bitstream header */
    bs_hdr = gb.buffer;

    if (bytestream2_get_le16(&gb) != 32) {
        av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
        return AVERROR_INVALIDDATA;
    }

    ctx->frame_num   =  frame_num;
    ctx->frame_flags =  bytestream2_get_le16(&gb);
    ctx->data_size   = (bytestream2_get_le32(&gb) + 7) >> 3;
    ctx->cb_offset   =  bytestream2_get_byte(&gb);

    if (ctx->data_size == 16)
        return 4;
    ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);

    bytestream2_skip(&gb, 3); // skip reserved byte and checksum

    /* check frame dimensions */
    height = bytestream2_get_le16(&gb);
    width  = bytestream2_get_le16(&gb);
    if (av_image_check_size(width, height, 0, avctx))
        return AVERROR_INVALIDDATA;

    if (width != ctx->width || height != ctx->height) {
        int res;

        ff_dlog(avctx, "Frame dimensions changed!\n");

        if (width  < 16 || width  > 640 ||
            height < 16 || height > 480 ||
            width  &  3 || height &   3) {
            av_log(avctx, AV_LOG_ERROR,
                   "Invalid picture dimensions: %d x %d!\n", width, height);
            return AVERROR_INVALIDDATA;
        }
        free_frame_buffers(ctx);
        if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
             return res;
        if ((res = ff_set_dimensions(avctx, width, height)) < 0)
            return res;
    }

    y_offset = bytestream2_get_le32(&gb);
    v_offset = bytestream2_get_le32(&gb);
    u_offset = bytestream2_get_le32(&gb);
    bytestream2_skip(&gb, 4);

    /* unfortunately there is no common order of planes in the buffer */
    /* so we use that sorting algo for determining planes data sizes  */
    starts[0] = y_offset;
    starts[1] = v_offset;
    starts[2] = u_offset;

    for (j = 0; j < 3; j++) {
        ends[j] = ctx->data_size;
        for (i = 2; i >= 0; i--)
            if (starts[i] < ends[j] && starts[i] > starts[j])
                ends[j] = starts[i];
    }

    ctx->y_data_size = ends[0] - starts[0];
    ctx->v_data_size = ends[1] - starts[1];
    ctx->u_data_size = ends[2] - starts[2];
    if (FFMIN3(y_offset, v_offset, u_offset) < 0 ||
        FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
        FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
        FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
        av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
        return AVERROR_INVALIDDATA;
    }

    ctx->y_data_ptr = bs_hdr + y_offset;
    ctx->v_data_ptr = bs_hdr + v_offset;
    ctx->u_data_ptr = bs_hdr + u_offset;
    ctx->alt_quant  = gb.buffer;

    if (ctx->data_size == 16) {
        av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
        return 16;
    }

    if (ctx->frame_flags & BS_8BIT_PEL) {
        avpriv_request_sample(avctx, "8-bit pixel format");
        return AVERROR_PATCHWELCOME;
    }

    if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
        avpriv_request_sample(avctx, "Halfpel motion vectors");
        return AVERROR_PATCHWELCOME;
    }

    return 0;
}


/**
 *  Convert and output the current plane.
 *  All pixel values will be upsampled by shifting right by one bit.
 *
 *  @param[in]  plane        pointer to the descriptor of the plane being processed
 *  @param[in]  buf_sel      indicates which frame buffer the input data stored in
 *  @param[out] dst          pointer to the buffer receiving converted pixels
 *  @param[in]  dst_pitch    pitch for moving to the next y line
 *  @param[in]  dst_height   output plane height
 */
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
                         ptrdiff_t dst_pitch, int dst_height)
{
    int             x,y;
    const uint8_t   *src  = plane->pixels[buf_sel];
    ptrdiff_t       pitch = plane->pitch;

    dst_height = FFMIN(dst_height, plane->height);
    for (y = 0; y < dst_height; y++) {
        /* convert four pixels at once using SWAR */
        for (x = 0; x < plane->width >> 2; x++) {
            AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
            src += 4;
            dst += 4;
        }

        for (x <<= 2; x < plane->width; x++)
            *dst++ = *src++ << 1;

        src += pitch     - plane->width;
        dst += dst_pitch - plane->width;
    }
}


static av_cold int decode_init(AVCodecContext *avctx)
{
    Indeo3DecodeContext *ctx = avctx->priv_data;

    ctx->avctx     = avctx;
    avctx->pix_fmt = AV_PIX_FMT_YUV410P;

    build_requant_tab();

    ff_hpeldsp_init(&ctx->hdsp, avctx->flags);

    return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
}


static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
                        AVPacket *avpkt)
{
    Indeo3DecodeContext *ctx = avctx->priv_data;
    const uint8_t *buf = avpkt->data;
    int buf_size       = avpkt->size;
    AVFrame *frame     = data;
    int res;

    res = decode_frame_headers(ctx, avctx, buf, buf_size);
    if (res < 0)
        return res;

    /* skip sync(null) frames */
    if (res) {
        // we have processed 16 bytes but no data was decoded
        *got_frame = 0;
        return buf_size;
    }

    /* skip droppable INTER frames if requested */
    if (ctx->frame_flags & BS_NONREF &&
       (avctx->skip_frame >= AVDISCARD_NONREF))
        return 0;

    /* skip INTER frames if requested */
    if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
        return 0;

    /* use BS_BUFFER flag for buffer switching */
    ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;

    if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
        return res;

    /* decode luma plane */
    if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
        return res;

    /* decode chroma planes */
    if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
        return res;

    if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
        return res;

    output_plane(&ctx->planes[0], ctx->buf_sel,
                 frame->data[0], frame->linesize[0],
                 avctx->height);
    output_plane(&ctx->planes[1], ctx->buf_sel,
                 frame->data[1], frame->linesize[1],
                 (avctx->height + 3) >> 2);
    output_plane(&ctx->planes[2], ctx->buf_sel,
                 frame->data[2], frame->linesize[2],
                 (avctx->height + 3) >> 2);

    *got_frame = 1;

    return buf_size;
}


static av_cold int decode_close(AVCodecContext *avctx)
{
    free_frame_buffers(avctx->priv_data);

    return 0;
}

AVCodec ff_indeo3_decoder = {
    .name           = "indeo3",
    .long_name      = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_INDEO3,
    .priv_data_size = sizeof(Indeo3DecodeContext),
    .init           = decode_init,
    .close          = decode_close,
    .decode         = decode_frame,
    .capabilities   = AV_CODEC_CAP_DR1,
};