opusenc.c 26 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
/*
 * Opus encoder
 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "opusenc.h"
#include "opus_pvq.h"
#include "opusenc_psy.h"
#include "opustab.h"

#include "libavutil/float_dsp.h"
#include "libavutil/opt.h"
#include "internal.h"
#include "bytestream.h"
#include "audio_frame_queue.h"

typedef struct OpusEncContext {
    AVClass *av_class;
    OpusEncOptions options;
    OpusPsyContext psyctx;
    AVCodecContext *avctx;
    AudioFrameQueue afq;
    AVFloatDSPContext *dsp;
    MDCT15Context *mdct[CELT_BLOCK_NB];
    CeltPVQ *pvq;
    struct FFBufQueue bufqueue;

    uint8_t enc_id[64];
    int enc_id_bits;

    OpusPacketInfo packet;

    int channels;

    CeltFrame *frame;
    OpusRangeCoder *rc;

    /* Actual energy the decoder will have */
    float last_quantized_energy[OPUS_MAX_CHANNELS][CELT_MAX_BANDS];

    DECLARE_ALIGNED(32, float, scratch)[2048];
} OpusEncContext;

static void opus_write_extradata(AVCodecContext *avctx)
{
    uint8_t *bs = avctx->extradata;

    bytestream_put_buffer(&bs, "OpusHead", 8);
    bytestream_put_byte  (&bs, 0x1);
    bytestream_put_byte  (&bs, avctx->channels);
    bytestream_put_le16  (&bs, avctx->initial_padding);
    bytestream_put_le32  (&bs, avctx->sample_rate);
    bytestream_put_le16  (&bs, 0x0);
    bytestream_put_byte  (&bs, 0x0); /* Default layout */
}

static int opus_gen_toc(OpusEncContext *s, uint8_t *toc, int *size, int *fsize_needed)
{
    int tmp = 0x0, extended_toc = 0;
    static const int toc_cfg[][OPUS_MODE_NB][OPUS_BANDWITH_NB] = {
        /*  Silk                    Hybrid                  Celt                    Layer     */
        /*  NB  MB  WB SWB  FB      NB  MB  WB SWB  FB      NB  MB  WB SWB  FB      Bandwidth */
        { {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 }, { 17,  0, 21, 25, 29 } }, /* 2.5 ms */
        { {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 }, { 18,  0, 22, 26, 30 } }, /*   5 ms */
        { {  1,  5,  9,  0,  0 }, {  0,  0,  0, 13, 15 }, { 19,  0, 23, 27, 31 } }, /*  10 ms */
        { {  2,  6, 10,  0,  0 }, {  0,  0,  0, 14, 16 }, { 20,  0, 24, 28, 32 } }, /*  20 ms */
        { {  3,  7, 11,  0,  0 }, {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 } }, /*  40 ms */
        { {  4,  8, 12,  0,  0 }, {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 } }, /*  60 ms */
    };
    int cfg = toc_cfg[s->packet.framesize][s->packet.mode][s->packet.bandwidth];
    *fsize_needed = 0;
    if (!cfg)
        return 1;
    if (s->packet.frames == 2) {                                       /* 2 packets */
        if (s->frame[0].framebits == s->frame[1].framebits) {          /* same size */
            tmp = 0x1;
        } else {                                                  /* different size */
            tmp = 0x2;
            *fsize_needed = 1;                     /* put frame sizes in the packet */
        }
    } else if (s->packet.frames > 2) {
        tmp = 0x3;
        extended_toc = 1;
    }
    tmp |= (s->channels > 1) << 2;                                /* Stereo or mono */
    tmp |= (cfg - 1)         << 3;                           /* codec configuration */
    *toc++ = tmp;
    if (extended_toc) {
        for (int i = 0; i < (s->packet.frames - 1); i++)
            *fsize_needed |= (s->frame[i].framebits != s->frame[i + 1].framebits);
        tmp = (*fsize_needed) << 7;                                /* vbr flag */
        tmp |= (0) << 6;                                       /* padding flag */
        tmp |= s->packet.frames;
        *toc++ = tmp;
    }
    *size = 1 + extended_toc;
    return 0;
}

static void celt_frame_setup_input(OpusEncContext *s, CeltFrame *f)
{
    AVFrame *cur = NULL;
    const int subframesize = s->avctx->frame_size;
    int subframes = OPUS_BLOCK_SIZE(s->packet.framesize) / subframesize;

    cur = ff_bufqueue_get(&s->bufqueue);

    for (int ch = 0; ch < f->channels; ch++) {
        CeltBlock *b = &f->block[ch];
        const void *input = cur->extended_data[ch];
        size_t bps = av_get_bytes_per_sample(cur->format);
        memcpy(b->overlap, input, bps*cur->nb_samples);
    }

    av_frame_free(&cur);

    for (int sf = 0; sf < subframes; sf++) {
        if (sf != (subframes - 1))
            cur = ff_bufqueue_get(&s->bufqueue);
        else
            cur = ff_bufqueue_peek(&s->bufqueue, 0);

        for (int ch = 0; ch < f->channels; ch++) {
            CeltBlock *b = &f->block[ch];
            const void *input = cur->extended_data[ch];
            const size_t bps  = av_get_bytes_per_sample(cur->format);
            const size_t left = (subframesize - cur->nb_samples)*bps;
            const size_t len  = FFMIN(subframesize, cur->nb_samples)*bps;
            memcpy(&b->samples[sf*subframesize], input, len);
            memset(&b->samples[cur->nb_samples], 0, left);
        }

        /* Last frame isn't popped off and freed yet - we need it for overlap */
        if (sf != (subframes - 1))
            av_frame_free(&cur);
    }
}

/* Apply the pre emphasis filter */
static void celt_apply_preemph_filter(OpusEncContext *s, CeltFrame *f)
{
    const int subframesize = s->avctx->frame_size;
    const int subframes = OPUS_BLOCK_SIZE(s->packet.framesize) / subframesize;

    /* Filter overlap */
    for (int ch = 0; ch < f->channels; ch++) {
        CeltBlock *b = &f->block[ch];
        float m = b->emph_coeff;
        for (int i = 0; i < CELT_OVERLAP; i++) {
            float sample = b->overlap[i];
            b->overlap[i] = sample - m;
            m = sample * CELT_EMPH_COEFF;
        }
        b->emph_coeff = m;
    }

    /* Filter the samples but do not update the last subframe's coeff - overlap ^^^ */
    for (int sf = 0; sf < subframes; sf++) {
        for (int ch = 0; ch < f->channels; ch++) {
            CeltBlock *b = &f->block[ch];
            float m = b->emph_coeff;
            for (int i = 0; i < subframesize; i++) {
                float sample = b->samples[sf*subframesize + i];
                b->samples[sf*subframesize + i] = sample - m;
                m = sample * CELT_EMPH_COEFF;
            }
            if (sf != (subframes - 1))
                b->emph_coeff = m;
        }
    }
}

/* Create the window and do the mdct */
static void celt_frame_mdct(OpusEncContext *s, CeltFrame *f)
{
    float *win = s->scratch, *temp = s->scratch + 1920;

    if (f->transient) {
        for (int ch = 0; ch < f->channels; ch++) {
            CeltBlock *b = &f->block[ch];
            float *src1 = b->overlap;
            for (int t = 0; t < f->blocks; t++) {
                float *src2 = &b->samples[CELT_OVERLAP*t];
                s->dsp->vector_fmul(win, src1, ff_celt_window, 128);
                s->dsp->vector_fmul_reverse(&win[CELT_OVERLAP], src2,
                                            ff_celt_window - 8, 128);
                src1 = src2;
                s->mdct[0]->mdct(s->mdct[0], b->coeffs + t, win, f->blocks);
            }
        }
    } else {
        int blk_len = OPUS_BLOCK_SIZE(f->size), wlen = OPUS_BLOCK_SIZE(f->size + 1);
        int rwin = blk_len - CELT_OVERLAP, lap_dst = (wlen - blk_len - CELT_OVERLAP) >> 1;
        memset(win, 0, wlen*sizeof(float));
        for (int ch = 0; ch < f->channels; ch++) {
            CeltBlock *b = &f->block[ch];

            /* Overlap */
            s->dsp->vector_fmul(temp, b->overlap, ff_celt_window, 128);
            memcpy(win + lap_dst, temp, CELT_OVERLAP*sizeof(float));

            /* Samples, flat top window */
            memcpy(&win[lap_dst + CELT_OVERLAP], b->samples, rwin*sizeof(float));

            /* Samples, windowed */
            s->dsp->vector_fmul_reverse(temp, b->samples + rwin,
                                        ff_celt_window - 8, 128);
            memcpy(win + lap_dst + blk_len, temp, CELT_OVERLAP*sizeof(float));

            s->mdct[f->size]->mdct(s->mdct[f->size], b->coeffs, win, 1);
        }
    }

    for (int ch = 0; ch < f->channels; ch++) {
        CeltBlock *block = &f->block[ch];
        for (int i = 0; i < CELT_MAX_BANDS; i++) {
            float ener = 0.0f;
            int band_offset = ff_celt_freq_bands[i] << f->size;
            int band_size   = ff_celt_freq_range[i] << f->size;
            float *coeffs   = &block->coeffs[band_offset];

            for (int j = 0; j < band_size; j++)
                ener += coeffs[j]*coeffs[j];

            block->lin_energy[i] = sqrtf(ener) + FLT_EPSILON;
            ener = 1.0f/block->lin_energy[i];

            for (int j = 0; j < band_size; j++)
                coeffs[j] *= ener;

            block->energy[i] = log2f(block->lin_energy[i]) - ff_celt_mean_energy[i];

            /* CELT_ENERGY_SILENCE is what the decoder uses and its not -infinity */
            block->energy[i] = FFMAX(block->energy[i], CELT_ENERGY_SILENCE);
        }
    }
}

static void celt_enc_tf(CeltFrame *f, OpusRangeCoder *rc)
{
    int tf_select = 0, diff = 0, tf_changed = 0, tf_select_needed;
    int bits = f->transient ? 2 : 4;

    tf_select_needed = ((f->size && (opus_rc_tell(rc) + bits + 1) <= f->framebits));

    for (int i = f->start_band; i < f->end_band; i++) {
        if ((opus_rc_tell(rc) + bits + tf_select_needed) <= f->framebits) {
            const int tbit = (diff ^ 1) == f->tf_change[i];
            ff_opus_rc_enc_log(rc, tbit, bits);
            diff ^= tbit;
            tf_changed |= diff;
        }
        bits = f->transient ? 4 : 5;
    }

    if (tf_select_needed && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
                            ff_celt_tf_select[f->size][f->transient][1][tf_changed]) {
        ff_opus_rc_enc_log(rc, f->tf_select, 1);
        tf_select = f->tf_select;
    }

    for (int i = f->start_band; i < f->end_band; i++)
        f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
}

static void celt_enc_quant_pfilter(OpusRangeCoder *rc, CeltFrame *f)
{
    float gain = f->pf_gain;
    int txval, octave = f->pf_octave, period = f->pf_period, tapset = f->pf_tapset;

    ff_opus_rc_enc_log(rc, f->pfilter, 1);
    if (!f->pfilter)
        return;

    /* Octave */
    txval = FFMIN(octave, 6);
    ff_opus_rc_enc_uint(rc, txval, 6);
    octave = txval;
    /* Period */
    txval = av_clip(period - (16 << octave) + 1, 0, (1 << (4 + octave)) - 1);
    ff_opus_rc_put_raw(rc, period, 4 + octave);
    period = txval + (16 << octave) - 1;
    /* Gain */
    txval = FFMIN(((int)(gain / 0.09375f)) - 1, 7);
    ff_opus_rc_put_raw(rc, txval, 3);
    gain   = 0.09375f * (txval + 1);
    /* Tapset */
    if ((opus_rc_tell(rc) + 2) <= f->framebits)
        ff_opus_rc_enc_cdf(rc, tapset, ff_celt_model_tapset);
    else
        tapset = 0;
    /* Finally create the coeffs */
    for (int i = 0; i < 2; i++) {
        CeltBlock *block = &f->block[i];

        block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
        block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0];
        block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1];
        block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2];
    }
}

static void exp_quant_coarse(OpusRangeCoder *rc, CeltFrame *f,
                             float last_energy[][CELT_MAX_BANDS], int intra)
{
    float alpha, beta, prev[2] = { 0, 0 };
    const uint8_t *pmod = ff_celt_coarse_energy_dist[f->size][intra];

    /* Inter is really just differential coding */
    if (opus_rc_tell(rc) + 3 <= f->framebits)
        ff_opus_rc_enc_log(rc, intra, 3);
    else
        intra = 0;

    if (intra) {
        alpha = 0.0f;
        beta  = 1.0f - (4915.0f/32768.0f);
    } else {
        alpha = ff_celt_alpha_coef[f->size];
        beta  = ff_celt_beta_coef[f->size];
    }

    for (int i = f->start_band; i < f->end_band; i++) {
        for (int ch = 0; ch < f->channels; ch++) {
            CeltBlock *block = &f->block[ch];
            const int left = f->framebits - opus_rc_tell(rc);
            const float last = FFMAX(-9.0f, last_energy[ch][i]);
            float diff = block->energy[i] - prev[ch] - last*alpha;
            int q_en = lrintf(diff);
            if (left >= 15) {
                ff_opus_rc_enc_laplace(rc, &q_en, pmod[i << 1] << 7, pmod[(i << 1) + 1] << 6);
            } else if (left >= 2) {
                q_en = av_clip(q_en, -1, 1);
                ff_opus_rc_enc_cdf(rc, 2*q_en + 3*(q_en < 0), ff_celt_model_energy_small);
            } else if (left >= 1) {
                q_en = av_clip(q_en, -1, 0);
                ff_opus_rc_enc_log(rc, (q_en & 1), 1);
            } else q_en = -1;

            block->error_energy[i] = q_en - diff;
            prev[ch] += beta * q_en;
        }
    }
}

static void celt_quant_coarse(CeltFrame *f, OpusRangeCoder *rc,
                              float last_energy[][CELT_MAX_BANDS])
{
    uint32_t inter, intra;
    OPUS_RC_CHECKPOINT_SPAWN(rc);

    exp_quant_coarse(rc, f, last_energy, 1);
    intra = OPUS_RC_CHECKPOINT_BITS(rc);

    OPUS_RC_CHECKPOINT_ROLLBACK(rc);

    exp_quant_coarse(rc, f, last_energy, 0);
    inter = OPUS_RC_CHECKPOINT_BITS(rc);

    if (inter > intra) { /* Unlikely */
        OPUS_RC_CHECKPOINT_ROLLBACK(rc);
        exp_quant_coarse(rc, f, last_energy, 1);
    }
}

static void celt_quant_fine(CeltFrame *f, OpusRangeCoder *rc)
{
    for (int i = f->start_band; i < f->end_band; i++) {
        if (!f->fine_bits[i])
            continue;
        for (int ch = 0; ch < f->channels; ch++) {
            CeltBlock *block = &f->block[ch];
            int quant, lim = (1 << f->fine_bits[i]);
            float offset, diff = 0.5f - block->error_energy[i];
            quant = av_clip(floor(diff*lim), 0, lim - 1);
            ff_opus_rc_put_raw(rc, quant, f->fine_bits[i]);
            offset = 0.5f - ((quant + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f);
            block->error_energy[i] -= offset;
        }
    }
}

static void celt_quant_final(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
{
    for (int priority = 0; priority < 2; priority++) {
        for (int i = f->start_band; i < f->end_band && (f->framebits - opus_rc_tell(rc)) >= f->channels; i++) {
            if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
                continue;
            for (int ch = 0; ch < f->channels; ch++) {
                CeltBlock *block = &f->block[ch];
                const float err = block->error_energy[i];
                const float offset = 0.5f * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
                const int sign = FFABS(err + offset) < FFABS(err - offset);
                ff_opus_rc_put_raw(rc, sign, 1);
                block->error_energy[i] -= offset*(1 - 2*sign);
            }
        }
    }
}

static void celt_encode_frame(OpusEncContext *s, OpusRangeCoder *rc,
                              CeltFrame *f, int index)
{
    ff_opus_rc_enc_init(rc);

    ff_opus_psy_celt_frame_init(&s->psyctx, f, index);

    celt_frame_setup_input(s, f);

    if (f->silence) {
        if (f->framebits >= 16)
            ff_opus_rc_enc_log(rc, 1, 15); /* Silence (if using explicit singalling) */
        for (int ch = 0; ch < s->channels; ch++)
            memset(s->last_quantized_energy[ch], 0.0f, sizeof(float)*CELT_MAX_BANDS);
        return;
    }

    /* Filters */
    celt_apply_preemph_filter(s, f);
    if (f->pfilter) {
        ff_opus_rc_enc_log(rc, 0, 15);
        celt_enc_quant_pfilter(rc, f);
    }

    /* Transform */
    celt_frame_mdct(s, f);

    /* Need to handle transient/non-transient switches at any point during analysis */
    while (ff_opus_psy_celt_frame_process(&s->psyctx, f, index))
        celt_frame_mdct(s, f);

    ff_opus_rc_enc_init(rc);

    /* Silence */
    ff_opus_rc_enc_log(rc, 0, 15);

    /* Pitch filter */
    if (!f->start_band && opus_rc_tell(rc) + 16 <= f->framebits)
        celt_enc_quant_pfilter(rc, f);

    /* Transient flag */
    if (f->size && opus_rc_tell(rc) + 3 <= f->framebits)
        ff_opus_rc_enc_log(rc, f->transient, 3);

    /* Main encoding */
    celt_quant_coarse  (f, rc, s->last_quantized_energy);
    celt_enc_tf        (f, rc);
    ff_celt_bitalloc   (f, rc, 1);
    celt_quant_fine    (f, rc);
    ff_celt_quant_bands(f, rc);

    /* Anticollapse bit */
    if (f->anticollapse_needed)
        ff_opus_rc_put_raw(rc, f->anticollapse, 1);

    /* Final per-band energy adjustments from leftover bits */
    celt_quant_final(s, rc, f);

    for (int ch = 0; ch < f->channels; ch++) {
        CeltBlock *block = &f->block[ch];
        for (int i = 0; i < CELT_MAX_BANDS; i++)
            s->last_quantized_energy[ch][i] = block->energy[i] + block->error_energy[i];
    }
}

static inline int write_opuslacing(uint8_t *dst, int v)
{
    dst[0] = FFMIN(v - FFALIGN(v - 255, 4), v);
    dst[1] = v - dst[0] >> 2;
    return 1 + (v >= 252);
}

static void opus_packet_assembler(OpusEncContext *s, AVPacket *avpkt)
{
    int offset, fsize_needed;

    /* Write toc */
    opus_gen_toc(s, avpkt->data, &offset, &fsize_needed);

    /* Frame sizes if needed */
    if (fsize_needed) {
        for (int i = 0; i < s->packet.frames - 1; i++) {
            offset += write_opuslacing(avpkt->data + offset,
                                       s->frame[i].framebits >> 3);
        }
    }

    /* Packets */
    for (int i = 0; i < s->packet.frames; i++) {
        ff_opus_rc_enc_end(&s->rc[i], avpkt->data + offset,
                           s->frame[i].framebits >> 3);
        offset += s->frame[i].framebits >> 3;
    }

    avpkt->size = offset;
}

/* Used as overlap for the first frame and padding for the last encoded packet */
static AVFrame *spawn_empty_frame(OpusEncContext *s)
{
    AVFrame *f = av_frame_alloc();
    if (!f)
        return NULL;
    f->format         = s->avctx->sample_fmt;
    f->nb_samples     = s->avctx->frame_size;
    f->channel_layout = s->avctx->channel_layout;
    if (av_frame_get_buffer(f, 4)) {
        av_frame_free(&f);
        return NULL;
    }
    for (int i = 0; i < s->channels; i++) {
        size_t bps = av_get_bytes_per_sample(f->format);
        memset(f->extended_data[i], 0, bps*f->nb_samples);
    }
    return f;
}

static int opus_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
                             const AVFrame *frame, int *got_packet_ptr)
{
    OpusEncContext *s = avctx->priv_data;
    int ret, frame_size, alloc_size = 0;

    if (frame) { /* Add new frame to queue */
        if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
            return ret;
        ff_bufqueue_add(avctx, &s->bufqueue, av_frame_clone(frame));
    } else {
        ff_opus_psy_signal_eof(&s->psyctx);
        if (!s->afq.remaining_samples || !avctx->frame_number)
            return 0; /* We've been flushed and there's nothing left to encode */
    }

    /* Run the psychoacoustic system */
    if (ff_opus_psy_process(&s->psyctx, &s->packet))
        return 0;

    frame_size = OPUS_BLOCK_SIZE(s->packet.framesize);

    if (!frame) {
        /* This can go negative, that's not a problem, we only pad if positive */
        int pad_empty = s->packet.frames*(frame_size/s->avctx->frame_size) - s->bufqueue.available + 1;
        /* Pad with empty 2.5 ms frames to whatever framesize was decided,
         * this should only happen at the very last flush frame. The frames
         * allocated here will be freed (because they have no other references)
         * after they get used by celt_frame_setup_input() */
        for (int i = 0; i < pad_empty; i++) {
            AVFrame *empty = spawn_empty_frame(s);
            if (!empty)
                return AVERROR(ENOMEM);
            ff_bufqueue_add(avctx, &s->bufqueue, empty);
        }
    }

    for (int i = 0; i < s->packet.frames; i++) {
        celt_encode_frame(s, &s->rc[i], &s->frame[i], i);
        alloc_size += s->frame[i].framebits >> 3;
    }

    /* Worst case toc + the frame lengths if needed */
    alloc_size += 2 + s->packet.frames*2;

    if ((ret = ff_alloc_packet2(avctx, avpkt, alloc_size, 0)) < 0)
        return ret;

    /* Assemble packet */
    opus_packet_assembler(s, avpkt);

    /* Update the psychoacoustic system */
    ff_opus_psy_postencode_update(&s->psyctx, s->frame, s->rc);

    /* Remove samples from queue and skip if needed */
    ff_af_queue_remove(&s->afq, s->packet.frames*frame_size, &avpkt->pts, &avpkt->duration);
    if (s->packet.frames*frame_size > avpkt->duration) {
        uint8_t *side = av_packet_new_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, 10);
        if (!side)
            return AVERROR(ENOMEM);
        AV_WL32(&side[4], s->packet.frames*frame_size - avpkt->duration + 120);
    }

    *got_packet_ptr = 1;

    return 0;
}

static av_cold int opus_encode_end(AVCodecContext *avctx)
{
    OpusEncContext *s = avctx->priv_data;

    for (int i = 0; i < CELT_BLOCK_NB; i++)
        ff_mdct15_uninit(&s->mdct[i]);

    ff_celt_pvq_uninit(&s->pvq);
    av_freep(&s->dsp);
    av_freep(&s->frame);
    av_freep(&s->rc);
    ff_af_queue_close(&s->afq);
    ff_opus_psy_end(&s->psyctx);
    ff_bufqueue_discard_all(&s->bufqueue);
    av_freep(&avctx->extradata);

    return 0;
}

static av_cold int opus_encode_init(AVCodecContext *avctx)
{
    int ret, max_frames;
    OpusEncContext *s = avctx->priv_data;

    s->avctx = avctx;
    s->channels = avctx->channels;

    /* Opus allows us to change the framesize on each packet (and each packet may
     * have multiple frames in it) but we can't change the codec's frame size on
     * runtime, so fix it to the lowest possible number of samples and use a queue
     * to accumulate AVFrames until we have enough to encode whatever the encoder
     * decides is the best */
    avctx->frame_size = 120;
    /* Initial padding will change if SILK is ever supported */
    avctx->initial_padding = 120;

    if (!avctx->bit_rate) {
        int coupled = ff_opus_default_coupled_streams[s->channels - 1];
        avctx->bit_rate = coupled*(96000) + (s->channels - coupled*2)*(48000);
    } else if (avctx->bit_rate < 6000 || avctx->bit_rate > 255000 * s->channels) {
        int64_t clipped_rate = av_clip(avctx->bit_rate, 6000, 255000 * s->channels);
        av_log(avctx, AV_LOG_ERROR, "Unsupported bitrate %"PRId64" kbps, clipping to %"PRId64" kbps\n",
               avctx->bit_rate/1000, clipped_rate/1000);
        avctx->bit_rate = clipped_rate;
    }

    /* Extradata */
    avctx->extradata_size = 19;
    avctx->extradata = av_malloc(avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
    if (!avctx->extradata)
        return AVERROR(ENOMEM);
    opus_write_extradata(avctx);

    ff_af_queue_init(avctx, &s->afq);

    if ((ret = ff_celt_pvq_init(&s->pvq, 1)) < 0)
        return ret;

    if (!(s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT)))
        return AVERROR(ENOMEM);

    /* I have no idea why a base scaling factor of 68 works, could be the twiddles */
    for (int i = 0; i < CELT_BLOCK_NB; i++)
        if ((ret = ff_mdct15_init(&s->mdct[i], 0, i + 3, 68 << (CELT_BLOCK_NB - 1 - i))))
            return AVERROR(ENOMEM);

    /* Zero out previous energy (matters for inter first frame) */
    for (int ch = 0; ch < s->channels; ch++)
        memset(s->last_quantized_energy[ch], 0.0f, sizeof(float)*CELT_MAX_BANDS);

    /* Allocate an empty frame to use as overlap for the first frame of audio */
    ff_bufqueue_add(avctx, &s->bufqueue, spawn_empty_frame(s));
    if (!ff_bufqueue_peek(&s->bufqueue, 0))
        return AVERROR(ENOMEM);

    if ((ret = ff_opus_psy_init(&s->psyctx, s->avctx, &s->bufqueue, &s->options)))
        return ret;

    /* Frame structs and range coder buffers */
    max_frames = ceilf(FFMIN(s->options.max_delay_ms, 120.0f)/2.5f);
    s->frame = av_malloc(max_frames*sizeof(CeltFrame));
    if (!s->frame)
        return AVERROR(ENOMEM);
    s->rc = av_malloc(max_frames*sizeof(OpusRangeCoder));
    if (!s->rc)
        return AVERROR(ENOMEM);

    for (int i = 0; i < max_frames; i++) {
        s->frame[i].dsp = s->dsp;
        s->frame[i].avctx = s->avctx;
        s->frame[i].seed = 0;
        s->frame[i].pvq = s->pvq;
        s->frame[i].apply_phase_inv = 1;
        s->frame[i].block[0].emph_coeff = s->frame[i].block[1].emph_coeff = 0.0f;
    }

    return 0;
}

#define OPUSENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
static const AVOption opusenc_options[] = {
    { "opus_delay", "Maximum delay in milliseconds", offsetof(OpusEncContext, options.max_delay_ms), AV_OPT_TYPE_FLOAT, { .dbl = OPUS_MAX_LOOKAHEAD }, 2.5f, OPUS_MAX_LOOKAHEAD, OPUSENC_FLAGS, "max_delay_ms" },
    { NULL },
};

static const AVClass opusenc_class = {
    .class_name = "Opus encoder",
    .item_name  = av_default_item_name,
    .option     = opusenc_options,
    .version    = LIBAVUTIL_VERSION_INT,
};

static const AVCodecDefault opusenc_defaults[] = {
    { "b", "0" },
    { "compression_level", "10" },
    { NULL },
};

AVCodec ff_opus_encoder = {
    .name           = "opus",
    .long_name      = NULL_IF_CONFIG_SMALL("Opus"),
    .type           = AVMEDIA_TYPE_AUDIO,
    .id             = AV_CODEC_ID_OPUS,
    .defaults       = opusenc_defaults,
    .priv_class     = &opusenc_class,
    .priv_data_size = sizeof(OpusEncContext),
    .init           = opus_encode_init,
    .encode2        = opus_encode_frame,
    .close          = opus_encode_end,
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
    .capabilities   = AV_CODEC_CAP_EXPERIMENTAL | AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY,
    .supported_samplerates = (const int []){ 48000, 0 },
    .channel_layouts = (const uint64_t []){ AV_CH_LAYOUT_MONO,
                                            AV_CH_LAYOUT_STEREO, 0 },
    .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
                                                     AV_SAMPLE_FMT_NONE },
};