af_afir.c 27.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
/*
 * Copyright (c) 2017 Paul B Mahol
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * An arbitrary audio FIR filter
 */

#include <float.h>

#include "libavutil/common.h"
#include "libavutil/float_dsp.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/opt.h"
#include "libavutil/xga_font_data.h"
#include "libavcodec/avfft.h"

#include "audio.h"
#include "avfilter.h"
#include "filters.h"
#include "formats.h"
#include "internal.h"
#include "af_afir.h"

static void fcmul_add_c(float *sum, const float *t, const float *c, ptrdiff_t len)
{
    int n;

    for (n = 0; n < len; n++) {
        const float cre = c[2 * n    ];
        const float cim = c[2 * n + 1];
        const float tre = t[2 * n    ];
        const float tim = t[2 * n + 1];

        sum[2 * n    ] += tre * cre - tim * cim;
        sum[2 * n + 1] += tre * cim + tim * cre;
    }

    sum[2 * n] += t[2 * n] * c[2 * n];
}

static int fir_quantum(AVFilterContext *ctx, AVFrame *out, int ch, int offset)
{
    AudioFIRContext *s = ctx->priv;
    const float *in = (const float *)s->in[0]->extended_data[ch] + offset;
    float *block, *buf, *ptr = (float *)out->extended_data[ch] + offset;
    const int nb_samples = FFMIN(s->min_part_size, out->nb_samples - offset);
    int n, i, j;

    for (int segment = 0; segment < s->nb_segments; segment++) {
        AudioFIRSegment *seg = &s->seg[segment];
        float *src = (float *)seg->input->extended_data[ch];
        float *dst = (float *)seg->output->extended_data[ch];
        float *sum = (float *)seg->sum->extended_data[ch];

        s->fdsp->vector_fmul_scalar(src + seg->input_offset, in, s->dry_gain, FFALIGN(nb_samples, 4));
        emms_c();

        seg->output_offset[ch] += s->min_part_size;
        if (seg->output_offset[ch] == seg->part_size) {
            seg->output_offset[ch] = 0;
        } else {
            memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));

            dst += seg->output_offset[ch];
            for (n = 0; n < nb_samples; n++) {
                ptr[n] += dst[n];
            }
            continue;
        }

        memset(sum, 0, sizeof(*sum) * seg->fft_length);
        block = (float *)seg->block->extended_data[ch] + seg->part_index[ch] * seg->block_size;
        memset(block + seg->part_size, 0, sizeof(*block) * (seg->fft_length - seg->part_size));

        memcpy(block, src, sizeof(*src) * seg->part_size);

        av_rdft_calc(seg->rdft[ch], block);
        block[2 * seg->part_size] = block[1];
        block[1] = 0;

        j = seg->part_index[ch];

        for (i = 0; i < seg->nb_partitions; i++) {
            const int coffset = j * seg->coeff_size;
            const float *block = (const float *)seg->block->extended_data[ch] + i * seg->block_size;
            const FFTComplex *coeff = (const FFTComplex *)seg->coeff->extended_data[ch * !s->one2many] + coffset;

            s->afirdsp.fcmul_add(sum, block, (const float *)coeff, seg->part_size);

            if (j == 0)
                j = seg->nb_partitions;
            j--;
        }

        sum[1] = sum[2 * seg->part_size];
        av_rdft_calc(seg->irdft[ch], sum);

        buf = (float *)seg->buffer->extended_data[ch];
        for (n = 0; n < seg->part_size; n++) {
            buf[n] += sum[n];
        }

        memcpy(dst, buf, seg->part_size * sizeof(*dst));

        buf = (float *)seg->buffer->extended_data[ch];
        memcpy(buf, sum + seg->part_size, seg->part_size * sizeof(*buf));

        seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions;

        memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));

        for (n = 0; n < nb_samples; n++) {
            ptr[n] += dst[n];
        }
    }

    s->fdsp->vector_fmul_scalar(ptr, ptr, s->wet_gain, FFALIGN(nb_samples, 4));
    emms_c();

    return 0;
}

static int fir_channel(AVFilterContext *ctx, AVFrame *out, int ch)
{
    AudioFIRContext *s = ctx->priv;

    for (int offset = 0; offset < out->nb_samples; offset += s->min_part_size) {
        fir_quantum(ctx, out, ch, offset);
    }

    return 0;
}

static int fir_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
    AVFrame *out = arg;
    const int start = (out->channels * jobnr) / nb_jobs;
    const int end = (out->channels * (jobnr+1)) / nb_jobs;

    for (int ch = start; ch < end; ch++) {
        fir_channel(ctx, out, ch);
    }

    return 0;
}

static int fir_frame(AudioFIRContext *s, AVFrame *in, AVFilterLink *outlink)
{
    AVFilterContext *ctx = outlink->src;
    AVFrame *out = NULL;

    out = ff_get_audio_buffer(outlink, in->nb_samples);
    if (!out) {
        av_frame_free(&in);
        return AVERROR(ENOMEM);
    }

    if (s->pts == AV_NOPTS_VALUE)
        s->pts = in->pts;
    s->in[0] = in;
    ctx->internal->execute(ctx, fir_channels, out, NULL, FFMIN(outlink->channels,
                                                               ff_filter_get_nb_threads(ctx)));

    out->pts = s->pts;
    if (s->pts != AV_NOPTS_VALUE)
        s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base);

    av_frame_free(&in);
    s->in[0] = NULL;

    return ff_filter_frame(outlink, out);
}

static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color)
{
    const uint8_t *font;
    int font_height;
    int i;

    font = avpriv_cga_font, font_height = 8;

    for (i = 0; txt[i]; i++) {
        int char_y, mask;

        uint8_t *p = pic->data[0] + y * pic->linesize[0] + (x + i * 8) * 4;
        for (char_y = 0; char_y < font_height; char_y++) {
            for (mask = 0x80; mask; mask >>= 1) {
                if (font[txt[i] * font_height + char_y] & mask)
                    AV_WL32(p, color);
                p += 4;
            }
            p += pic->linesize[0] - 8 * 4;
        }
    }
}

static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color)
{
    int dx = FFABS(x1-x0);
    int dy = FFABS(y1-y0), sy = y0 < y1 ? 1 : -1;
    int err = (dx>dy ? dx : -dy) / 2, e2;

    for (;;) {
        AV_WL32(out->data[0] + y0 * out->linesize[0] + x0 * 4, color);

        if (x0 == x1 && y0 == y1)
            break;

        e2 = err;

        if (e2 >-dx) {
            err -= dy;
            x0--;
        }

        if (e2 < dy) {
            err += dx;
            y0 += sy;
        }
    }
}

static void draw_response(AVFilterContext *ctx, AVFrame *out)
{
    AudioFIRContext *s = ctx->priv;
    float *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN;
    float min_delay = FLT_MAX, max_delay = FLT_MIN;
    int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
    char text[32];
    int channel, i, x;

    memset(out->data[0], 0, s->h * out->linesize[0]);

    phase = av_malloc_array(s->w, sizeof(*phase));
    mag = av_malloc_array(s->w, sizeof(*mag));
    delay = av_malloc_array(s->w, sizeof(*delay));
    if (!mag || !phase || !delay)
        goto end;

    channel = av_clip(s->ir_channel, 0, s->in[1]->channels - 1);
    for (i = 0; i < s->w; i++) {
        const float *src = (const float *)s->in[1]->extended_data[channel];
        double w = i * M_PI / (s->w - 1);
        double div, real_num = 0., imag_num = 0., real = 0., imag = 0.;

        for (x = 0; x < s->nb_taps; x++) {
            real += cos(-x * w) * src[x];
            imag += sin(-x * w) * src[x];
            real_num += cos(-x * w) * src[x] * x;
            imag_num += sin(-x * w) * src[x] * x;
        }

        mag[i] = hypot(real, imag);
        phase[i] = atan2(imag, real);
        div = real * real + imag * imag;
        delay[i] = (real_num * real + imag_num * imag) / div;
        min = fminf(min, mag[i]);
        max = fmaxf(max, mag[i]);
        min_delay = fminf(min_delay, delay[i]);
        max_delay = fmaxf(max_delay, delay[i]);
    }

    for (i = 0; i < s->w; i++) {
        int ymag = mag[i] / max * (s->h - 1);
        int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1);
        int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1);

        ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1);
        yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1);
        ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1);

        if (prev_ymag < 0)
            prev_ymag = ymag;
        if (prev_yphase < 0)
            prev_yphase = yphase;
        if (prev_ydelay < 0)
            prev_ydelay = ydelay;

        draw_line(out, i,   ymag, FFMAX(i - 1, 0),   prev_ymag, 0xFFFF00FF);
        draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
        draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF);

        prev_ymag   = ymag;
        prev_yphase = yphase;
        prev_ydelay = ydelay;
    }

    if (s->w > 400 && s->h > 100) {
        drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD);
        snprintf(text, sizeof(text), "%.2f", max);
        drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);

        drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD);
        snprintf(text, sizeof(text), "%.2f", min);
        drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);

        drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD);
        snprintf(text, sizeof(text), "%.2f", max_delay);
        drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD);

        drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD);
        snprintf(text, sizeof(text), "%.2f", min_delay);
        drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD);
    }

end:
    av_free(delay);
    av_free(phase);
    av_free(mag);
}

static int init_segment(AVFilterContext *ctx, AudioFIRSegment *seg,
                        int offset, int nb_partitions, int part_size)
{
    AudioFIRContext *s = ctx->priv;

    seg->rdft  = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->rdft));
    seg->irdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->irdft));
    if (!seg->rdft || !seg->irdft)
        return AVERROR(ENOMEM);

    seg->fft_length    = part_size * 2 + 1;
    seg->part_size     = part_size;
    seg->block_size    = FFALIGN(seg->fft_length, 32);
    seg->coeff_size    = FFALIGN(seg->part_size + 1, 32);
    seg->nb_partitions = nb_partitions;
    seg->input_size    = offset + s->min_part_size;
    seg->input_offset  = offset;

    seg->part_index    = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->part_index));
    seg->output_offset = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->output_offset));
    if (!seg->part_index || !seg->output_offset)
        return AVERROR(ENOMEM);

    for (int ch = 0; ch < ctx->inputs[0]->channels; ch++) {
        seg->rdft[ch]  = av_rdft_init(av_log2(2 * part_size), DFT_R2C);
        seg->irdft[ch] = av_rdft_init(av_log2(2 * part_size), IDFT_C2R);
        if (!seg->rdft[ch] || !seg->irdft[ch])
            return AVERROR(ENOMEM);
    }

    seg->sum    = ff_get_audio_buffer(ctx->inputs[0], seg->fft_length);
    seg->block  = ff_get_audio_buffer(ctx->inputs[0], seg->nb_partitions * seg->block_size);
    seg->buffer = ff_get_audio_buffer(ctx->inputs[0], seg->part_size);
    seg->coeff  = ff_get_audio_buffer(ctx->inputs[1], seg->nb_partitions * seg->coeff_size * 2);
    seg->input  = ff_get_audio_buffer(ctx->inputs[0], seg->input_size);
    seg->output = ff_get_audio_buffer(ctx->inputs[0], seg->part_size);
    if (!seg->buffer || !seg->sum || !seg->block || !seg->coeff || !seg->input || !seg->output)
        return AVERROR(ENOMEM);

    return 0;
}

static int convert_coeffs(AVFilterContext *ctx)
{
    AudioFIRContext *s = ctx->priv;
    int left, offset = 0, part_size, max_part_size;
    int ret, i, ch, n;
    float power = 0;

    s->nb_taps = ff_inlink_queued_samples(ctx->inputs[1]);
    if (s->nb_taps <= 0)
        return AVERROR(EINVAL);

    if (s->minp > s->maxp) {
        s->maxp = s->minp;
    }

    left = s->nb_taps;
    part_size = 1 << av_log2(s->minp);
    max_part_size = 1 << av_log2(s->maxp);

    s->min_part_size = part_size;

    for (i = 0; left > 0; i++) {
        int step = part_size == max_part_size ? INT_MAX : 1 + (i == 0);
        int nb_partitions = FFMIN(step, (left + part_size - 1) / part_size);

        s->nb_segments = i + 1;
        ret = init_segment(ctx, &s->seg[i], offset, nb_partitions, part_size);
        if (ret < 0)
            return ret;
        offset += nb_partitions * part_size;
        left -= nb_partitions * part_size;
        part_size *= 2;
        part_size = FFMIN(part_size, max_part_size);
    }

    ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_taps, s->nb_taps, &s->in[1]);
    if (ret < 0)
        return ret;
    if (ret == 0)
        return AVERROR_BUG;

    if (s->response)
        draw_response(ctx, s->video);

    s->gain = 1;

    switch (s->gtype) {
    case -1:
        /* nothing to do */
        break;
    case 0:
        for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
            float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];

            for (i = 0; i < s->nb_taps; i++)
                power += FFABS(time[i]);
        }
        s->gain = ctx->inputs[1]->channels / power;
        break;
    case 1:
        for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
            float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];

            for (i = 0; i < s->nb_taps; i++)
                power += time[i];
        }
        s->gain = ctx->inputs[1]->channels / power;
        break;
    case 2:
        for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
            float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];

            for (i = 0; i < s->nb_taps; i++)
                power += time[i] * time[i];
        }
        s->gain = sqrtf(ch / power);
        break;
    default:
        return AVERROR_BUG;
    }

    s->gain = FFMIN(s->gain * s->ir_gain, 1.f);
    av_log(ctx, AV_LOG_DEBUG, "power %f, gain %f\n", power, s->gain);
    for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
        float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];

        s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(s->nb_taps, 4));
    }

    av_log(ctx, AV_LOG_DEBUG, "nb_taps: %d\n", s->nb_taps);
    av_log(ctx, AV_LOG_DEBUG, "nb_segments: %d\n", s->nb_segments);

    for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
        float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
        int toffset = 0;

        for (i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++)
            time[i] = 0;

        av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch);

        for (int segment = 0; segment < s->nb_segments; segment++) {
            AudioFIRSegment *seg = &s->seg[segment];
            float *block = (float *)seg->block->extended_data[ch];
            FFTComplex *coeff = (FFTComplex *)seg->coeff->extended_data[ch];

            av_log(ctx, AV_LOG_DEBUG, "segment: %d\n", segment);

            for (i = 0; i < seg->nb_partitions; i++) {
                const float scale = 1.f / seg->part_size;
                const int coffset = i * seg->coeff_size;
                const int remaining = s->nb_taps - toffset;
                const int size = remaining >= seg->part_size ? seg->part_size : remaining;

                memset(block, 0, sizeof(*block) * seg->fft_length);
                memcpy(block, time + toffset, size * sizeof(*block));

                av_rdft_calc(seg->rdft[0], block);

                coeff[coffset].re = block[0] * scale;
                coeff[coffset].im = 0;
                for (n = 1; n < seg->part_size; n++) {
                    coeff[coffset + n].re = block[2 * n] * scale;
                    coeff[coffset + n].im = block[2 * n + 1] * scale;
                }
                coeff[coffset + seg->part_size].re = block[1] * scale;
                coeff[coffset + seg->part_size].im = 0;

                toffset += size;
            }

            av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions);
            av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size);
            av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size);
            av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length);
            av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size);
            av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size);
            av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset);
        }
    }

    av_frame_free(&s->in[1]);
    s->have_coeffs = 1;

    return 0;
}

static int check_ir(AVFilterLink *link, AVFrame *frame)
{
    AVFilterContext *ctx = link->dst;
    AudioFIRContext *s = ctx->priv;
    int nb_taps, max_nb_taps;

    nb_taps = ff_inlink_queued_samples(link);
    max_nb_taps = s->max_ir_len * ctx->outputs[0]->sample_rate;
    if (nb_taps > max_nb_taps) {
        av_log(ctx, AV_LOG_ERROR, "Too big number of coefficients: %d > %d.\n", nb_taps, max_nb_taps);
        return AVERROR(EINVAL);
    }

    return 0;
}

static int activate(AVFilterContext *ctx)
{
    AudioFIRContext *s = ctx->priv;
    AVFilterLink *outlink = ctx->outputs[0];
    int ret, status, available, wanted;
    AVFrame *in = NULL;
    int64_t pts;

    FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
    if (s->response)
        FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[1], ctx);
    if (!s->eof_coeffs) {
        AVFrame *ir = NULL;

        ret = check_ir(ctx->inputs[1], ir);
        if (ret < 0)
            return ret;

        if (ff_outlink_get_status(ctx->inputs[1]) == AVERROR_EOF)
            s->eof_coeffs = 1;

        if (!s->eof_coeffs) {
            if (ff_outlink_frame_wanted(ctx->outputs[0]))
                ff_inlink_request_frame(ctx->inputs[1]);
            else if (s->response && ff_outlink_frame_wanted(ctx->outputs[1]))
                ff_inlink_request_frame(ctx->inputs[1]);
            return 0;
        }
    }

    if (!s->have_coeffs && s->eof_coeffs) {
        ret = convert_coeffs(ctx);
        if (ret < 0)
            return ret;
    }

    available = ff_inlink_queued_samples(ctx->inputs[0]);
    wanted = FFMAX(s->min_part_size, (available / s->min_part_size) * s->min_part_size);
    ret = ff_inlink_consume_samples(ctx->inputs[0], wanted, wanted, &in);
    if (ret > 0)
        ret = fir_frame(s, in, outlink);

    if (ret < 0)
        return ret;

    if (s->response && s->have_coeffs) {
        int64_t old_pts = s->video->pts;
        int64_t new_pts = av_rescale_q(s->pts, ctx->inputs[0]->time_base, ctx->outputs[1]->time_base);

        if (ff_outlink_frame_wanted(ctx->outputs[1]) && old_pts < new_pts) {
            s->video->pts = new_pts;
            return ff_filter_frame(ctx->outputs[1], av_frame_clone(s->video));
        }
    }

    if (ff_inlink_queued_samples(ctx->inputs[0]) >= s->min_part_size) {
        ff_filter_set_ready(ctx, 10);
        return 0;
    }

    if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) {
        if (status == AVERROR_EOF) {
            ff_outlink_set_status(ctx->outputs[0], status, pts);
            if (s->response)
                ff_outlink_set_status(ctx->outputs[1], status, pts);
            return 0;
        }
    }

    if (ff_outlink_frame_wanted(ctx->outputs[0]) &&
        !ff_outlink_get_status(ctx->inputs[0])) {
        ff_inlink_request_frame(ctx->inputs[0]);
        return 0;
    }

    if (s->response &&
        ff_outlink_frame_wanted(ctx->outputs[1]) &&
        !ff_outlink_get_status(ctx->inputs[0])) {
        ff_inlink_request_frame(ctx->inputs[0]);
        return 0;
    }

    return FFERROR_NOT_READY;
}

static int query_formats(AVFilterContext *ctx)
{
    AudioFIRContext *s = ctx->priv;
    AVFilterFormats *formats;
    AVFilterChannelLayouts *layouts;
    static const enum AVSampleFormat sample_fmts[] = {
        AV_SAMPLE_FMT_FLTP,
        AV_SAMPLE_FMT_NONE
    };
    static const enum AVPixelFormat pix_fmts[] = {
        AV_PIX_FMT_RGB0,
        AV_PIX_FMT_NONE
    };
    int ret;

    if (s->response) {
        AVFilterLink *videolink = ctx->outputs[1];
        formats = ff_make_format_list(pix_fmts);
        if ((ret = ff_formats_ref(formats, &videolink->in_formats)) < 0)
            return ret;
    }

    layouts = ff_all_channel_counts();
    if (!layouts)
        return AVERROR(ENOMEM);

    if (s->ir_format) {
        ret = ff_set_common_channel_layouts(ctx, layouts);
        if (ret < 0)
            return ret;
    } else {
        AVFilterChannelLayouts *mono = NULL;

        ret = ff_add_channel_layout(&mono, AV_CH_LAYOUT_MONO);
        if (ret)
            return ret;

        if ((ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts)) < 0)
            return ret;
        if ((ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts)) < 0)
            return ret;
        if ((ret = ff_channel_layouts_ref(mono, &ctx->inputs[1]->out_channel_layouts)) < 0)
            return ret;
    }

    formats = ff_make_format_list(sample_fmts);
    if ((ret = ff_set_common_formats(ctx, formats)) < 0)
        return ret;

    formats = ff_all_samplerates();
    return ff_set_common_samplerates(ctx, formats);
}

static int config_output(AVFilterLink *outlink)
{
    AVFilterContext *ctx = outlink->src;
    AudioFIRContext *s = ctx->priv;

    s->one2many = ctx->inputs[1]->channels == 1;
    outlink->sample_rate = ctx->inputs[0]->sample_rate;
    outlink->time_base   = ctx->inputs[0]->time_base;
    outlink->channel_layout = ctx->inputs[0]->channel_layout;
    outlink->channels = ctx->inputs[0]->channels;

    s->nb_channels = outlink->channels;
    s->nb_coef_channels = ctx->inputs[1]->channels;
    s->pts = AV_NOPTS_VALUE;

    return 0;
}

static void uninit_segment(AVFilterContext *ctx, AudioFIRSegment *seg)
{
    AudioFIRContext *s = ctx->priv;

    if (seg->rdft) {
        for (int ch = 0; ch < s->nb_channels; ch++) {
            av_rdft_end(seg->rdft[ch]);
        }
    }
    av_freep(&seg->rdft);

    if (seg->irdft) {
        for (int ch = 0; ch < s->nb_channels; ch++) {
            av_rdft_end(seg->irdft[ch]);
        }
    }
    av_freep(&seg->irdft);

    av_freep(&seg->output_offset);
    av_freep(&seg->part_index);

    av_frame_free(&seg->block);
    av_frame_free(&seg->sum);
    av_frame_free(&seg->buffer);
    av_frame_free(&seg->coeff);
    av_frame_free(&seg->input);
    av_frame_free(&seg->output);
    seg->input_size = 0;
}

static av_cold void uninit(AVFilterContext *ctx)
{
    AudioFIRContext *s = ctx->priv;

    for (int i = 0; i < s->nb_segments; i++) {
        uninit_segment(ctx, &s->seg[i]);
    }

    av_freep(&s->fdsp);
    av_frame_free(&s->in[1]);

    for (int i = 0; i < ctx->nb_outputs; i++)
        av_freep(&ctx->output_pads[i].name);
    av_frame_free(&s->video);
}

static int config_video(AVFilterLink *outlink)
{
    AVFilterContext *ctx = outlink->src;
    AudioFIRContext *s = ctx->priv;

    outlink->sample_aspect_ratio = (AVRational){1,1};
    outlink->w = s->w;
    outlink->h = s->h;
    outlink->frame_rate = s->frame_rate;
    outlink->time_base = av_inv_q(outlink->frame_rate);

    av_frame_free(&s->video);
    s->video = ff_get_video_buffer(outlink, outlink->w, outlink->h);
    if (!s->video)
        return AVERROR(ENOMEM);

    return 0;
}

void ff_afir_init(AudioFIRDSPContext *dsp)
{
    dsp->fcmul_add = fcmul_add_c;

    if (ARCH_X86)
        ff_afir_init_x86(dsp);
}

static av_cold int init(AVFilterContext *ctx)
{
    AudioFIRContext *s = ctx->priv;
    AVFilterPad pad, vpad;
    int ret;

    pad = (AVFilterPad){
        .name          = av_strdup("default"),
        .type          = AVMEDIA_TYPE_AUDIO,
        .config_props  = config_output,
    };

    if (!pad.name)
        return AVERROR(ENOMEM);

    if (s->response) {
        vpad = (AVFilterPad){
            .name         = av_strdup("filter_response"),
            .type         = AVMEDIA_TYPE_VIDEO,
            .config_props = config_video,
        };
        if (!vpad.name)
            return AVERROR(ENOMEM);
    }

    ret = ff_insert_outpad(ctx, 0, &pad);
    if (ret < 0) {
        av_freep(&pad.name);
        return ret;
    }

    if (s->response) {
        ret = ff_insert_outpad(ctx, 1, &vpad);
        if (ret < 0) {
            av_freep(&vpad.name);
            return ret;
        }
    }

    s->fdsp = avpriv_float_dsp_alloc(0);
    if (!s->fdsp)
        return AVERROR(ENOMEM);

    ff_afir_init(&s->afirdsp);

    return 0;
}

static const AVFilterPad afir_inputs[] = {
    {
        .name = "main",
        .type = AVMEDIA_TYPE_AUDIO,
    },{
        .name = "ir",
        .type = AVMEDIA_TYPE_AUDIO,
    },
    { NULL }
};

#define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define OFFSET(x) offsetof(AudioFIRContext, x)

static const AVOption afir_options[] = {
    { "dry",    "set dry gain",      OFFSET(dry_gain),   AV_OPT_TYPE_FLOAT, {.dbl=1},    0, 10, AF },
    { "wet",    "set wet gain",      OFFSET(wet_gain),   AV_OPT_TYPE_FLOAT, {.dbl=1},    0, 10, AF },
    { "length", "set IR length",     OFFSET(length),     AV_OPT_TYPE_FLOAT, {.dbl=1},    0,  1, AF },
    { "gtype",  "set IR auto gain type",OFFSET(gtype),   AV_OPT_TYPE_INT,   {.i64=0},   -1,  2, AF, "gtype" },
    {  "none",  "without auto gain", 0,                  AV_OPT_TYPE_CONST, {.i64=-1},   0,  0, AF, "gtype" },
    {  "peak",  "peak gain",         0,                  AV_OPT_TYPE_CONST, {.i64=0},    0,  0, AF, "gtype" },
    {  "dc",    "DC gain",           0,                  AV_OPT_TYPE_CONST, {.i64=1},    0,  0, AF, "gtype" },
    {  "gn",    "gain to noise",     0,                  AV_OPT_TYPE_CONST, {.i64=2},    0,  0, AF, "gtype" },
    { "irgain", "set IR gain",       OFFSET(ir_gain),    AV_OPT_TYPE_FLOAT, {.dbl=1},    0,  1, AF },
    { "irfmt",  "set IR format",     OFFSET(ir_format),  AV_OPT_TYPE_INT,   {.i64=1},    0,  1, AF, "irfmt" },
    {  "mono",  "single channel",    0,                  AV_OPT_TYPE_CONST, {.i64=0},    0,  0, AF, "irfmt" },
    {  "input", "same as input",     0,                  AV_OPT_TYPE_CONST, {.i64=1},    0,  0, AF, "irfmt" },
    { "maxir",  "set max IR length", OFFSET(max_ir_len), AV_OPT_TYPE_FLOAT, {.dbl=30}, 0.1, 60, AF },
    { "response", "show IR frequency response", OFFSET(response), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF },
    { "channel", "set IR channel to display frequency response", OFFSET(ir_channel), AV_OPT_TYPE_INT, {.i64=0}, 0, 1024, VF },
    { "size",   "set video size",    OFFSET(w),          AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, VF },
    { "rate",   "set video rate",    OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT32_MAX, VF },
    { "minp",   "set min partition size", OFFSET(minp),  AV_OPT_TYPE_INT,   {.i64=8192}, 8, 32768, AF },
    { "maxp",   "set max partition size", OFFSET(maxp),  AV_OPT_TYPE_INT,   {.i64=8192}, 8, 32768, AF },
    { NULL }
};

AVFILTER_DEFINE_CLASS(afir);

AVFilter ff_af_afir = {
    .name          = "afir",
    .description   = NULL_IF_CONFIG_SMALL("Apply Finite Impulse Response filter with supplied coefficients in 2nd stream."),
    .priv_size     = sizeof(AudioFIRContext),
    .priv_class    = &afir_class,
    .query_formats = query_formats,
    .init          = init,
    .activate      = activate,
    .uninit        = uninit,
    .inputs        = afir_inputs,
    .flags         = AVFILTER_FLAG_DYNAMIC_OUTPUTS |
                     AVFILTER_FLAG_SLICE_THREADS,
};