vf_paletteuse.c 42.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/*
 * Copyright (c) 2015 Stupeflix
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Use a palette to downsample an input video stream.
 */

#include "libavutil/bprint.h"
#include "libavutil/internal.h"
#include "libavutil/opt.h"
#include "libavutil/qsort.h"
#include "avfilter.h"
#include "filters.h"
#include "framesync.h"
#include "internal.h"

enum dithering_mode {
    DITHERING_NONE,
    DITHERING_BAYER,
    DITHERING_HECKBERT,
    DITHERING_FLOYD_STEINBERG,
    DITHERING_SIERRA2,
    DITHERING_SIERRA2_4A,
    NB_DITHERING
};

enum color_search_method {
    COLOR_SEARCH_NNS_ITERATIVE,
    COLOR_SEARCH_NNS_RECURSIVE,
    COLOR_SEARCH_BRUTEFORCE,
    NB_COLOR_SEARCHES
};

enum diff_mode {
    DIFF_MODE_NONE,
    DIFF_MODE_RECTANGLE,
    NB_DIFF_MODE
};

struct color_node {
    uint8_t val[4];
    uint8_t palette_id;
    int split;
    int left_id, right_id;
};

#define NBITS 5
#define CACHE_SIZE (1<<(3*NBITS))

struct cached_color {
    uint32_t color;
    uint8_t pal_entry;
};

struct cache_node {
    struct cached_color *entries;
    int nb_entries;
};

struct PaletteUseContext;

typedef int (*set_frame_func)(struct PaletteUseContext *s, AVFrame *out, AVFrame *in,
                              int x_start, int y_start, int width, int height);

typedef struct PaletteUseContext {
    const AVClass *class;
    FFFrameSync fs;
    struct cache_node cache[CACHE_SIZE];    /* lookup cache */
    struct color_node map[AVPALETTE_COUNT]; /* 3D-Tree (KD-Tree with K=3) for reverse colormap */
    uint32_t palette[AVPALETTE_COUNT];
    int transparency_index; /* index in the palette of transparency. -1 if there is no transparency in the palette. */
    int trans_thresh;
    int palette_loaded;
    int dither;
    int new;
    set_frame_func set_frame;
    int bayer_scale;
    int ordered_dither[8*8];
    int diff_mode;
    AVFrame *last_in;
    AVFrame *last_out;

    /* debug options */
    char *dot_filename;
    int color_search_method;
    int calc_mean_err;
    uint64_t total_mean_err;
    int debug_accuracy;
} PaletteUseContext;

#define OFFSET(x) offsetof(PaletteUseContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption paletteuse_options[] = {
    { "dither", "select dithering mode", OFFSET(dither), AV_OPT_TYPE_INT, {.i64=DITHERING_SIERRA2_4A}, 0, NB_DITHERING-1, FLAGS, "dithering_mode" },
        { "bayer",           "ordered 8x8 bayer dithering (deterministic)",                            0, AV_OPT_TYPE_CONST, {.i64=DITHERING_BAYER},           INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
        { "heckbert",        "dithering as defined by Paul Heckbert in 1982 (simple error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_HECKBERT},        INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
        { "floyd_steinberg", "Floyd and Steingberg dithering (error diffusion)",                       0, AV_OPT_TYPE_CONST, {.i64=DITHERING_FLOYD_STEINBERG}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
        { "sierra2",         "Frankie Sierra dithering v2 (error diffusion)",                          0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2},         INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
        { "sierra2_4a",      "Frankie Sierra dithering v2 \"Lite\" (error diffusion)",                 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2_4A},      INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
    { "bayer_scale", "set scale for bayer dithering", OFFSET(bayer_scale), AV_OPT_TYPE_INT, {.i64=2}, 0, 5, FLAGS },
    { "diff_mode",   "set frame difference mode",     OFFSET(diff_mode),   AV_OPT_TYPE_INT, {.i64=DIFF_MODE_NONE}, 0, NB_DIFF_MODE-1, FLAGS, "diff_mode" },
        { "rectangle", "process smallest different rectangle", 0, AV_OPT_TYPE_CONST, {.i64=DIFF_MODE_RECTANGLE}, INT_MIN, INT_MAX, FLAGS, "diff_mode" },
    { "new", "take new palette for each output frame", OFFSET(new), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
    { "alpha_threshold", "set the alpha threshold for transparency", OFFSET(trans_thresh), AV_OPT_TYPE_INT, {.i64=128}, 0, 255, FLAGS },

    /* following are the debug options, not part of the official API */
    { "debug_kdtree", "save Graphviz graph of the kdtree in specified file", OFFSET(dot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, CHAR_MIN, CHAR_MAX, FLAGS },
    { "color_search", "set reverse colormap color search method", OFFSET(color_search_method), AV_OPT_TYPE_INT, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, 0, NB_COLOR_SEARCHES-1, FLAGS, "search" },
        { "nns_iterative", "iterative search",             0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, INT_MIN, INT_MAX, FLAGS, "search" },
        { "nns_recursive", "recursive search",             0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_RECURSIVE}, INT_MIN, INT_MAX, FLAGS, "search" },
        { "bruteforce",    "brute-force into the palette", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_BRUTEFORCE},    INT_MIN, INT_MAX, FLAGS, "search" },
    { "mean_err", "compute and print mean error", OFFSET(calc_mean_err), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
    { "debug_accuracy", "test color search accuracy", OFFSET(debug_accuracy), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
    { NULL }
};

AVFILTER_DEFINE_CLASS(paletteuse);

static int load_apply_palette(FFFrameSync *fs);

static int query_formats(AVFilterContext *ctx)
{
    static const enum AVPixelFormat in_fmts[]    = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
    static const enum AVPixelFormat inpal_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
    static const enum AVPixelFormat out_fmts[]   = {AV_PIX_FMT_PAL8,  AV_PIX_FMT_NONE};
    int ret;
    AVFilterFormats *in    = ff_make_format_list(in_fmts);
    AVFilterFormats *inpal = ff_make_format_list(inpal_fmts);
    AVFilterFormats *out   = ff_make_format_list(out_fmts);
    if (!in || !inpal || !out) {
        av_freep(&in);
        av_freep(&inpal);
        av_freep(&out);
        return AVERROR(ENOMEM);
    }
    if ((ret = ff_formats_ref(in   , &ctx->inputs[0]->out_formats)) < 0 ||
        (ret = ff_formats_ref(inpal, &ctx->inputs[1]->out_formats)) < 0 ||
        (ret = ff_formats_ref(out  , &ctx->outputs[0]->in_formats)) < 0)
        return ret;
    return 0;
}

static av_always_inline int dither_color(uint32_t px, int er, int eg, int eb, int scale, int shift)
{
    return av_clip_uint8( px >> 24                                      ) << 24
         | av_clip_uint8((px >> 16 & 0xff) + ((er * scale) / (1<<shift))) << 16
         | av_clip_uint8((px >>  8 & 0xff) + ((eg * scale) / (1<<shift))) <<  8
         | av_clip_uint8((px       & 0xff) + ((eb * scale) / (1<<shift)));
}

static av_always_inline int diff(const uint8_t *c1, const uint8_t *c2, const int trans_thresh)
{
    // XXX: try L*a*b with CIE76 (dL*dL + da*da + db*db)
    const int dr = c1[1] - c2[1];
    const int dg = c1[2] - c2[2];
    const int db = c1[3] - c2[3];

    if (c1[0] < trans_thresh && c2[0] < trans_thresh) {
        return 0;
    } else if (c1[0] >= trans_thresh && c2[0] >= trans_thresh) {
        return dr*dr + dg*dg + db*db;
    } else {
        return 255*255 + 255*255 + 255*255;
    }
}

static av_always_inline uint8_t colormap_nearest_bruteforce(const uint32_t *palette, const uint8_t *argb, const int trans_thresh)
{
    int i, pal_id = -1, min_dist = INT_MAX;

    for (i = 0; i < AVPALETTE_COUNT; i++) {
        const uint32_t c = palette[i];

        if (c >> 24 >= trans_thresh) { // ignore transparent entry
            const uint8_t palargb[] = {
                palette[i]>>24 & 0xff,
                palette[i]>>16 & 0xff,
                palette[i]>> 8 & 0xff,
                palette[i]     & 0xff,
            };
            const int d = diff(palargb, argb, trans_thresh);
            if (d < min_dist) {
                pal_id = i;
                min_dist = d;
            }
        }
    }
    return pal_id;
}

/* Recursive form, simpler but a bit slower. Kept for reference. */
struct nearest_color {
    int node_pos;
    int dist_sqd;
};

static void colormap_nearest_node(const struct color_node *map,
                                  const int node_pos,
                                  const uint8_t *target,
                                  const int trans_thresh,
                                  struct nearest_color *nearest)
{
    const struct color_node *kd = map + node_pos;
    const int s = kd->split;
    int dx, nearer_kd_id, further_kd_id;
    const uint8_t *current = kd->val;
    const int current_to_target = diff(target, current, trans_thresh);

    if (current_to_target < nearest->dist_sqd) {
        nearest->node_pos = node_pos;
        nearest->dist_sqd = current_to_target;
    }

    if (kd->left_id != -1 || kd->right_id != -1) {
        dx = target[s] - current[s];

        if (dx <= 0) nearer_kd_id = kd->left_id,  further_kd_id = kd->right_id;
        else         nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;

        if (nearer_kd_id != -1)
            colormap_nearest_node(map, nearer_kd_id, target, trans_thresh, nearest);

        if (further_kd_id != -1 && dx*dx < nearest->dist_sqd)
            colormap_nearest_node(map, further_kd_id, target, trans_thresh, nearest);
    }
}

static av_always_inline uint8_t colormap_nearest_recursive(const struct color_node *node, const uint8_t *rgb, const int trans_thresh)
{
    struct nearest_color res = {.dist_sqd = INT_MAX, .node_pos = -1};
    colormap_nearest_node(node, 0, rgb, trans_thresh, &res);
    return node[res.node_pos].palette_id;
}

struct stack_node {
    int color_id;
    int dx2;
};

static av_always_inline uint8_t colormap_nearest_iterative(const struct color_node *root, const uint8_t *target, const int trans_thresh)
{
    int pos = 0, best_node_id = -1, best_dist = INT_MAX, cur_color_id = 0;
    struct stack_node nodes[16];
    struct stack_node *node = &nodes[0];

    for (;;) {

        const struct color_node *kd = &root[cur_color_id];
        const uint8_t *current = kd->val;
        const int current_to_target = diff(target, current, trans_thresh);

        /* Compare current color node to the target and update our best node if
         * it's actually better. */
        if (current_to_target < best_dist) {
            best_node_id = cur_color_id;
            if (!current_to_target)
                goto end; // exact match, we can return immediately
            best_dist = current_to_target;
        }

        /* Check if it's not a leaf */
        if (kd->left_id != -1 || kd->right_id != -1) {
            const int split = kd->split;
            const int dx = target[split] - current[split];
            int nearer_kd_id, further_kd_id;

            /* Define which side is the most interesting. */
            if (dx <= 0) nearer_kd_id = kd->left_id,  further_kd_id = kd->right_id;
            else         nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;

            if (nearer_kd_id != -1) {
                if (further_kd_id != -1) {
                    /* Here, both paths are defined, so we push a state for
                     * when we are going back. */
                    node->color_id = further_kd_id;
                    node->dx2 = dx*dx;
                    pos++;
                    node++;
                }
                /* We can now update current color with the most probable path
                 * (no need to create a state since there is nothing to save
                 * anymore). */
                cur_color_id = nearer_kd_id;
                continue;
            } else if (dx*dx < best_dist) {
                /* The nearest path isn't available, so there is only one path
                 * possible and it's the least probable. We enter it only if the
                 * distance from the current point to the hyper rectangle is
                 * less than our best distance. */
                cur_color_id = further_kd_id;
                continue;
            }
        }

        /* Unstack as much as we can, typically as long as the least probable
         * branch aren't actually probable. */
        do {
            if (--pos < 0)
                goto end;
            node--;
        } while (node->dx2 >= best_dist);

        /* We got a node where the least probable branch might actually contain
         * a relevant color. */
        cur_color_id = node->color_id;
    }

end:
    return root[best_node_id].palette_id;
}

#define COLORMAP_NEAREST(search, palette, root, target, trans_thresh)                                    \
    search == COLOR_SEARCH_NNS_ITERATIVE ? colormap_nearest_iterative(root, target, trans_thresh) :      \
    search == COLOR_SEARCH_NNS_RECURSIVE ? colormap_nearest_recursive(root, target, trans_thresh) :      \
                                           colormap_nearest_bruteforce(palette, target, trans_thresh)

/**
 * Check if the requested color is in the cache already. If not, find it in the
 * color tree and cache it.
 * Note: a, r, g, and b are the components of color, but are passed as well to avoid
 * recomputing them (they are generally computed by the caller for other uses).
 */
static av_always_inline int color_get(PaletteUseContext *s, uint32_t color,
                                      uint8_t a, uint8_t r, uint8_t g, uint8_t b,
                                      const enum color_search_method search_method)
{
    int i;
    const uint8_t argb_elts[] = {a, r, g, b};
    const uint8_t rhash = r & ((1<<NBITS)-1);
    const uint8_t ghash = g & ((1<<NBITS)-1);
    const uint8_t bhash = b & ((1<<NBITS)-1);
    const unsigned hash = rhash<<(NBITS*2) | ghash<<NBITS | bhash;
    struct cache_node *node = &s->cache[hash];
    struct cached_color *e;

    // first, check for transparency
    if (a < s->trans_thresh && s->transparency_index >= 0) {
        return s->transparency_index;
    }

    for (i = 0; i < node->nb_entries; i++) {
        e = &node->entries[i];
        if (e->color == color)
            return e->pal_entry;
    }

    e = av_dynarray2_add((void**)&node->entries, &node->nb_entries,
                         sizeof(*node->entries), NULL);
    if (!e)
        return AVERROR(ENOMEM);
    e->color = color;
    e->pal_entry = COLORMAP_NEAREST(search_method, s->palette, s->map, argb_elts, s->trans_thresh);

    return e->pal_entry;
}

static av_always_inline int get_dst_color_err(PaletteUseContext *s,
                                              uint32_t c, int *er, int *eg, int *eb,
                                              const enum color_search_method search_method)
{
    const uint8_t a = c >> 24 & 0xff;
    const uint8_t r = c >> 16 & 0xff;
    const uint8_t g = c >>  8 & 0xff;
    const uint8_t b = c       & 0xff;
    uint32_t dstc;
    const int dstx = color_get(s, c, a, r, g, b, search_method);
    if (dstx < 0)
        return dstx;
    dstc = s->palette[dstx];
    *er = r - (dstc >> 16 & 0xff);
    *eg = g - (dstc >>  8 & 0xff);
    *eb = b - (dstc       & 0xff);
    return dstx;
}

static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFrame *in,
                                      int x_start, int y_start, int w, int h,
                                      enum dithering_mode dither,
                                      const enum color_search_method search_method)
{
    int x, y;
    const int src_linesize = in ->linesize[0] >> 2;
    const int dst_linesize = out->linesize[0];
    uint32_t *src = ((uint32_t *)in ->data[0]) + y_start*src_linesize;
    uint8_t  *dst =              out->data[0]  + y_start*dst_linesize;

    w += x_start;
    h += y_start;

    for (y = y_start; y < h; y++) {
        for (x = x_start; x < w; x++) {
            int er, eg, eb;

            if (dither == DITHERING_BAYER) {
                const int d = s->ordered_dither[(y & 7)<<3 | (x & 7)];
                const uint8_t a8 = src[x] >> 24 & 0xff;
                const uint8_t r8 = src[x] >> 16 & 0xff;
                const uint8_t g8 = src[x] >>  8 & 0xff;
                const uint8_t b8 = src[x]       & 0xff;
                const uint8_t r = av_clip_uint8(r8 + d);
                const uint8_t g = av_clip_uint8(g8 + d);
                const uint8_t b = av_clip_uint8(b8 + d);
                const int color = color_get(s, src[x], a8, r, g, b, search_method);

                if (color < 0)
                    return color;
                dst[x] = color;

            } else if (dither == DITHERING_HECKBERT) {
                const int right = x < w - 1, down = y < h - 1;
                const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);

                if (color < 0)
                    return color;
                dst[x] = color;

                if (right)         src[               x + 1] = dither_color(src[               x + 1], er, eg, eb, 3, 3);
                if (         down) src[src_linesize + x    ] = dither_color(src[src_linesize + x    ], er, eg, eb, 3, 3);
                if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 2, 3);

            } else if (dither == DITHERING_FLOYD_STEINBERG) {
                const int right = x < w - 1, down = y < h - 1, left = x > x_start;
                const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);

                if (color < 0)
                    return color;
                dst[x] = color;

                if (right)         src[               x + 1] = dither_color(src[               x + 1], er, eg, eb, 7, 4);
                if (left  && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 3, 4);
                if (         down) src[src_linesize + x    ] = dither_color(src[src_linesize + x    ], er, eg, eb, 5, 4);
                if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 1, 4);

            } else if (dither == DITHERING_SIERRA2) {
                const int right  = x < w - 1, down  = y < h - 1, left  = x > x_start;
                const int right2 = x < w - 2,                    left2 = x > x_start + 1;
                const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);

                if (color < 0)
                    return color;
                dst[x] = color;

                if (right)          src[                 x + 1] = dither_color(src[                 x + 1], er, eg, eb, 4, 4);
                if (right2)         src[                 x + 2] = dither_color(src[                 x + 2], er, eg, eb, 3, 4);

                if (down) {
                    if (left2)      src[  src_linesize + x - 2] = dither_color(src[  src_linesize + x - 2], er, eg, eb, 1, 4);
                    if (left)       src[  src_linesize + x - 1] = dither_color(src[  src_linesize + x - 1], er, eg, eb, 2, 4);
                    if (1)          src[  src_linesize + x    ] = dither_color(src[  src_linesize + x    ], er, eg, eb, 3, 4);
                    if (right)      src[  src_linesize + x + 1] = dither_color(src[  src_linesize + x + 1], er, eg, eb, 2, 4);
                    if (right2)     src[  src_linesize + x + 2] = dither_color(src[  src_linesize + x + 2], er, eg, eb, 1, 4);
                }

            } else if (dither == DITHERING_SIERRA2_4A) {
                const int right = x < w - 1, down = y < h - 1, left = x > x_start;
                const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);

                if (color < 0)
                    return color;
                dst[x] = color;

                if (right)         src[               x + 1] = dither_color(src[               x + 1], er, eg, eb, 2, 2);
                if (left  && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 1, 2);
                if (         down) src[src_linesize + x    ] = dither_color(src[src_linesize + x    ], er, eg, eb, 1, 2);

            } else {
                const uint8_t a = src[x] >> 24 & 0xff;
                const uint8_t r = src[x] >> 16 & 0xff;
                const uint8_t g = src[x] >>  8 & 0xff;
                const uint8_t b = src[x]       & 0xff;
                const int color = color_get(s, src[x], a, r, g, b, search_method);

                if (color < 0)
                    return color;
                dst[x] = color;
            }
        }
        src += src_linesize;
        dst += dst_linesize;
    }
    return 0;
}

#define INDENT 4
static void disp_node(AVBPrint *buf,
                      const struct color_node *map,
                      int parent_id, int node_id,
                      int depth)
{
    const struct color_node *node = &map[node_id];
    const uint32_t fontcolor = node->val[1] > 0x50 &&
                               node->val[2] > 0x50 &&
                               node->val[3] > 0x50 ? 0 : 0xffffff;
    const int rgb_comp = node->split - 1;
    av_bprintf(buf, "%*cnode%d ["
               "label=\"%c%02X%c%02X%c%02X%c\" "
               "fillcolor=\"#%02x%02x%02x\" "
               "fontcolor=\"#%06"PRIX32"\"]\n",
               depth*INDENT, ' ', node->palette_id,
               "[  "[rgb_comp], node->val[1],
               "][ "[rgb_comp], node->val[2],
               " ]["[rgb_comp], node->val[3],
               "  ]"[rgb_comp],
               node->val[1], node->val[2], node->val[3],
               fontcolor);
    if (parent_id != -1)
        av_bprintf(buf, "%*cnode%d -> node%d\n", depth*INDENT, ' ',
                   map[parent_id].palette_id, node->palette_id);
    if (node->left_id  != -1) disp_node(buf, map, node_id, node->left_id,  depth + 1);
    if (node->right_id != -1) disp_node(buf, map, node_id, node->right_id, depth + 1);
}

// debug_kdtree=kdtree.dot -> dot -Tpng kdtree.dot > kdtree.png
static int disp_tree(const struct color_node *node, const char *fname)
{
    AVBPrint buf;
    FILE *f = av_fopen_utf8(fname, "w");

    if (!f) {
        int ret = AVERROR(errno);
        av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n",
               fname, av_err2str(ret));
        return ret;
    }

    av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED);

    av_bprintf(&buf, "digraph {\n");
    av_bprintf(&buf, "    node [style=filled fontsize=10 shape=box]\n");
    disp_node(&buf, node, -1, 0, 0);
    av_bprintf(&buf, "}\n");

    fwrite(buf.str, 1, buf.len, f);
    fclose(f);
    av_bprint_finalize(&buf, NULL);
    return 0;
}

static int debug_accuracy(const struct color_node *node, const uint32_t *palette, const int trans_thresh,
                          const enum color_search_method search_method)
{
    int r, g, b, ret = 0;

    for (r = 0; r < 256; r++) {
        for (g = 0; g < 256; g++) {
            for (b = 0; b < 256; b++) {
                const uint8_t argb[] = {0xff, r, g, b};
                const int r1 = COLORMAP_NEAREST(search_method, palette, node, argb, trans_thresh);
                const int r2 = colormap_nearest_bruteforce(palette, argb, trans_thresh);
                if (r1 != r2) {
                    const uint32_t c1 = palette[r1];
                    const uint32_t c2 = palette[r2];
                    const uint8_t palargb1[] = { 0xff, c1>>16 & 0xff, c1>> 8 & 0xff, c1 & 0xff };
                    const uint8_t palargb2[] = { 0xff, c2>>16 & 0xff, c2>> 8 & 0xff, c2 & 0xff };
                    const int d1 = diff(palargb1, argb, trans_thresh);
                    const int d2 = diff(palargb2, argb, trans_thresh);
                    if (d1 != d2) {
                        av_log(NULL, AV_LOG_ERROR,
                               "/!\\ %02X%02X%02X: %d ! %d (%06"PRIX32" ! %06"PRIX32") / dist: %d ! %d\n",
                               r, g, b, r1, r2, c1 & 0xffffff, c2 & 0xffffff, d1, d2);
                        ret = 1;
                    }
                }
            }
        }
    }
    return ret;
}

struct color {
    uint32_t value;
    uint8_t pal_id;
};

struct color_rect {
    uint8_t min[3];
    uint8_t max[3];
};

typedef int (*cmp_func)(const void *, const void *);

#define DECLARE_CMP_FUNC(name, pos)                     \
static int cmp_##name(const void *pa, const void *pb)   \
{                                                       \
    const struct color *a = pa;                         \
    const struct color *b = pb;                         \
    return   (a->value >> (8 * (3 - (pos))) & 0xff)     \
           - (b->value >> (8 * (3 - (pos))) & 0xff);    \
}

DECLARE_CMP_FUNC(a, 0)
DECLARE_CMP_FUNC(r, 1)
DECLARE_CMP_FUNC(g, 2)
DECLARE_CMP_FUNC(b, 3)

static const cmp_func cmp_funcs[] = {cmp_a, cmp_r, cmp_g, cmp_b};

static int get_next_color(const uint8_t *color_used, const uint32_t *palette,
                          const int trans_thresh,
                          int *component, const struct color_rect *box)
{
    int wr, wg, wb;
    int i, longest = 0;
    unsigned nb_color = 0;
    struct color_rect ranges;
    struct color tmp_pal[256];
    cmp_func cmpf;

    ranges.min[0] = ranges.min[1] = ranges.min[2] = 0xff;
    ranges.max[0] = ranges.max[1] = ranges.max[2] = 0x00;

    for (i = 0; i < AVPALETTE_COUNT; i++) {
        const uint32_t c = palette[i];
        const uint8_t a = c >> 24 & 0xff;
        const uint8_t r = c >> 16 & 0xff;
        const uint8_t g = c >>  8 & 0xff;
        const uint8_t b = c       & 0xff;

        if (a < trans_thresh) {
            continue;
        }

        if (color_used[i] || (a != 0xff) ||
            r < box->min[0] || g < box->min[1] || b < box->min[2] ||
            r > box->max[0] || g > box->max[1] || b > box->max[2])
            continue;

        if (r < ranges.min[0]) ranges.min[0] = r;
        if (g < ranges.min[1]) ranges.min[1] = g;
        if (b < ranges.min[2]) ranges.min[2] = b;

        if (r > ranges.max[0]) ranges.max[0] = r;
        if (g > ranges.max[1]) ranges.max[1] = g;
        if (b > ranges.max[2]) ranges.max[2] = b;

        tmp_pal[nb_color].value  = c;
        tmp_pal[nb_color].pal_id = i;

        nb_color++;
    }

    if (!nb_color)
        return -1;

    /* define longest axis that will be the split component */
    wr = ranges.max[0] - ranges.min[0];
    wg = ranges.max[1] - ranges.min[1];
    wb = ranges.max[2] - ranges.min[2];
    if (wr >= wg && wr >= wb) longest = 1;
    if (wg >= wr && wg >= wb) longest = 2;
    if (wb >= wr && wb >= wg) longest = 3;
    cmpf = cmp_funcs[longest];
    *component = longest;

    /* sort along this axis to get median */
    AV_QSORT(tmp_pal, nb_color, struct color, cmpf);

    return tmp_pal[nb_color >> 1].pal_id;
}

static int colormap_insert(struct color_node *map,
                           uint8_t *color_used,
                           int *nb_used,
                           const uint32_t *palette,
                           const int trans_thresh,
                           const struct color_rect *box)
{
    uint32_t c;
    int component, cur_id;
    int node_left_id = -1, node_right_id = -1;
    struct color_node *node;
    struct color_rect box1, box2;
    const int pal_id = get_next_color(color_used, palette, trans_thresh, &component, box);

    if (pal_id < 0)
        return -1;

    /* create new node with that color */
    cur_id = (*nb_used)++;
    c = palette[pal_id];
    node = &map[cur_id];
    node->split = component;
    node->palette_id = pal_id;
    node->val[0] = c>>24 & 0xff;
    node->val[1] = c>>16 & 0xff;
    node->val[2] = c>> 8 & 0xff;
    node->val[3] = c     & 0xff;

    color_used[pal_id] = 1;

    /* get the two boxes this node creates */
    box1 = box2 = *box;
    box1.max[component-1] = node->val[component];
    box2.min[component-1] = node->val[component] + 1;

    node_left_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box1);

    if (box2.min[component-1] <= box2.max[component-1])
        node_right_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box2);

    node->left_id  = node_left_id;
    node->right_id = node_right_id;

    return cur_id;
}

static int cmp_pal_entry(const void *a, const void *b)
{
    const int c1 = *(const uint32_t *)a & 0xffffff;
    const int c2 = *(const uint32_t *)b & 0xffffff;
    return c1 - c2;
}

static void load_colormap(PaletteUseContext *s)
{
    int i, nb_used = 0;
    uint8_t color_used[AVPALETTE_COUNT] = {0};
    uint32_t last_color = 0;
    struct color_rect box;

    /* disable transparent colors and dups */
    qsort(s->palette, AVPALETTE_COUNT, sizeof(*s->palette), cmp_pal_entry);
    // update transparency index:
    if (s->transparency_index >= 0) {
        for (i = 0; i < AVPALETTE_COUNT; i++) {
            if ((s->palette[i]>>24 & 0xff) == 0) {
                s->transparency_index = i; // we are assuming at most one transparent color in palette
                break;
            }
        }
    }

    for (i = 0; i < AVPALETTE_COUNT; i++) {
        const uint32_t c = s->palette[i];
        if (i != 0 && c == last_color) {
            color_used[i] = 1;
            continue;
        }
        last_color = c;
        if (c >> 24 < s->trans_thresh) {
            color_used[i] = 1; // ignore transparent color(s)
            continue;
        }
    }

    box.min[0] = box.min[1] = box.min[2] = 0x00;
    box.max[0] = box.max[1] = box.max[2] = 0xff;

    colormap_insert(s->map, color_used, &nb_used, s->palette, s->trans_thresh, &box);

    if (s->dot_filename)
        disp_tree(s->map, s->dot_filename);

    if (s->debug_accuracy) {
        if (!debug_accuracy(s->map, s->palette, s->trans_thresh, s->color_search_method))
            av_log(NULL, AV_LOG_INFO, "Accuracy check passed\n");
    }
}

static void debug_mean_error(PaletteUseContext *s, const AVFrame *in1,
                             const AVFrame *in2, int frame_count)
{
    int x, y;
    const uint32_t *palette = s->palette;
    uint32_t *src1 = (uint32_t *)in1->data[0];
    uint8_t  *src2 =             in2->data[0];
    const int src1_linesize = in1->linesize[0] >> 2;
    const int src2_linesize = in2->linesize[0];
    const float div = in1->width * in1->height * 3;
    unsigned mean_err = 0;

    for (y = 0; y < in1->height; y++) {
        for (x = 0; x < in1->width; x++) {
            const uint32_t c1 = src1[x];
            const uint32_t c2 = palette[src2[x]];
            const uint8_t argb1[] = {0xff, c1 >> 16 & 0xff, c1 >> 8 & 0xff, c1 & 0xff};
            const uint8_t argb2[] = {0xff, c2 >> 16 & 0xff, c2 >> 8 & 0xff, c2 & 0xff};
            mean_err += diff(argb1, argb2, s->trans_thresh);
        }
        src1 += src1_linesize;
        src2 += src2_linesize;
    }

    s->total_mean_err += mean_err;

    av_log(NULL, AV_LOG_INFO, "MEP:%.3f TotalMEP:%.3f\n",
           mean_err / div, s->total_mean_err / (div * frame_count));
}

static void set_processing_window(enum diff_mode diff_mode,
                                  const AVFrame *prv_src, const AVFrame *cur_src,
                                  const AVFrame *prv_dst,       AVFrame *cur_dst,
                                  int *xp, int *yp, int *wp, int *hp)
{
    int x_start = 0, y_start = 0;
    int width  = cur_src->width;
    int height = cur_src->height;

    if (prv_src->data[0] && diff_mode == DIFF_MODE_RECTANGLE) {
        int y;
        int x_end = cur_src->width  - 1,
            y_end = cur_src->height - 1;
        const uint32_t *prv_srcp = (const uint32_t *)prv_src->data[0];
        const uint32_t *cur_srcp = (const uint32_t *)cur_src->data[0];
        const uint8_t  *prv_dstp = prv_dst->data[0];
        uint8_t        *cur_dstp = cur_dst->data[0];

        const int prv_src_linesize = prv_src->linesize[0] >> 2;
        const int cur_src_linesize = cur_src->linesize[0] >> 2;
        const int prv_dst_linesize = prv_dst->linesize[0];
        const int cur_dst_linesize = cur_dst->linesize[0];

        /* skip common lines */
        while (y_start < y_end && !memcmp(prv_srcp + y_start*prv_src_linesize,
                                          cur_srcp + y_start*cur_src_linesize,
                                          cur_src->width * 4)) {
            memcpy(cur_dstp + y_start*cur_dst_linesize,
                   prv_dstp + y_start*prv_dst_linesize,
                   cur_dst->width);
            y_start++;
        }
        while (y_end > y_start && !memcmp(prv_srcp + y_end*prv_src_linesize,
                                          cur_srcp + y_end*cur_src_linesize,
                                          cur_src->width * 4)) {
            memcpy(cur_dstp + y_end*cur_dst_linesize,
                   prv_dstp + y_end*prv_dst_linesize,
                   cur_dst->width);
            y_end--;
        }

        height = y_end + 1 - y_start;

        /* skip common columns */
        while (x_start < x_end) {
            int same_column = 1;
            for (y = y_start; y <= y_end; y++) {
                if (prv_srcp[y*prv_src_linesize + x_start] != cur_srcp[y*cur_src_linesize + x_start]) {
                    same_column = 0;
                    break;
                }
            }
            if (!same_column)
                break;
            x_start++;
        }
        while (x_end > x_start) {
            int same_column = 1;
            for (y = y_start; y <= y_end; y++) {
                if (prv_srcp[y*prv_src_linesize + x_end] != cur_srcp[y*cur_src_linesize + x_end]) {
                    same_column = 0;
                    break;
                }
            }
            if (!same_column)
                break;
            x_end--;
        }
        width = x_end + 1 - x_start;

        if (x_start) {
            for (y = y_start; y <= y_end; y++)
                memcpy(cur_dstp + y*cur_dst_linesize,
                       prv_dstp + y*prv_dst_linesize, x_start);
        }
        if (x_end != cur_src->width - 1) {
            const int copy_len = cur_src->width - 1 - x_end;
            for (y = y_start; y <= y_end; y++)
                memcpy(cur_dstp + y*cur_dst_linesize + x_end + 1,
                       prv_dstp + y*prv_dst_linesize + x_end + 1,
                       copy_len);
        }
    }
    *xp = x_start;
    *yp = y_start;
    *wp = width;
    *hp = height;
}

static int apply_palette(AVFilterLink *inlink, AVFrame *in, AVFrame **outf)
{
    int x, y, w, h, ret;
    AVFilterContext *ctx = inlink->dst;
    PaletteUseContext *s = ctx->priv;
    AVFilterLink *outlink = inlink->dst->outputs[0];

    AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
    if (!out) {
        av_frame_free(&in);
        *outf = NULL;
        return AVERROR(ENOMEM);
    }
    av_frame_copy_props(out, in);

    set_processing_window(s->diff_mode, s->last_in, in,
                          s->last_out, out, &x, &y, &w, &h);
    av_frame_unref(s->last_in);
    av_frame_unref(s->last_out);
    if (av_frame_ref(s->last_in, in) < 0 ||
        av_frame_ref(s->last_out, out) < 0 ||
        av_frame_make_writable(s->last_in) < 0) {
        av_frame_free(&in);
        av_frame_free(&out);
        *outf = NULL;
        return AVERROR(ENOMEM);
    }

    ff_dlog(ctx, "%dx%d rect: (%d;%d) -> (%d,%d) [area:%dx%d]\n",
            w, h, x, y, x+w, y+h, in->width, in->height);

    ret = s->set_frame(s, out, in, x, y, w, h);
    if (ret < 0) {
        av_frame_free(&out);
        *outf = NULL;
        return ret;
    }
    memcpy(out->data[1], s->palette, AVPALETTE_SIZE);
    if (s->calc_mean_err)
        debug_mean_error(s, in, out, inlink->frame_count_out);
    av_frame_free(&in);
    *outf = out;
    return 0;
}

static int config_output(AVFilterLink *outlink)
{
    int ret;
    AVFilterContext *ctx = outlink->src;
    PaletteUseContext *s = ctx->priv;

    ret = ff_framesync_init_dualinput(&s->fs, ctx);
    if (ret < 0)
        return ret;
    s->fs.opt_repeatlast = 1; // only 1 frame in the palette
    s->fs.in[1].before = s->fs.in[1].after = EXT_INFINITY;
    s->fs.on_event = load_apply_palette;

    outlink->w = ctx->inputs[0]->w;
    outlink->h = ctx->inputs[0]->h;

    outlink->time_base = ctx->inputs[0]->time_base;
    if ((ret = ff_framesync_configure(&s->fs)) < 0)
        return ret;
    return 0;
}

static int config_input_palette(AVFilterLink *inlink)
{
    AVFilterContext *ctx = inlink->dst;

    if (inlink->w * inlink->h != AVPALETTE_COUNT) {
        av_log(ctx, AV_LOG_ERROR,
               "Palette input must contain exactly %d pixels. "
               "Specified input has %dx%d=%d pixels\n",
               AVPALETTE_COUNT, inlink->w, inlink->h,
               inlink->w * inlink->h);
        return AVERROR(EINVAL);
    }
    return 0;
}

static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame)
{
    int i, x, y;
    const uint32_t *p = (const uint32_t *)palette_frame->data[0];
    const int p_linesize = palette_frame->linesize[0] >> 2;

    s->transparency_index = -1;

    if (s->new) {
        memset(s->palette, 0, sizeof(s->palette));
        memset(s->map, 0, sizeof(s->map));
        for (i = 0; i < CACHE_SIZE; i++)
            av_freep(&s->cache[i].entries);
        memset(s->cache, 0, sizeof(s->cache));
    }

    i = 0;
    for (y = 0; y < palette_frame->height; y++) {
        for (x = 0; x < palette_frame->width; x++) {
            s->palette[i] = p[x];
            if (p[x]>>24 < s->trans_thresh) {
                s->transparency_index = i; // we are assuming at most one transparent color in palette
            }
            i++;
        }
        p += p_linesize;
    }

    load_colormap(s);

    if (!s->new)
        s->palette_loaded = 1;
}

static int load_apply_palette(FFFrameSync *fs)
{
    AVFilterContext *ctx = fs->parent;
    AVFilterLink *inlink = ctx->inputs[0];
    PaletteUseContext *s = ctx->priv;
    AVFrame *master, *second, *out = NULL;
    int ret;

    // writable for error diffusal dithering
    ret = ff_framesync_dualinput_get_writable(fs, &master, &second);
    if (ret < 0)
        return ret;
    if (!master || !second) {
        ret = AVERROR_BUG;
        goto error;
    }
    if (!s->palette_loaded) {
        load_palette(s, second);
    }
    ret = apply_palette(inlink, master, &out);
    if (ret < 0)
        goto error;
    return ff_filter_frame(ctx->outputs[0], out);

error:
    av_frame_free(&master);
    return ret;
}

#define DEFINE_SET_FRAME(color_search, name, value)                             \
static int set_frame_##name(PaletteUseContext *s, AVFrame *out, AVFrame *in,    \
                            int x_start, int y_start, int w, int h)             \
{                                                                               \
    return set_frame(s, out, in, x_start, y_start, w, h, value, color_search);  \
}

#define DEFINE_SET_FRAME_COLOR_SEARCH(color_search, color_search_macro)                                 \
    DEFINE_SET_FRAME(color_search_macro, color_search##_##none,            DITHERING_NONE)              \
    DEFINE_SET_FRAME(color_search_macro, color_search##_##bayer,           DITHERING_BAYER)             \
    DEFINE_SET_FRAME(color_search_macro, color_search##_##heckbert,        DITHERING_HECKBERT)          \
    DEFINE_SET_FRAME(color_search_macro, color_search##_##floyd_steinberg, DITHERING_FLOYD_STEINBERG)   \
    DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2,         DITHERING_SIERRA2)           \
    DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2_4a,      DITHERING_SIERRA2_4A)        \

DEFINE_SET_FRAME_COLOR_SEARCH(nns_iterative, COLOR_SEARCH_NNS_ITERATIVE)
DEFINE_SET_FRAME_COLOR_SEARCH(nns_recursive, COLOR_SEARCH_NNS_RECURSIVE)
DEFINE_SET_FRAME_COLOR_SEARCH(bruteforce,    COLOR_SEARCH_BRUTEFORCE)

#define DITHERING_ENTRIES(color_search) {       \
    set_frame_##color_search##_none,            \
    set_frame_##color_search##_bayer,           \
    set_frame_##color_search##_heckbert,        \
    set_frame_##color_search##_floyd_steinberg, \
    set_frame_##color_search##_sierra2,         \
    set_frame_##color_search##_sierra2_4a,      \
}

static const set_frame_func set_frame_lut[NB_COLOR_SEARCHES][NB_DITHERING] = {
    DITHERING_ENTRIES(nns_iterative),
    DITHERING_ENTRIES(nns_recursive),
    DITHERING_ENTRIES(bruteforce),
};

static int dither_value(int p)
{
    const int q = p ^ (p >> 3);
    return   (p & 4) >> 2 | (q & 4) >> 1 \
           | (p & 2) << 1 | (q & 2) << 2 \
           | (p & 1) << 4 | (q & 1) << 5;
}

static av_cold int init(AVFilterContext *ctx)
{
    PaletteUseContext *s = ctx->priv;

    s->last_in  = av_frame_alloc();
    s->last_out = av_frame_alloc();
    if (!s->last_in || !s->last_out) {
        av_frame_free(&s->last_in);
        av_frame_free(&s->last_out);
        return AVERROR(ENOMEM);
    }

    s->set_frame = set_frame_lut[s->color_search_method][s->dither];

    if (s->dither == DITHERING_BAYER) {
        int i;
        const int delta = 1 << (5 - s->bayer_scale); // to avoid too much luma

        for (i = 0; i < FF_ARRAY_ELEMS(s->ordered_dither); i++)
            s->ordered_dither[i] = (dither_value(i) >> s->bayer_scale) - delta;
    }

    return 0;
}

static int activate(AVFilterContext *ctx)
{
    PaletteUseContext *s = ctx->priv;
    return ff_framesync_activate(&s->fs);
}

static av_cold void uninit(AVFilterContext *ctx)
{
    int i;
    PaletteUseContext *s = ctx->priv;

    ff_framesync_uninit(&s->fs);
    for (i = 0; i < CACHE_SIZE; i++)
        av_freep(&s->cache[i].entries);
    av_frame_free(&s->last_in);
    av_frame_free(&s->last_out);
}

static const AVFilterPad paletteuse_inputs[] = {
    {
        .name           = "default",
        .type           = AVMEDIA_TYPE_VIDEO,
    },{
        .name           = "palette",
        .type           = AVMEDIA_TYPE_VIDEO,
        .config_props   = config_input_palette,
    },
    { NULL }
};

static const AVFilterPad paletteuse_outputs[] = {
    {
        .name          = "default",
        .type          = AVMEDIA_TYPE_VIDEO,
        .config_props  = config_output,
    },
    { NULL }
};

AVFilter ff_vf_paletteuse = {
    .name          = "paletteuse",
    .description   = NULL_IF_CONFIG_SMALL("Use a palette to downsample an input video stream."),
    .priv_size     = sizeof(PaletteUseContext),
    .query_formats = query_formats,
    .init          = init,
    .uninit        = uninit,
    .activate      = activate,
    .inputs        = paletteuse_inputs,
    .outputs       = paletteuse_outputs,
    .priv_class    = &paletteuse_class,
};