af_mcompand.c 20.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
/*
 * COpyright (c) 2002 Daniel Pouzzner
 * Copyright (c) 1999 Chris Bagwell
 * Copyright (c) 1999 Nick Bailey
 * Copyright (c) 2007 Rob Sykes <robs@users.sourceforge.net>
 * Copyright (c) 2013 Paul B Mahol
 * Copyright (c) 2014 Andrew Kelley
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * audio multiband compand filter
 */

#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/ffmath.h"
#include "libavutil/opt.h"
#include "libavutil/samplefmt.h"
#include "audio.h"
#include "avfilter.h"
#include "internal.h"

typedef struct CompandSegment {
    double x, y;
    double a, b;
} CompandSegment;

typedef struct CompandT {
    CompandSegment *segments;
    int nb_segments;
    double in_min_lin;
    double out_min_lin;
    double curve_dB;
    double gain_dB;
} CompandT;

#define N 4

typedef struct PrevCrossover {
    double in;
    double out_low;
    double out_high;
} PrevCrossover[N * 2];

typedef struct Crossover {
  PrevCrossover *previous;
  size_t         pos;
  double         coefs[3 *(N+1)];
} Crossover;

typedef struct CompBand {
    CompandT transfer_fn;
    double *attack_rate;
    double *decay_rate;
    double *volume;
    double delay;
    double topfreq;
    Crossover filter;
    AVFrame *delay_buf;
    size_t delay_size;
    ptrdiff_t delay_buf_ptr;
    size_t delay_buf_cnt;
} CompBand;

typedef struct MCompandContext {
    const AVClass *class;

    char *args;

    int nb_bands;
    CompBand *bands;
    AVFrame *band_buf1, *band_buf2, *band_buf3;
    int band_samples;
    size_t delay_buf_size;
} MCompandContext;

#define OFFSET(x) offsetof(MCompandContext, x)
#define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM

static const AVOption mcompand_options[] = {
    { "args", "set parameters for each band", OFFSET(args), AV_OPT_TYPE_STRING, { .str = "0.005,0.1 6 -47/-40,-34/-34,-17/-33 100 | 0.003,0.05 6 -47/-40,-34/-34,-17/-33 400 | 0.000625,0.0125 6 -47/-40,-34/-34,-15/-33 1600 | 0.0001,0.025 6 -47/-40,-34/-34,-31/-31,-0/-30 6400 | 0,0.025 6 -38/-31,-28/-28,-0/-25 22000" }, 0, 0, A },
    { NULL }
};

AVFILTER_DEFINE_CLASS(mcompand);

static av_cold void uninit(AVFilterContext *ctx)
{
    MCompandContext *s = ctx->priv;
    int i;

    av_frame_free(&s->band_buf1);
    av_frame_free(&s->band_buf2);
    av_frame_free(&s->band_buf3);

    if (s->bands) {
        for (i = 0; i < s->nb_bands; i++) {
            av_freep(&s->bands[i].attack_rate);
            av_freep(&s->bands[i].decay_rate);
            av_freep(&s->bands[i].volume);
            av_freep(&s->bands[i].transfer_fn.segments);
            av_freep(&s->bands[i].filter.previous);
            av_frame_free(&s->bands[i].delay_buf);
        }
    }
    av_freep(&s->bands);
}

static int query_formats(AVFilterContext *ctx)
{
    AVFilterChannelLayouts *layouts;
    AVFilterFormats *formats;
    static const enum AVSampleFormat sample_fmts[] = {
        AV_SAMPLE_FMT_DBLP,
        AV_SAMPLE_FMT_NONE
    };
    int ret;

    layouts = ff_all_channel_counts();
    if (!layouts)
        return AVERROR(ENOMEM);
    ret = ff_set_common_channel_layouts(ctx, layouts);
    if (ret < 0)
        return ret;

    formats = ff_make_format_list(sample_fmts);
    if (!formats)
        return AVERROR(ENOMEM);
    ret = ff_set_common_formats(ctx, formats);
    if (ret < 0)
        return ret;

    formats = ff_all_samplerates();
    if (!formats)
        return AVERROR(ENOMEM);
    return ff_set_common_samplerates(ctx, formats);
}

static void count_items(char *item_str, int *nb_items, char delimiter)
{
    char *p;

    *nb_items = 1;
    for (p = item_str; *p; p++) {
        if (*p == delimiter)
            (*nb_items)++;
    }
}

static void update_volume(CompBand *cb, double in, int ch)
{
    double delta = in - cb->volume[ch];

    if (delta > 0.0)
        cb->volume[ch] += delta * cb->attack_rate[ch];
    else
        cb->volume[ch] += delta * cb->decay_rate[ch];
}

static double get_volume(CompandT *s, double in_lin)
{
    CompandSegment *cs;
    double in_log, out_log;
    int i;

    if (in_lin <= s->in_min_lin)
        return s->out_min_lin;

    in_log = log(in_lin);

    for (i = 1; i < s->nb_segments; i++)
        if (in_log <= s->segments[i].x)
            break;
    cs = &s->segments[i - 1];
    in_log -= cs->x;
    out_log = cs->y + in_log * (cs->a * in_log + cs->b);

    return exp(out_log);
}

static int parse_points(char *points, int nb_points, double radius,
                        CompandT *s, AVFilterContext *ctx)
{
    int new_nb_items, num;
    char *saveptr = NULL;
    char *p = points;
    int i;

#define S(x) s->segments[2 * ((x) + 1)]
    for (i = 0, new_nb_items = 0; i < nb_points; i++) {
        char *tstr = av_strtok(p, ",", &saveptr);
        p = NULL;
        if (!tstr || sscanf(tstr, "%lf/%lf", &S(i).x, &S(i).y) != 2) {
            av_log(ctx, AV_LOG_ERROR,
                    "Invalid and/or missing input/output value.\n");
            return AVERROR(EINVAL);
        }
        if (i && S(i - 1).x > S(i).x) {
            av_log(ctx, AV_LOG_ERROR,
                    "Transfer function input values must be increasing.\n");
            return AVERROR(EINVAL);
        }
        S(i).y -= S(i).x;
        av_log(ctx, AV_LOG_DEBUG, "%d: x=%f y=%f\n", i, S(i).x, S(i).y);
        new_nb_items++;
    }
    num = new_nb_items;

    /* Add 0,0 if necessary */
    if (num == 0 || S(num - 1).x)
        num++;

#undef S
#define S(x) s->segments[2 * (x)]
    /* Add a tail off segment at the start */
    S(0).x = S(1).x - 2 * s->curve_dB;
    S(0).y = S(1).y;
    num++;

    /* Join adjacent colinear segments */
    for (i = 2; i < num; i++) {
        double g1 = (S(i - 1).y - S(i - 2).y) * (S(i - 0).x - S(i - 1).x);
        double g2 = (S(i - 0).y - S(i - 1).y) * (S(i - 1).x - S(i - 2).x);
        int j;

        if (fabs(g1 - g2))
            continue;
        num--;
        for (j = --i; j < num; j++)
            S(j) = S(j + 1);
    }

    for (i = 0; i < s->nb_segments; i += 2) {
        s->segments[i].y += s->gain_dB;
        s->segments[i].x *= M_LN10 / 20;
        s->segments[i].y *= M_LN10 / 20;
    }

#define L(x) s->segments[i - (x)]
    for (i = 4; i < s->nb_segments; i += 2) {
        double x, y, cx, cy, in1, in2, out1, out2, theta, len, r;

        L(4).a = 0;
        L(4).b = (L(2).y - L(4).y) / (L(2).x - L(4).x);

        L(2).a = 0;
        L(2).b = (L(0).y - L(2).y) / (L(0).x - L(2).x);

        theta = atan2(L(2).y - L(4).y, L(2).x - L(4).x);
        len = hypot(L(2).x - L(4).x, L(2).y - L(4).y);
        r = FFMIN(radius, len);
        L(3).x = L(2).x - r * cos(theta);
        L(3).y = L(2).y - r * sin(theta);

        theta = atan2(L(0).y - L(2).y, L(0).x - L(2).x);
        len = hypot(L(0).x - L(2).x, L(0).y - L(2).y);
        r = FFMIN(radius, len / 2);
        x = L(2).x + r * cos(theta);
        y = L(2).y + r * sin(theta);

        cx = (L(3).x + L(2).x + x) / 3;
        cy = (L(3).y + L(2).y + y) / 3;

        L(2).x = x;
        L(2).y = y;

        in1  = cx - L(3).x;
        out1 = cy - L(3).y;
        in2  = L(2).x - L(3).x;
        out2 = L(2).y - L(3).y;
        L(3).a = (out2 / in2 - out1 / in1) / (in2 - in1);
        L(3).b = out1 / in1 - L(3).a * in1;
    }
    L(3).x = 0;
    L(3).y = L(2).y;

    s->in_min_lin  = exp(s->segments[1].x);
    s->out_min_lin = exp(s->segments[1].y);

    return 0;
}

static void square_quadratic(double const *x, double *y)
{
    y[0] = x[0] * x[0];
    y[1] = 2 * x[0] * x[1];
    y[2] = 2 * x[0] * x[2] + x[1] * x[1];
    y[3] = 2 * x[1] * x[2];
    y[4] = x[2] * x[2];
}

static int crossover_setup(AVFilterLink *outlink, Crossover *p, double frequency)
{
    double w0 = 2 * M_PI * frequency / outlink->sample_rate;
    double Q = sqrt(.5), alpha = sin(w0) / (2*Q);
    double x[9], norm;
    int i;

    if (w0 > M_PI)
        return AVERROR(EINVAL);

    x[0] =  (1 - cos(w0))/2;           /* Cf. filter_LPF in biquads.c */
    x[1] =   1 - cos(w0);
    x[2] =  (1 - cos(w0))/2;
    x[3] =  (1 + cos(w0))/2;           /* Cf. filter_HPF in biquads.c */
    x[4] = -(1 + cos(w0));
    x[5] =  (1 + cos(w0))/2;
    x[6] =   1 + alpha;
    x[7] =  -2*cos(w0);
    x[8] =   1 - alpha;

    for (norm = x[6], i = 0; i < 9; ++i)
        x[i] /= norm;

    square_quadratic(x    , p->coefs);
    square_quadratic(x + 3, p->coefs + 5);
    square_quadratic(x + 6, p->coefs + 10);

    p->previous = av_calloc(outlink->channels, sizeof(*p->previous));
    if (!p->previous)
        return AVERROR(ENOMEM);

    return 0;
}

static int config_output(AVFilterLink *outlink)
{
    AVFilterContext *ctx  = outlink->src;
    MCompandContext *s    = ctx->priv;
    int ret, ch, i, k, new_nb_items, nb_bands;
    char *p = s->args, *saveptr = NULL;
    int max_delay_size = 0;

    count_items(s->args, &nb_bands, '|');
    s->nb_bands = FFMAX(1, nb_bands);

    s->bands = av_calloc(nb_bands, sizeof(*s->bands));
    if (!s->bands)
        return AVERROR(ENOMEM);

    for (i = 0, new_nb_items = 0; i < nb_bands; i++) {
        int nb_points, nb_attacks, nb_items = 0;
        char *tstr2, *tstr = av_strtok(p, "|", &saveptr);
        char *p2, *p3, *saveptr2 = NULL, *saveptr3 = NULL;
        double radius;

        if (!tstr) {
            uninit(ctx);
            return AVERROR(EINVAL);
        }
        p = NULL;

        p2 = tstr;
        count_items(tstr, &nb_items, ' ');
        tstr2 = av_strtok(p2, " ", &saveptr2);
        if (!tstr2) {
            av_log(ctx, AV_LOG_ERROR, "at least one attacks/decays rate is mandatory\n");
            uninit(ctx);
            return AVERROR(EINVAL);
        }
        p2 = NULL;
        p3 = tstr2;

        count_items(tstr2, &nb_attacks, ',');
        if (!nb_attacks || nb_attacks & 1) {
            av_log(ctx, AV_LOG_ERROR, "number of attacks rate plus decays rate must be even\n");
            uninit(ctx);
            return AVERROR(EINVAL);
        }

        s->bands[i].attack_rate = av_calloc(outlink->channels, sizeof(double));
        s->bands[i].decay_rate = av_calloc(outlink->channels, sizeof(double));
        s->bands[i].volume = av_calloc(outlink->channels, sizeof(double));
        for (k = 0; k < FFMIN(nb_attacks / 2, outlink->channels); k++) {
            char *tstr3 = av_strtok(p3, ",", &saveptr3);

            p3 = NULL;
            sscanf(tstr3, "%lf", &s->bands[i].attack_rate[k]);
            tstr3 = av_strtok(p3, ",", &saveptr3);
            sscanf(tstr3, "%lf", &s->bands[i].decay_rate[k]);

            if (s->bands[i].attack_rate[k] > 1.0 / outlink->sample_rate) {
                s->bands[i].attack_rate[k] = 1.0 - exp(-1.0 / (outlink->sample_rate * s->bands[i].attack_rate[k]));
            } else {
                s->bands[i].attack_rate[k] = 1.0;
            }

            if (s->bands[i].decay_rate[k] > 1.0 / outlink->sample_rate) {
                s->bands[i].decay_rate[k] = 1.0 - exp(-1.0 / (outlink->sample_rate * s->bands[i].decay_rate[k]));
            } else {
                s->bands[i].decay_rate[k] = 1.0;
            }
        }

        for (ch = k; ch < outlink->channels; ch++) {
            s->bands[i].attack_rate[ch] = s->bands[i].attack_rate[k - 1];
            s->bands[i].decay_rate[ch]  = s->bands[i].decay_rate[k - 1];
        }

        tstr2 = av_strtok(p2, " ", &saveptr2);
        if (!tstr2) {
            av_log(ctx, AV_LOG_ERROR, "transfer function curve in dB must be set\n");
            uninit(ctx);
            return AVERROR(EINVAL);
        }
        sscanf(tstr2, "%lf", &s->bands[i].transfer_fn.curve_dB);

        radius = s->bands[i].transfer_fn.curve_dB * M_LN10 / 20.0;

        tstr2 = av_strtok(p2, " ", &saveptr2);
        if (!tstr2) {
            av_log(ctx, AV_LOG_ERROR, "transfer points missing\n");
            uninit(ctx);
            return AVERROR(EINVAL);
        }

        count_items(tstr2, &nb_points, ',');
        s->bands[i].transfer_fn.nb_segments = (nb_points + 4) * 2;
        s->bands[i].transfer_fn.segments = av_calloc(s->bands[i].transfer_fn.nb_segments,
                                                     sizeof(CompandSegment));
        if (!s->bands[i].transfer_fn.segments) {
            uninit(ctx);
            return AVERROR(ENOMEM);
        }

        ret = parse_points(tstr2, nb_points, radius, &s->bands[i].transfer_fn, ctx);
        if (ret < 0) {
            av_log(ctx, AV_LOG_ERROR, "transfer points parsing failed\n");
            uninit(ctx);
            return ret;
        }

        tstr2 = av_strtok(p2, " ", &saveptr2);
        if (!tstr2) {
            av_log(ctx, AV_LOG_ERROR, "crossover_frequency is missing\n");
            uninit(ctx);
            return AVERROR(EINVAL);
        }

        new_nb_items += sscanf(tstr2, "%lf", &s->bands[i].topfreq) == 1;
        if (s->bands[i].topfreq < 0 || s->bands[i].topfreq >= outlink->sample_rate / 2) {
            av_log(ctx, AV_LOG_ERROR, "crossover_frequency: %f, should be >=0 and lower than half of sample rate: %d.\n", s->bands[i].topfreq, outlink->sample_rate / 2);
            uninit(ctx);
            return AVERROR(EINVAL);
        }

        if (s->bands[i].topfreq != 0) {
            ret = crossover_setup(outlink, &s->bands[i].filter, s->bands[i].topfreq);
            if (ret < 0) {
                uninit(ctx);
                return ret;
            }
        }

        tstr2 = av_strtok(p2, " ", &saveptr2);
        if (tstr2) {
            sscanf(tstr2, "%lf", &s->bands[i].delay);
            max_delay_size = FFMAX(max_delay_size, s->bands[i].delay * outlink->sample_rate);

            tstr2 = av_strtok(p2, " ", &saveptr2);
            if (tstr2) {
                double initial_volume;

                sscanf(tstr2, "%lf", &initial_volume);
                initial_volume = pow(10.0, initial_volume / 20);

                for (k = 0; k < outlink->channels; k++) {
                    s->bands[i].volume[k] = initial_volume;
                }

                tstr2 = av_strtok(p2, " ", &saveptr2);
                if (tstr2) {
                    sscanf(tstr2, "%lf", &s->bands[i].transfer_fn.gain_dB);
                }
            }
        }
    }
    s->nb_bands = new_nb_items;

    for (i = 0; max_delay_size > 0 && i < s->nb_bands; i++) {
        s->bands[i].delay_buf = ff_get_audio_buffer(outlink, max_delay_size);
        if (!s->bands[i].delay_buf)
            return AVERROR(ENOMEM);
    }
    s->delay_buf_size = max_delay_size;

    return 0;
}

#define CONVOLVE _ _ _ _

static void crossover(int ch, Crossover *p,
                      double *ibuf, double *obuf_low,
                      double *obuf_high, size_t len)
{
    double out_low, out_high;

    while (len--) {
        p->pos = p->pos ? p->pos - 1 : N - 1;
#define _ out_low += p->coefs[j] * p->previous[ch][p->pos + j].in \
            - p->coefs[2*N+2 + j] * p->previous[ch][p->pos + j].out_low, j++;
        {
            int j = 1;
            out_low = p->coefs[0] * *ibuf;
            CONVOLVE
            *obuf_low++ = out_low;
        }
#undef _
#define _ out_high += p->coefs[j+N+1] * p->previous[ch][p->pos + j].in \
            - p->coefs[2*N+2 + j] * p->previous[ch][p->pos + j].out_high, j++;
        {
            int j = 1;
            out_high = p->coefs[N+1] * *ibuf;
            CONVOLVE
            *obuf_high++ = out_high;
        }
        p->previous[ch][p->pos + N].in = p->previous[ch][p->pos].in = *ibuf++;
        p->previous[ch][p->pos + N].out_low = p->previous[ch][p->pos].out_low = out_low;
        p->previous[ch][p->pos + N].out_high = p->previous[ch][p->pos].out_high = out_high;
    }
}

static int mcompand_channel(MCompandContext *c, CompBand *l, double *ibuf, double *obuf, int len, int ch)
{
    int i;

    for (i = 0; i < len; i++) {
        double level_in_lin, level_out_lin, checkbuf;
        /* Maintain the volume fields by simulating a leaky pump circuit */
        update_volume(l, fabs(ibuf[i]), ch);

        /* Volume memory is updated: perform compand */
        level_in_lin = l->volume[ch];
        level_out_lin = get_volume(&l->transfer_fn, level_in_lin);

        if (c->delay_buf_size <= 0) {
            checkbuf = ibuf[i] * level_out_lin;
            obuf[i] = checkbuf;
        } else {
            double *delay_buf = (double *)l->delay_buf->extended_data[ch];

            /* FIXME: note that this lookahead algorithm is really lame:
               the response to a peak is released before the peak
               arrives. */

            /* because volume application delays differ band to band, but
               total delay doesn't, the volume is applied in an iteration
               preceding that in which the sample goes to obuf, except in
               the band(s) with the longest vol app delay.

               the offset between delay_buf_ptr and the sample to apply
               vol to, is a constant equal to the difference between this
               band's delay and the longest delay of all the bands. */

            if (l->delay_buf_cnt >= l->delay_size) {
                checkbuf =
                    delay_buf[(l->delay_buf_ptr +
                               c->delay_buf_size -
                               l->delay_size) % c->delay_buf_size] * level_out_lin;
                delay_buf[(l->delay_buf_ptr + c->delay_buf_size -
                           l->delay_size) % c->delay_buf_size] = checkbuf;
            }
            if (l->delay_buf_cnt >= c->delay_buf_size) {
                obuf[i] = delay_buf[l->delay_buf_ptr];
            } else {
                l->delay_buf_cnt++;
            }
            delay_buf[l->delay_buf_ptr++] = ibuf[i];
            l->delay_buf_ptr %= c->delay_buf_size;
        }
    }

    return 0;
}

static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
    AVFilterContext  *ctx = inlink->dst;
    AVFilterLink *outlink = ctx->outputs[0];
    MCompandContext *s    = ctx->priv;
    AVFrame *out, *abuf, *bbuf, *cbuf;
    int ch, band, i;

    out = ff_get_audio_buffer(outlink, in->nb_samples);
    if (!out) {
        av_frame_free(&in);
        return AVERROR(ENOMEM);
    }

    if (s->band_samples < in->nb_samples) {
        av_frame_free(&s->band_buf1);
        av_frame_free(&s->band_buf2);
        av_frame_free(&s->band_buf3);

        s->band_buf1 = ff_get_audio_buffer(outlink, in->nb_samples);
        s->band_buf2 = ff_get_audio_buffer(outlink, in->nb_samples);
        s->band_buf3 = ff_get_audio_buffer(outlink, in->nb_samples);
        s->band_samples = in->nb_samples;
    }

    for (ch = 0; ch < outlink->channels; ch++) {
        double *a, *dst = (double *)out->extended_data[ch];

        for (band = 0, abuf = in, bbuf = s->band_buf2, cbuf = s->band_buf1; band < s->nb_bands; band++) {
            CompBand *b = &s->bands[band];

            if (b->topfreq) {
                crossover(ch, &b->filter, (double *)abuf->extended_data[ch],
                          (double *)bbuf->extended_data[ch], (double *)cbuf->extended_data[ch], in->nb_samples);
            } else {
                bbuf = abuf;
                abuf = cbuf;
            }

            if (abuf == in)
                abuf = s->band_buf3;
            mcompand_channel(s, b, (double *)bbuf->extended_data[ch], (double *)abuf->extended_data[ch], out->nb_samples, ch);
            a = (double *)abuf->extended_data[ch];
            for (i = 0; i < out->nb_samples; i++) {
                dst[i] += a[i];
            }

            FFSWAP(AVFrame *, abuf, cbuf);
        }
    }

    out->pts = in->pts;
    av_frame_free(&in);
    return ff_filter_frame(outlink, out);
}

static int request_frame(AVFilterLink *outlink)
{
    AVFilterContext *ctx = outlink->src;
    int ret;

    ret = ff_request_frame(ctx->inputs[0]);

    return ret;
}

static const AVFilterPad mcompand_inputs[] = {
    {
        .name           = "default",
        .type           = AVMEDIA_TYPE_AUDIO,
        .filter_frame   = filter_frame,
    },
    { NULL }
};

static const AVFilterPad mcompand_outputs[] = {
    {
        .name          = "default",
        .type          = AVMEDIA_TYPE_AUDIO,
        .request_frame = request_frame,
        .config_props  = config_output,
    },
    { NULL }
};


AVFilter ff_af_mcompand = {
    .name           = "mcompand",
    .description    = NULL_IF_CONFIG_SMALL(
            "Multiband Compress or expand audio dynamic range."),
    .query_formats  = query_formats,
    .priv_size      = sizeof(MCompandContext),
    .priv_class     = &mcompand_class,
    .uninit         = uninit,
    .inputs         = mcompand_inputs,
    .outputs        = mcompand_outputs,
};