asrc_sinc.c 14.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/*
 * Copyright (c) 2008-2009 Rob Sykes <robs@users.sourceforge.net>
 * Copyright (c) 2017 Paul B Mahol
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/avassert.h"
#include "libavutil/opt.h"

#include "libavcodec/avfft.h"

#include "audio.h"
#include "avfilter.h"
#include "internal.h"

typedef struct SincContext {
    const AVClass *class;

    int sample_rate, nb_samples;
    float att, beta, phase, Fc0, Fc1, tbw0, tbw1;
    int num_taps[2];
    int round;

    int n, rdft_len;
    float *coeffs;
    int64_t pts;

    RDFTContext *rdft, *irdft;
} SincContext;

static int request_frame(AVFilterLink *outlink)
{
    AVFilterContext *ctx = outlink->src;
    SincContext *s = ctx->priv;
    const float *coeffs = s->coeffs;
    AVFrame *frame = NULL;
    int nb_samples;

    nb_samples = FFMIN(s->nb_samples, s->n - s->pts);
    if (nb_samples <= 0)
        return AVERROR_EOF;

    if (!(frame = ff_get_audio_buffer(outlink, nb_samples)))
        return AVERROR(ENOMEM);

    memcpy(frame->data[0], coeffs + s->pts, nb_samples * sizeof(float));

    frame->pts = s->pts;
    s->pts    += nb_samples;

    return ff_filter_frame(outlink, frame);
}

static int query_formats(AVFilterContext *ctx)
{
    SincContext *s = ctx->priv;
    static const int64_t chlayouts[] = { AV_CH_LAYOUT_MONO, -1 };
    int sample_rates[] = { s->sample_rate, -1 };
    static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLT,
                                                       AV_SAMPLE_FMT_NONE };
    AVFilterFormats *formats;
    AVFilterChannelLayouts *layouts;
    int ret;

    formats = ff_make_format_list(sample_fmts);
    if (!formats)
        return AVERROR(ENOMEM);
    ret = ff_set_common_formats (ctx, formats);
    if (ret < 0)
        return ret;

    layouts = avfilter_make_format64_list(chlayouts);
    if (!layouts)
        return AVERROR(ENOMEM);
    ret = ff_set_common_channel_layouts(ctx, layouts);
    if (ret < 0)
        return ret;

    formats = ff_make_format_list(sample_rates);
    if (!formats)
        return AVERROR(ENOMEM);
    return ff_set_common_samplerates(ctx, formats);
}

static float bessel_I_0(float x)
{
    float term = 1, sum = 1, last_sum, x2 = x / 2;
    int i = 1;

    do {
        float y = x2 / i++;

        last_sum = sum;
        sum += term *= y * y;
    } while (sum != last_sum);

    return sum;
}

static float *make_lpf(int num_taps, float Fc, float beta, float rho,
                       float scale, int dc_norm)
{
    int i, m = num_taps - 1;
    float *h = av_calloc(num_taps, sizeof(*h)), sum = 0;
    float mult = scale / bessel_I_0(beta), mult1 = 1.f / (.5f * m + rho);

    av_assert0(Fc >= 0 && Fc <= 1);

    for (i = 0; i <= m / 2; i++) {
        float z = i - .5f * m, x = z * M_PI, y = z * mult1;
        h[i] = x ? sinf(Fc * x) / x : Fc;
        sum += h[i] *= bessel_I_0(beta * sqrtf(1.f - y * y)) * mult;
        if (m - i != i) {
            h[m - i] = h[i];
            sum += h[i];
        }
    }

    for (i = 0; dc_norm && i < num_taps; i++)
        h[i] *= scale / sum;

    return h;
}

static float kaiser_beta(float att, float tr_bw)
{
    if (att >= 60.f) {
        static const float coefs[][4] = {
            {-6.784957e-10, 1.02856e-05, 0.1087556, -0.8988365 + .001},
            {-6.897885e-10, 1.027433e-05, 0.10876, -0.8994658 + .002},
            {-1.000683e-09, 1.030092e-05, 0.1087677, -0.9007898 + .003},
            {-3.654474e-10, 1.040631e-05, 0.1087085, -0.8977766 + .006},
            {8.106988e-09, 6.983091e-06, 0.1091387, -0.9172048 + .015},
            {9.519571e-09, 7.272678e-06, 0.1090068, -0.9140768 + .025},
            {-5.626821e-09, 1.342186e-05, 0.1083999, -0.9065452 + .05},
            {-9.965946e-08, 5.073548e-05, 0.1040967, -0.7672778 + .085},
            {1.604808e-07, -5.856462e-05, 0.1185998, -1.34824 + .1},
            {-1.511964e-07, 6.363034e-05, 0.1064627, -0.9876665 + .18},
        };
        float realm = logf(tr_bw / .0005f) / logf(2.f);
        float const *c0 = coefs[av_clip((int)realm, 0, FF_ARRAY_ELEMS(coefs) - 1)];
        float const *c1 = coefs[av_clip(1 + (int)realm, 0, FF_ARRAY_ELEMS(coefs) - 1)];
        float b0 = ((c0[0] * att + c0[1]) * att + c0[2]) * att + c0[3];
        float b1 = ((c1[0] * att + c1[1]) * att + c1[2]) * att + c1[3];

        return b0 + (b1 - b0) * (realm - (int)realm);
    }
    if (att > 50.f)
        return .1102f * (att - 8.7f);
    if (att > 20.96f)
        return .58417f * powf(att - 20.96f, .4f) + .07886f * (att - 20.96f);
    return 0;
}

static void kaiser_params(float att, float Fc, float tr_bw, float *beta, int *num_taps)
{
    *beta = *beta < 0.f ? kaiser_beta(att, tr_bw * .5f / Fc): *beta;
    att = att < 60.f ? (att - 7.95f) / (2.285f * M_PI * 2.f) :
        ((.0007528358f-1.577737e-05 * *beta) * *beta + 0.6248022f) * *beta + .06186902f;
    *num_taps = !*num_taps ? ceilf(att/tr_bw + 1) : *num_taps;
}

static float *lpf(float Fn, float Fc, float tbw, int *num_taps, float att, float *beta, int round)
{
    int n = *num_taps;

    if ((Fc /= Fn) <= 0.f || Fc >= 1.f) {
        *num_taps = 0;
        return NULL;
    }

    att = att ? att : 120.f;

    kaiser_params(att, Fc, (tbw ? tbw / Fn : .05f) * .5f, beta, num_taps);

    if (!n) {
        n = *num_taps;
        *num_taps = av_clip(n, 11, 32767);
        if (round)
            *num_taps = 1 + 2 * (int)((int)((*num_taps / 2) * Fc + .5f) / Fc + .5f);
    }

    return make_lpf(*num_taps |= 1, Fc, *beta, 0.f, 1.f, 0);
}

static void invert(float *h, int n)
{
    for (int i = 0; i < n; i++)
        h[i] = -h[i];

    h[(n - 1) / 2] += 1;
}

#define PACK(h, n)   h[1] = h[n]
#define UNPACK(h, n) h[n] = h[1], h[n + 1] = h[1] = 0;
#define SQR(a) ((a) * (a))

static float safe_log(float x)
{
    av_assert0(x >= 0);
    if (x)
        return logf(x);
    return -26;
}

static int fir_to_phase(SincContext *s, float **h, int *len, int *post_len, float phase)
{
    float *pi_wraps, *work, phase1 = (phase > 50.f ? 100.f - phase : phase) / 50.f;
    int i, work_len, begin, end, imp_peak = 0, peak = 0;
    float imp_sum = 0, peak_imp_sum = 0;
    float prev_angle2 = 0, cum_2pi = 0, prev_angle1 = 0, cum_1pi = 0;

    for (i = *len, work_len = 2 * 2 * 8; i > 1; work_len <<= 1, i >>= 1);

    work = av_calloc(work_len + 2, sizeof(*work));    /* +2: (UN)PACK */
    pi_wraps = av_calloc(((work_len + 2) / 2), sizeof(*pi_wraps));
    if (!work || !pi_wraps)
        return AVERROR(ENOMEM);

    memcpy(work, *h, *len * sizeof(*work));

    av_rdft_end(s->rdft);
    av_rdft_end(s->irdft);
    s->rdft = s->irdft = NULL;
    s->rdft  = av_rdft_init(av_log2(work_len), DFT_R2C);
    s->irdft = av_rdft_init(av_log2(work_len), IDFT_C2R);
    if (!s->rdft || !s->irdft)
        return AVERROR(ENOMEM);

    av_rdft_calc(s->rdft, work);   /* Cepstral: */
    UNPACK(work, work_len);

    for (i = 0; i <= work_len; i += 2) {
        float angle = atan2f(work[i + 1], work[i]);
        float detect = 2 * M_PI;
        float delta = angle - prev_angle2;
        float adjust = detect * ((delta < -detect * .7f) - (delta > detect * .7f));

        prev_angle2 = angle;
        cum_2pi += adjust;
        angle += cum_2pi;
        detect = M_PI;
        delta = angle - prev_angle1;
        adjust = detect * ((delta < -detect * .7f) - (delta > detect * .7f));
        prev_angle1 = angle;
        cum_1pi += fabsf(adjust);        /* fabs for when 2pi and 1pi have combined */
        pi_wraps[i >> 1] = cum_1pi;

        work[i] = safe_log(sqrtf(SQR(work[i]) + SQR(work[i + 1])));
        work[i + 1] = 0;
    }

    PACK(work, work_len);
    av_rdft_calc(s->irdft, work);

    for (i = 0; i < work_len; i++)
        work[i] *= 2.f / work_len;

    for (i = 1; i < work_len / 2; i++) {        /* Window to reject acausal components */
        work[i] *= 2;
        work[i + work_len / 2] = 0;
    }
    av_rdft_calc(s->rdft, work);

    for (i = 2; i < work_len; i += 2)   /* Interpolate between linear & min phase */
        work[i + 1] = phase1 * i / work_len * pi_wraps[work_len >> 1] + (1 - phase1) * (work[i + 1] + pi_wraps[i >> 1]) - pi_wraps[i >> 1];

    work[0] = exp(work[0]);
    work[1] = exp(work[1]);
    for (i = 2; i < work_len; i += 2) {
        float x = expf(work[i]);

        work[i    ] = x * cosf(work[i + 1]);
        work[i + 1] = x * sinf(work[i + 1]);
    }

    av_rdft_calc(s->irdft, work);
    for (i = 0; i < work_len; i++)
        work[i] *= 2.f / work_len;

    /* Find peak pos. */
    for (i = 0; i <= (int) (pi_wraps[work_len >> 1] / M_PI + .5f); i++) {
        imp_sum += work[i];
        if (fabs(imp_sum) > fabs(peak_imp_sum)) {
            peak_imp_sum = imp_sum;
            peak = i;
        }
        if (work[i] > work[imp_peak])   /* For debug check only */
            imp_peak = i;
    }

    while (peak && fabsf(work[peak - 1]) > fabsf(work[peak]) && (work[peak - 1] * work[peak] > 0)) {
        peak--;
    }

    if (!phase1) {
        begin = 0;
    } else if (phase1 == 1) {
        begin = peak - *len / 2;
    } else {
        begin = (.997f - (2 - phase1) * .22f) * *len + .5f;
        end = (.997f + (0 - phase1) * .22f) * *len + .5f;
        begin = peak - (begin & ~3);
        end = peak + 1 + ((end + 3) & ~3);
        *len = end - begin;
        *h = av_realloc_f(*h, *len, sizeof(**h));
        if (!*h) {
            av_free(pi_wraps);
            av_free(work);
            return AVERROR(ENOMEM);
        }
    }

    for (i = 0; i < *len; i++) {
        (*h)[i] = work[(begin + (phase > 50.f ? *len - 1 - i : i) + work_len) & (work_len - 1)];
    }
    *post_len = phase > 50 ? peak - begin : begin + *len - (peak + 1);

    av_log(s, AV_LOG_DEBUG, "%d nPI=%g peak-sum@%i=%g (val@%i=%g); len=%i post=%i (%g%%)\n",
           work_len, pi_wraps[work_len >> 1] / M_PI, peak, peak_imp_sum, imp_peak,
           work[imp_peak], *len, *post_len, 100.f - 100.f * *post_len / (*len - 1));

    av_free(pi_wraps);
    av_free(work);

    return 0;
}

static int config_output(AVFilterLink *outlink)
{
    AVFilterContext *ctx = outlink->src;
    SincContext *s = ctx->priv;
    float Fn = s->sample_rate * .5f;
    float *h[2];
    int i, n, post_peak, longer;

    outlink->sample_rate = s->sample_rate;
    s->pts = 0;

    if (s->Fc0 >= Fn || s->Fc1 >= Fn) {
        av_log(ctx, AV_LOG_ERROR,
               "filter frequency must be less than %d/2.\n", s->sample_rate);
        return AVERROR(EINVAL);
    }

    h[0] = lpf(Fn, s->Fc0, s->tbw0, &s->num_taps[0], s->att, &s->beta, s->round);
    h[1] = lpf(Fn, s->Fc1, s->tbw1, &s->num_taps[1], s->att, &s->beta, s->round);

    if (h[0])
        invert(h[0], s->num_taps[0]);

    longer = s->num_taps[1] > s->num_taps[0];
    n = s->num_taps[longer];

    if (h[0] && h[1]) {
        for (i = 0; i < s->num_taps[!longer]; i++)
            h[longer][i + (n - s->num_taps[!longer]) / 2] += h[!longer][i];

        if (s->Fc0 < s->Fc1)
            invert(h[longer], n);

        av_free(h[!longer]);
    }

    if (s->phase != 50.f) {
        int ret = fir_to_phase(s, &h[longer], &n, &post_peak, s->phase);
        if (ret < 0)
            return ret;
    } else {
        post_peak = n >> 1;
    }

    s->n = 1 << (av_log2(n) + 1);
    s->rdft_len = 1 << av_log2(n);
    s->coeffs = av_calloc(s->n, sizeof(*s->coeffs));
    if (!s->coeffs)
        return AVERROR(ENOMEM);

    for (i = 0; i < n; i++)
        s->coeffs[i] = h[longer][i];
    av_free(h[longer]);

    av_rdft_end(s->rdft);
    av_rdft_end(s->irdft);
    s->rdft = s->irdft = NULL;

    return 0;
}

static av_cold void uninit(AVFilterContext *ctx)
{
    SincContext *s = ctx->priv;

    av_freep(&s->coeffs);
    av_rdft_end(s->rdft);
    av_rdft_end(s->irdft);
    s->rdft = s->irdft = NULL;
}

static const AVFilterPad sinc_outputs[] = {
    {
        .name          = "default",
        .type          = AVMEDIA_TYPE_AUDIO,
        .config_props  = config_output,
        .request_frame = request_frame,
    },
    { NULL }
};

#define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define OFFSET(x) offsetof(SincContext, x)

static const AVOption sinc_options[] = {
    { "sample_rate", "set sample rate",                               OFFSET(sample_rate), AV_OPT_TYPE_INT,   {.i64=44100},  1, INT_MAX, AF },
    { "r",           "set sample rate",                               OFFSET(sample_rate), AV_OPT_TYPE_INT,   {.i64=44100},  1, INT_MAX, AF },
    { "nb_samples",  "set the number of samples per requested frame", OFFSET(nb_samples),  AV_OPT_TYPE_INT,   {.i64=1024},   1, INT_MAX, AF },
    { "n",           "set the number of samples per requested frame", OFFSET(nb_samples),  AV_OPT_TYPE_INT,   {.i64=1024},   1, INT_MAX, AF },
    { "hp",          "set high-pass filter frequency",                OFFSET(Fc0),         AV_OPT_TYPE_FLOAT, {.dbl=0},      0, INT_MAX, AF },
    { "lp",          "set low-pass filter frequency",                 OFFSET(Fc1),         AV_OPT_TYPE_FLOAT, {.dbl=0},      0, INT_MAX, AF },
    { "phase",       "set filter phase response",                     OFFSET(phase),       AV_OPT_TYPE_FLOAT, {.dbl=50},     0,     100, AF },
    { "beta",        "set kaiser window beta",                        OFFSET(beta),        AV_OPT_TYPE_FLOAT, {.dbl=-1},    -1,     256, AF },
    { "att",         "set stop-band attenuation",                     OFFSET(att),         AV_OPT_TYPE_FLOAT, {.dbl=120},   40,     180, AF },
    { "round",       "enable rounding",                               OFFSET(round),       AV_OPT_TYPE_BOOL,  {.i64=0},      0,       1, AF },
    { "hptaps",      "set number of taps for high-pass filter",       OFFSET(num_taps[0]), AV_OPT_TYPE_INT,   {.i64=0},      0,   32768, AF },
    { "lptaps",      "set number of taps for low-pass filter",        OFFSET(num_taps[1]), AV_OPT_TYPE_INT,   {.i64=0},      0,   32768, AF },
    { NULL }
};

AVFILTER_DEFINE_CLASS(sinc);

AVFilter ff_asrc_sinc = {
    .name          = "sinc",
    .description   = NULL_IF_CONFIG_SMALL("Generate a sinc kaiser-windowed low-pass, high-pass, band-pass, or band-reject FIR coefficients."),
    .priv_size     = sizeof(SincContext),
    .priv_class    = &sinc_class,
    .query_formats = query_formats,
    .uninit        = uninit,
    .inputs        = NULL,
    .outputs       = sinc_outputs,
};