jpegNPP.hbk 36.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
* Copyright 1993-2015 NVIDIA Corporation.  All rights reserved.
*
* NOTICE TO USER:
*
* This source code is subject to NVIDIA ownership rights under U.S. and
* international Copyright laws.
*
* NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
* CODE FOR ANY PURPOSE.  IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR
* IMPLIED WARRANTY OF ANY KIND.  NVIDIA DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
* OR PERFORMANCE OF THIS SOURCE CODE.
*
* U.S. Government End Users.  This source code is a "commercial item" as
* that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting  of
* "commercial computer software" and "commercial computer software
* documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995)
* and is provided to the U.S. Government only as a commercial end item.
* Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
* 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the
* source code with only those rights set forth herein.
*/

// This sample needs at least CUDA 5.5 and a GPU that has at least Compute Capability 2.0

// This sample demonstrates a simple image processing pipeline.
// First, a JPEG file is huffman decoded and inverse DCT transformed and dequantized.
// Then the different planes are resized. Finally, the resized image is quantized, forward
// DCT transformed and huffman encoded.

#include <npp.h>
#include <cuda_runtime.h>
#include "EnCode/Exceptions.h"

#include "EnCode/Endianess.h"
#include <math.h>

#include <string.h>
#include <fstream>
#include <iostream>

#include <helper_string.h>
#include <helper_cuda.h>

using namespace std;

struct FrameHeader  //帧图像
{
	unsigned char nSamplePrecision;              //精度:表示每个数据样本的位数
	unsigned short nHeight;                      //图像的高 像素为单位
	unsigned short nWidth;                       //图像的宽 像素为单位
	unsigned char nComponents;                   //颜色分量个数
	unsigned char aComponentIdentifier[3];       //颜色分量ID
	unsigned char aSamplingFactors[3];           //水平/垂直采样因子,高4位代表水平采样因子,低4位代表垂直采样因子
	unsigned char aQuantizationTableSelector[3]; //当前分量使用的量化表ID
};

struct ScanHeader
{
	unsigned char nComponents;
	unsigned char aComponentSelector[3];
	unsigned char aHuffmanTablesSelector[3];
	unsigned char nSs;
	unsigned char nSe;
	unsigned char nA;
};

struct QuantizationTable
{
	unsigned char nPrecisionAndIdentifier;
	unsigned char aTable[64];
};

struct HuffmanTable
{
	unsigned char nClassAndIdentifier;
	unsigned char aCodes[16];
	unsigned char aTable[256];
};


int DivUp(int x, int d)
{
	return (x + d - 1) / d;
}

template<typename T>
T readAndAdvance(const unsigned char *&pData)
{
	T nElement = readBigEndian<T>(pData);
	pData += sizeof(T);
	return nElement;
}

template<typename T>
void writeAndAdvance(unsigned char *&pData, T nElement)
{
	writeBigEndian<T>(pData, nElement);
	pData += sizeof(T);
}


int nextMarker(const unsigned char *pData, int &nPos, int nLength)
{
	unsigned char c = pData[nPos++];

	do
	{
		while (c != 0xffu && nPos < nLength)
		{
			c = pData[nPos++];
		}

		if (nPos >= nLength)
			return -1;

		c = pData[nPos++];
	} while (c == 0 || c == 0x0ffu);

	return c;
}

void writeMarker(unsigned char nMarker, unsigned char *&pData)
{
	*pData++ = 0x0ff;
	*pData++ = nMarker;
}

void writeJFIFTag(unsigned char *&pData)
{
	const char JFIF_TAG[] =
	{
		0x4a, 0x46, 0x49, 0x46, 0x00,
		0x01, 0x02,
		0x00,
		0x00, 0x01, 0x00, 0x01,
		0x00, 0x00
	};

	writeMarker(0x0e0, pData);
	writeAndAdvance<unsigned short>(pData, sizeof(JFIF_TAG) + sizeof(unsigned short));
	memcpy(pData, JFIF_TAG, sizeof(JFIF_TAG));
	pData += sizeof(JFIF_TAG);
}

void loadJpeg(const char *input_file, unsigned char *&pJpegData, int &nInputLength)
{
	// Load file into CPU memory
	ifstream stream(input_file, ifstream::binary);

	if (!stream.good())
	{
		return;
	}

	stream.seekg(0, ios::end);
	nInputLength = (int)stream.tellg();
	stream.seekg(0, ios::beg);

	pJpegData = new unsigned char[nInputLength] {};
	stream.read(reinterpret_cast<char *>(pJpegData), nInputLength);
}

void readFrameHeader(const unsigned char *pData, FrameHeader &header)
{
	readAndAdvance<unsigned short>(pData);
	header.nSamplePrecision = readAndAdvance<unsigned char>(pData);
	header.nHeight = readAndAdvance<unsigned short>(pData);
	header.nWidth = readAndAdvance<unsigned short>(pData);
	header.nComponents = readAndAdvance<unsigned char>(pData);

	for (int c = 0; c<header.nComponents; ++c)
	{
		header.aComponentIdentifier[c] = readAndAdvance<unsigned char>(pData);
		header.aSamplingFactors[c] = readAndAdvance<unsigned char>(pData);
		header.aQuantizationTableSelector[c] = readAndAdvance<unsigned char>(pData);
	}

}

void writeFrameHeader(const FrameHeader &header, unsigned char *&pData)
{
	unsigned char aTemp[128];
	unsigned char *pTemp = aTemp;

	writeAndAdvance<unsigned char>(pTemp, header.nSamplePrecision);
	writeAndAdvance<unsigned short>(pTemp, header.nHeight);
	writeAndAdvance<unsigned short>(pTemp, header.nWidth);
	writeAndAdvance<unsigned char>(pTemp, header.nComponents);

	for (int c = 0; c<header.nComponents; ++c)
	{
		writeAndAdvance<unsigned char>(pTemp, header.aComponentIdentifier[c]);
		writeAndAdvance<unsigned char>(pTemp, header.aSamplingFactors[c]);
		writeAndAdvance<unsigned char>(pTemp, header.aQuantizationTableSelector[c]);
	}

	unsigned short nLength = (unsigned short)(pTemp - aTemp);

	writeMarker(0x0C0, pData);
	writeAndAdvance<unsigned short>(pData, nLength + 2);
	memcpy(pData, aTemp, nLength);
	pData += nLength;
}


void readScanHeader(const unsigned char *pData, ScanHeader &header)
{
	readAndAdvance<unsigned short>(pData);

	header.nComponents = readAndAdvance<unsigned char>(pData);

	for (int c = 0; c<header.nComponents; ++c)
	{
		header.aComponentSelector[c] = readAndAdvance<unsigned char>(pData);
		header.aHuffmanTablesSelector[c] = readAndAdvance<unsigned char>(pData);
	}

	header.nSs = readAndAdvance<unsigned char>(pData);
	header.nSe = readAndAdvance<unsigned char>(pData);
	header.nA = readAndAdvance<unsigned char>(pData);
}


void writeScanHeader(const ScanHeader &header, unsigned char *&pData)
{
	unsigned char aTemp[128];
	unsigned char *pTemp = aTemp;

	writeAndAdvance<unsigned char>(pTemp, header.nComponents);

	for (int c = 0; c<header.nComponents; ++c)
	{
		writeAndAdvance<unsigned char>(pTemp, header.aComponentSelector[c]);
		writeAndAdvance<unsigned char>(pTemp, header.aHuffmanTablesSelector[c]);
	}

	writeAndAdvance<unsigned char>(pTemp, header.nSs);
	writeAndAdvance<unsigned char>(pTemp, header.nSe);
	writeAndAdvance<unsigned char>(pTemp, header.nA);

	unsigned short nLength = (unsigned short)(pTemp - aTemp);

	writeMarker(0x0DA, pData);
	writeAndAdvance<unsigned short>(pData, nLength + 2);
	memcpy(pData, aTemp, nLength);
	pData += nLength;
}


void readQuantizationTables(const unsigned char *pData, QuantizationTable *pTables)
{
	unsigned short nLength = readAndAdvance<unsigned short>(pData) -2;

	while (nLength > 0)
	{
		unsigned char nPrecisionAndIdentifier = readAndAdvance<unsigned char>(pData);
		int nIdentifier = nPrecisionAndIdentifier & 0x0f;

		pTables[nIdentifier].nPrecisionAndIdentifier = nPrecisionAndIdentifier;
		memcpy(pTables[nIdentifier].aTable, pData, 64);
		pData += 64;

		nLength -= 65;
	}
}

void writeQuantizationTable(const QuantizationTable &table, unsigned char *&pData)
{
	writeMarker(0x0DB, pData);
	writeAndAdvance<unsigned short>(pData, sizeof(QuantizationTable) + 2);
	memcpy(pData, &table, sizeof(QuantizationTable));
	pData += sizeof(QuantizationTable);
}

void readHuffmanTables(const unsigned char *pData, HuffmanTable *pTables)
{
	unsigned short nLength = readAndAdvance<unsigned short>(pData) -2;

	while (nLength > 0)
	{
		unsigned char nClassAndIdentifier = readAndAdvance<unsigned char>(pData);
		int nClass = nClassAndIdentifier >> 4; // AC or DC
		int nIdentifier = nClassAndIdentifier & 0x0f;
		int nIdx = nClass * 2 + nIdentifier;
		pTables[nIdx].nClassAndIdentifier = nClassAndIdentifier;

		// Number of Codes for Bit Lengths [1..16]
		int nCodeCount = 0;

		for (int i = 0; i < 16; ++i)
		{
			pTables[nIdx].aCodes[i] = readAndAdvance<unsigned char>(pData);
			nCodeCount += pTables[nIdx].aCodes[i];
		}

		memcpy(pTables[nIdx].aTable, pData, nCodeCount);
		pData += nCodeCount;

		nLength -= 17 + nCodeCount;
	}
}

void writeHuffmanTable(const HuffmanTable &table, unsigned char *&pData)
{
	writeMarker(0x0C4, pData);

	// Number of Codes for Bit Lengths [1..16]
	int nCodeCount = 0;

	for (int i = 0; i < 16; ++i)
	{
		nCodeCount += table.aCodes[i];
	}

	writeAndAdvance<unsigned short>(pData, 17 + nCodeCount + 2);
	memcpy(pData, &table, 17 + nCodeCount);
	pData += 17 + nCodeCount;
}


void readRestartInterval(const unsigned char *pData, int &nRestartInterval)
{
	readAndAdvance<unsigned short>(pData);
	nRestartInterval = readAndAdvance<unsigned short>(pData);
}

void printHelp()
{
	cout << "jpegNPP usage" << endl;
	cout << "   -input=srcfile.jpg     (input  file JPEG image)" << endl;
	cout << "   -output=destfile.jpg   (output file JPEG image)" << endl;
	cout << "   -scale=1.0             (scale multiplier for width and height)" << endl << endl;
}

bool printfNPPinfo(int argc, char *argv[], int cudaVerMajor, int cudaVerMinor)
{
	const NppLibraryVersion *libVer = nppGetLibVersion();

	printf("NPP Library Version %d.%d.%d\n", libVer->major, libVer->minor, libVer->build);

	int driverVersion, runtimeVersion;
	cudaDriverGetVersion(&driverVersion);
	cudaRuntimeGetVersion(&runtimeVersion);

	printf("  CUDA Driver  Version: %d.%d\n", driverVersion / 1000, (driverVersion % 100) / 10);
	printf("  CUDA Runtime Version: %d.%d\n", runtimeVersion / 1000, (runtimeVersion % 100) / 10);

	bool bVal = checkCudaCapabilities(cudaVerMajor, cudaVerMinor);
	return bVal;
}

const char *szInputFile;
const char *szOutputFile;
NppiSize aSrcSize[3];
Npp16s *aphDCT[3] = { 0, 0, 0 };
Npp16s *apdDCT[3] = { 0, 0, 0 };
Npp16s *apdDCT_My[3] = { 0, 0, 0 };
Npp32s aDCTStep[3];

Npp8u *apSrcImage[3] = { 0, 0, 0 };
Npp32s aSrcImageStep[3];

Npp8u *apDstImage[3] = { 0, 0, 0 };
Npp32s aDstImageStep[3];
NppiSize aDstSize[3];

HuffmanTable aHuffmanTables[4];
HuffmanTable *pHuffmanDCTables = aHuffmanTables;
HuffmanTable *pHuffmanACTables = &aHuffmanTables[2];

ScanHeader oScanHeader;
FrameHeader oFrameHeader;
QuantizationTable aQuantizationTables[4];
Npp8u *pdQuantizationTables;
NppiDCTState *pDCTState;
int nMCUBlocksH = 0;
int nMCUBlocksV = 0;
unsigned char *pJpegData = 0;
int nInputLength = 0;



int DecodeJPEG()
{
	//float nScaleFactor;

	szInputFile = "G:\\TestData\\人车物\\18.jpg";
	cout << "Source File: " << szInputFile << endl;
	szOutputFile = "scaled.jpg";
	cout << "Output File: " << szOutputFile << endl;

	/*if (checkCmdLineFlag(argc, (const char **)argv, "scale"))
	{
	nScaleFactor = max(0.0f, min(getCmdLineArgumentFloat(argc, (const char **)argv, "scale"), 1.0f));
	}
	else
	{
	nScaleFactor = 1.0f;
	}

	cout << "Scale Factor: " << nScaleFactor << endl;*/

	
	NPP_CHECK_NPP(nppiDCTInitAlloc(&pDCTState));

	

	// Load Jpeg
	loadJpeg(szInputFile, pJpegData, nInputLength);

	if (pJpegData == 0)
	{
		cerr << "1. Input File Error: " << szInputFile << endl;
		return EXIT_FAILURE;
	}

	/***************************
	*
	*   Input
	*
	***************************/


	// Check if this is a valid JPEG file
	int nPos = 0;
	int nMarker = nextMarker(pJpegData, nPos, nInputLength);

	if (nMarker != 0x0D8)
	{
		cerr << "Invalid Jpeg Image" << endl;
		return EXIT_FAILURE;
	}

	nMarker = nextMarker(pJpegData, nPos, nInputLength);

	// Parsing and Huffman Decoding (on host)
	
	cudaMalloc(&pdQuantizationTables, 64 * 4);


	memset(&oFrameHeader, 0, sizeof(FrameHeader));
	memset(aQuantizationTables, 0, 4 * sizeof(QuantizationTable));
	memset(aHuffmanTables, 0, 4 * sizeof(HuffmanTable));
	
	int nRestartInterval = -1;

	

	while (nMarker != -1)
	{
		if (nMarker == 0x0D8)
		{
			// Embedded Thumbnail, skip it
			int nNextMarker = nextMarker(pJpegData, nPos, nInputLength);

			while (nNextMarker != -1 && nNextMarker != 0x0D9)
			{
				nNextMarker = nextMarker(pJpegData, nPos, nInputLength);
			}
		}

		if (nMarker == 0x0DD)
		{
			readRestartInterval(pJpegData + nPos, nRestartInterval);
		}

		if ((nMarker == 0x0C0) | (nMarker == 0x0C2))
		{
			//Assert Baseline for this Sample
			//Note: NPP does support progressive jpegs for both encode and decode
			if (nMarker != 0x0C0)
			{
				cerr << "The sample does only support baseline JPEG images" << endl;
				return EXIT_SUCCESS;
			}

			// Baseline or Progressive Frame Header
			//读取JPEG文件头
			readFrameHeader(pJpegData + nPos, oFrameHeader);
			cout << "Image Size: " << oFrameHeader.nWidth << "x" << oFrameHeader.nHeight << "x" << static_cast<int>(oFrameHeader.nComponents) << endl;

			//Assert 3-Channel Image for this Sample
			if (oFrameHeader.nComponents != 3)
			{
				cerr << "The sample does only support color JPEG images" << endl;
				return EXIT_SUCCESS;
			}

			// Compute channel sizes as stored in the JPEG (8x8 blocks & MCU block layout)
			for (int i = 0; i < oFrameHeader.nComponents; ++i)
			{
				nMCUBlocksV = max(nMCUBlocksV, oFrameHeader.aSamplingFactors[i] & 0x0f);  //2 1 1
				nMCUBlocksH = max(nMCUBlocksH, oFrameHeader.aSamplingFactors[i] >> 4);    //2 1 1
			}

			for (int i = 0; i < oFrameHeader.nComponents; ++i)
			{
				NppiSize oBlocks;
				NppiSize oBlocksPerMCU = { oFrameHeader.aSamplingFactors[i] >> 4, oFrameHeader.aSamplingFactors[i] & 0x0f };  //水平采样因子 和 垂直采样因子

				cout << "oBlocksPerMCU Size: " << oBlocksPerMCU.width << " " << oBlocksPerMCU.height << endl;

				oBlocks.width = (int)ceil((oFrameHeader.nWidth + 7) / 8 *
					static_cast<float>(oBlocksPerMCU.width) / nMCUBlocksH);
				oBlocks.width = DivUp(oBlocks.width, oBlocksPerMCU.width) * oBlocksPerMCU.width;   //相除 并且 上取整  确保够所有的MCU Block的大小

				oBlocks.height = (int)ceil((oFrameHeader.nHeight + 7) / 8 *
					static_cast<float>(oBlocksPerMCU.height) / nMCUBlocksV);
				oBlocks.height = DivUp(oBlocks.height, oBlocksPerMCU.height) * oBlocksPerMCU.height;

				aSrcSize[i].width = oBlocks.width * 8;
				aSrcSize[i].height = oBlocks.height * 8;

				cout << "oBlock Size: " << oBlocks.width << " " << oBlocks.height << endl;

				// Allocate Memory
				size_t nPitch;    //返回分配的一行的内存大小
				NPP_CHECK_CUDA(cudaMallocPitch(&apdDCT[i], &nPitch, oBlocks.width * 64 * sizeof(Npp16s), oBlocks.height));
				NPP_CHECK_CUDA(cudaMallocPitch(&apdDCT_My[i], &nPitch, oBlocks.width * 64 * sizeof(Npp16s), oBlocks.height));
				aDCTStep[i] = static_cast<Npp32s>(nPitch);

				NPP_CHECK_CUDA(cudaMallocPitch(&apSrcImage[i], &nPitch, aSrcSize[i].width, aSrcSize[i].height));
				aSrcImageStep[i] = static_cast<Npp32s>(nPitch);

				NPP_CHECK_CUDA(cudaHostAlloc(&aphDCT[i], aDCTStep[i] * oBlocks.height, cudaHostAllocDefault));
			}
		}

		//从压缩数据中读取量化表
		if (nMarker == 0x0DB)
		{
			// Quantization Tables
			readQuantizationTables(pJpegData + nPos, aQuantizationTables);
		}

		//从压缩数据中读取码表 熵编码表
		if (nMarker == 0x0C4)
		{
			// Huffman Tables
			readHuffmanTables(pJpegData + nPos, aHuffmanTables);
		}

		if (nMarker == 0x0DA)
		{
			// Scan
			readScanHeader(pJpegData + nPos, oScanHeader);
			nPos += 6 + oScanHeader.nComponents * 2;

			int nAfterNextMarkerPos = nPos;
			int nAfterScanMarker = nextMarker(pJpegData, nAfterNextMarkerPos, nInputLength);

			if (nRestartInterval > 0)
			{
				while (nAfterScanMarker >= 0x0D0 && nAfterScanMarker <= 0x0D7)
				{
					// This is a restart marker, go on
					nAfterScanMarker = nextMarker(pJpegData, nAfterNextMarkerPos, nInputLength);
				}
			}

			NppiDecodeHuffmanSpec *apHuffmanDCTable[3];
			NppiDecodeHuffmanSpec *apHuffmanACTable[3];

			for (int i = 0; i < 3; ++i)
			{
				nppiDecodeHuffmanSpecInitAllocHost_JPEG(pHuffmanDCTables[(oScanHeader.aHuffmanTablesSelector[i] >> 4)].aCodes, nppiDCTable, &apHuffmanDCTable[i]);
				nppiDecodeHuffmanSpecInitAllocHost_JPEG(pHuffmanACTables[(oScanHeader.aHuffmanTablesSelector[i] & 0x0f)].aCodes, nppiACTable, &apHuffmanACTable[i]);
			}

			//恢复图像数据
			NPP_CHECK_NPP(nppiDecodeHuffmanScanHost_JPEG_8u16s_P3R(pJpegData + nPos, nAfterNextMarkerPos - nPos - 2,
				nRestartInterval, oScanHeader.nSs, oScanHeader.nSe, oScanHeader.nA >> 4, oScanHeader.nA & 0x0f,
				aphDCT, aDCTStep,
				apHuffmanDCTable,
				apHuffmanACTable,
				aSrcSize));

			for (int i = 0; i < 3; ++i)
			{
				nppiDecodeHuffmanSpecFreeHost_JPEG(apHuffmanDCTable[i]);
				nppiDecodeHuffmanSpecFreeHost_JPEG(apHuffmanACTable[i]);
			}
		}

		nMarker = nextMarker(pJpegData, nPos, nInputLength);
	}

	// Copy DCT coefficients and Quantization Tables from host to device
	for (int i = 0; i < 4; ++i)
	{
		NPP_CHECK_CUDA(cudaMemcpyAsync(pdQuantizationTables + i * 64, aQuantizationTables[i].aTable, 64, cudaMemcpyHostToDevice));
	}

	for (int i = 0; i < 3; ++i)
	{

		cout << aDCTStep[i] << " " << aSrcSize[i].height << " " << aDCTStep[i] * aSrcSize[i].height / 8 << endl;
		NPP_CHECK_CUDA(cudaMemcpyAsync(apdDCT[i], aphDCT[i], aDCTStep[i] * aSrcSize[i].height / 8, cudaMemcpyHostToDevice));
	}

	/* Inverse DCT
	该函数实现了将jpeg图像 解码成 YUV数据*/
	for (int i = 0; i < 3; ++i)
	{
		NPP_CHECK_NPP(nppiDCTQuantInv8x8LS_JPEG_16s8u_C1R_NEW(apdDCT[i], aDCTStep[i],
			apSrcImage[i], aSrcImageStep[i],
			pdQuantizationTables + oFrameHeader.aQuantizationTableSelector[i] * 64,
			aSrcSize[i],
			pDCTState));
	}

	//Npp16s 
}

int EncodeJPEG(char* SaveFileName)
{
	
	
	/*Npp8u *apSrcImageTest[3];


	for (int i = 0; i < 3; i++)
	{
		size_t nPitch;
		NPP_CHECK_CUDA(cudaMalloc(&apSrcImageTest[i], 1920 * 1080 * sizeof(Npp8u)));
		NPP_CHECK_CUDA(cudaMemcpy(apSrcImageTest[i], imgData[i], 1920 * 1080 * sizeof(Npp8u), cudaMemcpyDeviceToDevice));
	}
*/
	for (int i = 0; i < 3; i++)
	{
		NPP_CHECK_NPP(nppiDCTQuantFwd8x8LS_JPEG_8u16s_C1R_NEW(apSrcImage[i], aSrcImageStep[i],
			apdDCT_My[i], aDCTStep[i],
			pdQuantizationTables + oFrameHeader.aQuantizationTableSelector[i] * 64,
			aSrcSize[i],
			pDCTState
			));
	}

	//后面的代码是关于图像编码的
	/***************************
	*
	*   Processing
	*
	***************************/

	// Compute channel sizes as stored in the output JPEG (8x8 blocks & MCU block layout)
	/*************** 1. 求输出图像的大小********************/
	NppiSize oDstImageSize;
	float frameWidth = floor((float)oFrameHeader.nWidth);  //原图像大小 * 防缩比例
	float frameHeight = floor((float)oFrameHeader.nHeight);

	oDstImageSize.width = (int)max(1.0f, frameWidth);
	oDstImageSize.height = (int)max(1.0f, frameHeight);

	//cout << "Output Size: " << oDstImageSize.width << "x" << oDstImageSize.height << "x" << static_cast<int>(oFrameHeader.nComponents) << endl;


	/*************** 2. 求aDstSize的大小********************/
	for (int i = 0; i < oFrameHeader.nComponents; ++i)  //3次
	{
		NppiSize oBlocks;
		NppiSize oBlocksPerMCU = { oFrameHeader.aSamplingFactors[i] & 0x0f, oFrameHeader.aSamplingFactors[i] >> 4 };

		oBlocks.width = (int)ceil((oDstImageSize.width + 7) / 8 *
			static_cast<float>(oBlocksPerMCU.width) / nMCUBlocksH);
		oBlocks.width = DivUp(oBlocks.width, oBlocksPerMCU.width) * oBlocksPerMCU.width;

		oBlocks.height = (int)ceil((oDstImageSize.height + 7) / 8 *
			static_cast<float>(oBlocksPerMCU.height) / nMCUBlocksV);
		oBlocks.height = DivUp(oBlocks.height, oBlocksPerMCU.height) * oBlocksPerMCU.height;

		aDstSize[i].width = oBlocks.width * 8;
		aDstSize[i].height = oBlocks.height * 8;

		//cout << "***********" << aDstSize[i].width << " " << aDstSize[i].height << "***********" << endl;
		////不影响保存 但是不确定能不能删除
		//Allocate Memory
		size_t nPitch;
		NPP_CHECK_CUDA(cudaMallocPitch(&apDstImage[i], &nPitch, aDstSize[i].width, aDstSize[i].height));
		aDstImageStep[i] = static_cast<Npp32s>(nPitch);
	}

	/*************** 3. Huffman Encoding********************/
	// Huffman Encoding
	Npp8u *pdScan;
	Npp32s nScanLength;
	NPP_CHECK_CUDA(cudaMalloc(&pdScan, 4 << 20));

	Npp8u *pJpegEncoderTemp;
	Npp32s nTempSize;
	NPP_CHECK_NPP(nppiEncodeHuffmanGetSize(aSrcSize[0], 3, &nTempSize));
	NPP_CHECK_CUDA(cudaMalloc(&pJpegEncoderTemp, nTempSize));

	NppiEncodeHuffmanSpec *apHuffmanDCTable[3];
	NppiEncodeHuffmanSpec *apHuffmanACTable[3];

	for (int i = 0; i < 3; ++i)
	{
		nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanDCTables[(oScanHeader.aHuffmanTablesSelector[i] >> 4)].aCodes, nppiDCTable, &apHuffmanDCTable[i]);
		nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanACTables[(oScanHeader.aHuffmanTablesSelector[i] & 0x0f)].aCodes, nppiACTable, &apHuffmanACTable[i]);
	}

	//Npp16s *apdDCT1[3] = { 0, 0, 0 };
	//Huffman Encode
	//apdDCT = (Npp16s*)(img);
	NPP_CHECK_NPP(nppiEncodeHuffmanScan_JPEG_8u16s_P3R(apdDCT_My, aDCTStep,
		0, oScanHeader.nSs, oScanHeader.nSe, oScanHeader.nA >> 4, oScanHeader.nA & 0x0f,
		pdScan, &nScanLength,
		apHuffmanDCTable,  //在这之前申请 在这之后释放
		apHuffmanACTable,  //在这之前申请 在这之后释放
		aDstSize,
		pJpegEncoderTemp));

	for (int i = 0; i < 3; ++i)
	{
		nppiEncodeHuffmanSpecFree_JPEG(apHuffmanDCTable[i]);
		nppiEncodeHuffmanSpecFree_JPEG(apHuffmanACTable[i]);
	}

	//Write JPEG
	unsigned char *pDstJpeg = new unsigned char[4 << 20]{};
	unsigned char *pDstOutput = pDstJpeg;

	oFrameHeader.nWidth = oDstImageSize.width;
	oFrameHeader.nHeight = oDstImageSize.height;

	writeMarker(0x0D8, pDstOutput);
	writeJFIFTag(pDstOutput);
	writeQuantizationTable(aQuantizationTables[0], pDstOutput);
	writeQuantizationTable(aQuantizationTables[1], pDstOutput);
	writeFrameHeader(oFrameHeader, pDstOutput);
	writeHuffmanTable(pHuffmanDCTables[0], pDstOutput);
	writeHuffmanTable(pHuffmanACTables[0], pDstOutput);
	writeHuffmanTable(pHuffmanDCTables[1], pDstOutput);
	writeHuffmanTable(pHuffmanACTables[1], pDstOutput);
	writeScanHeader(oScanHeader, pDstOutput);
	NPP_CHECK_CUDA(cudaMemcpy(pDstOutput, pdScan, nScanLength, cudaMemcpyDeviceToHost));
	pDstOutput += nScanLength;
	writeMarker(0x0D9, pDstOutput);

	{
		// Write result to file.
		std::ofstream outputFile(SaveFileName, ios::out | ios::binary);
		outputFile.write(reinterpret_cast<const char *>(pDstJpeg), static_cast<int>(pDstOutput - pDstJpeg));
	}

	// Cleanup
	cudaFree(pJpegEncoderTemp);
	cudaFree(pdScan);
	//delete[] pJpegData;
	delete[] pDstJpeg;
/*
	
	cudaFree(pdQuantizationTables);
	

	nppiDCTFree(pDCTState);
	*/
	for (int i = 0; i < 3; ++i)
	{
	/*	cudaFree(apdDCT[i]);
		cudaFree(apdDCT_My[i]);
		cudaFreeHost(aphDCT[i]);
		cudaFree(apSrcImage[i]);*/
		cudaFree(apDstImage[i]);
	}

	return EXIT_SUCCESS;
}



//
//int main(int argc, char **argv)
//{
//	// Min spec is SM 2.0 devices
//	if (printfNPPinfo(argc, argv, 2, 0) == false)
//	{
//		cerr << "jpegNPP requires a GPU with Compute Capability 2.0 or higher" << endl;
//		return EXIT_SUCCESS;
//	}
//
//	const char *szInputFile;
//	const char *szOutputFile;
//	//float nScaleFactor;
//
//	if ((argc == 1) || checkCmdLineFlag(argc, (const char **)argv, "help"))
//	{
//		printHelp();
//	}
//
//	if (checkCmdLineFlag(argc, (const char **)argv, "input"))
//	{
//		getCmdLineArgumentString(argc, (const char **)argv, "input", (char **)&szInputFile);
//	}
//	else
//	{
//		szInputFile = sdkFindFilePath("18.jpg", argv[0]);
//	}
//
//	cout << "Source File: " << szInputFile << endl;
//
//	if (checkCmdLineFlag(argc, (const char **)argv, "output"))
//	{
//		getCmdLineArgumentString(argc, (const char **)argv, "output", (char **)&szOutputFile);
//	}
//	else
//	{
//		szOutputFile = "scaled.jpg";
//	}
//
//	cout << "Output File mm: " << szOutputFile << endl;
//
//	/*if (checkCmdLineFlag(argc, (const char **)argv, "scale"))
//	{
//		nScaleFactor = max(0.0f, min(getCmdLineArgumentFloat(argc, (const char **)argv, "scale"), 1.0f));
//	}
//	else
//	{
//		nScaleFactor = 1.0f;
//	}
//
//	cout << "Scale Factor: " << nScaleFactor << endl;*/
//
//	NppiDCTState *pDCTState;
//	NPP_CHECK_NPP(nppiDCTInitAlloc(&pDCTState));
//
//	unsigned char *pJpegData = 0;
//	int nInputLength = 0;
//
//	// Load Jpeg
//	loadJpeg(szInputFile, pJpegData, nInputLength);
//
//	if (pJpegData == 0)
//	{
//		cerr << "Input File Error: " << szInputFile << endl;
//		return EXIT_FAILURE;
//	}
//
//	/***************************
//	*
//	*   Input
//	*
//	***************************/
//
//
//	// Check if this is a valid JPEG file
//	int nPos = 0;
//	int nMarker = nextMarker(pJpegData, nPos, nInputLength);
//
//	if (nMarker != 0x0D8)
//	{
//		cerr << "Invalid Jpeg Image" << endl;
//		return EXIT_FAILURE;
//	}
//
//	nMarker = nextMarker(pJpegData, nPos, nInputLength);
//
//	// Parsing and Huffman Decoding (on host)
//	FrameHeader oFrameHeader;
//	QuantizationTable aQuantizationTables[4];
//	Npp8u *pdQuantizationTables;
//	cudaMalloc(&pdQuantizationTables, 64 * 4);
//
//	HuffmanTable aHuffmanTables[4];
//	HuffmanTable *pHuffmanDCTables = aHuffmanTables;
//	HuffmanTable *pHuffmanACTables = &aHuffmanTables[2];
//	ScanHeader oScanHeader;
//	memset(&oFrameHeader, 0, sizeof(FrameHeader));
//	memset(aQuantizationTables, 0, 4 * sizeof(QuantizationTable));
//	memset(aHuffmanTables, 0, 4 * sizeof(HuffmanTable));
//	int nMCUBlocksH = 0;
//	int nMCUBlocksV = 0;
//
//	int nRestartInterval = -1;
//
//	NppiSize aSrcSize[3];
//	Npp16s *aphDCT[3] = { 0, 0, 0 };
//	Npp16s *apdDCT[3] = { 0, 0, 0 };
//	Npp32s aDCTStep[3];
//
//	Npp8u *apSrcImage[3] = { 0, 0, 0 };
//	Npp32s aSrcImageStep[3];
//
//	Npp8u *apDstImage[3] = { 0, 0, 0 };
//	Npp32s aDstImageStep[3];
//	NppiSize aDstSize[3];
//
//	while (nMarker != -1)
//	{
//		if (nMarker == 0x0D8)
//		{
//			// Embedded Thumbnail, skip it
//			int nNextMarker = nextMarker(pJpegData, nPos, nInputLength);
//
//			while (nNextMarker != -1 && nNextMarker != 0x0D9)
//			{
//				nNextMarker = nextMarker(pJpegData, nPos, nInputLength);
//			}
//		}
//
//		if (nMarker == 0x0DD)
//		{
//			readRestartInterval(pJpegData + nPos, nRestartInterval);
//		}
//
//		if ((nMarker == 0x0C0) | (nMarker == 0x0C2))
//		{
//			//Assert Baseline for this Sample
//			//Note: NPP does support progressive jpegs for both encode and decode
//			if (nMarker != 0x0C0)
//			{
//				cerr << "The sample does only support baseline JPEG images" << endl;
//				return EXIT_SUCCESS;
//			}
//
//			// Baseline or Progressive Frame Header
//			readFrameHeader(pJpegData + nPos, oFrameHeader);
//			cout << "Image Size: " << oFrameHeader.nWidth << "x" << oFrameHeader.nHeight << "x" << static_cast<int>(oFrameHeader.nComponents) << endl;
//
//			//Assert 3-Channel Image for this Sample
//			if (oFrameHeader.nComponents != 3)
//			{
//				cerr << "The sample does only support color JPEG images" << endl;
//				return EXIT_SUCCESS;
//			}
//
//			// Compute channel sizes as stored in the JPEG (8x8 blocks & MCU block layout)
//			for (int i = 0; i < oFrameHeader.nComponents; ++i)
//			{
//				nMCUBlocksV = max(nMCUBlocksV, oFrameHeader.aSamplingFactors[i] & 0x0f);
//				nMCUBlocksH = max(nMCUBlocksH, oFrameHeader.aSamplingFactors[i] >> 4);
//			}
//
//			for (int i = 0; i < oFrameHeader.nComponents; ++i)
//			{
//				NppiSize oBlocks;
//				NppiSize oBlocksPerMCU = { oFrameHeader.aSamplingFactors[i] >> 4, oFrameHeader.aSamplingFactors[i] & 0x0f };
//
//				oBlocks.width = (int)ceil((oFrameHeader.nWidth + 7) / 8 *
//					static_cast<float>(oBlocksPerMCU.width) / nMCUBlocksH);
//				oBlocks.width = DivUp(oBlocks.width, oBlocksPerMCU.width) * oBlocksPerMCU.width;
//
//				oBlocks.height = (int)ceil((oFrameHeader.nHeight + 7) / 8 *
//					static_cast<float>(oBlocksPerMCU.height) / nMCUBlocksV);
//				oBlocks.height = DivUp(oBlocks.height, oBlocksPerMCU.height) * oBlocksPerMCU.height;
//
//				aSrcSize[i].width = oBlocks.width * 8;
//				aSrcSize[i].height = oBlocks.height * 8;
//
//				// Allocate Memory
//				size_t nPitch;
//				NPP_CHECK_CUDA(cudaMallocPitch(&apdDCT[i], &nPitch, oBlocks.width * 64 * sizeof(Npp16s), oBlocks.height));
//				aDCTStep[i] = static_cast<Npp32s>(nPitch);
//
//				NPP_CHECK_CUDA(cudaMallocPitch(&apSrcImage[i], &nPitch, aSrcSize[i].width, aSrcSize[i].height));
//				aSrcImageStep[i] = static_cast<Npp32s>(nPitch);
//
//				NPP_CHECK_CUDA(cudaHostAlloc(&aphDCT[i], aDCTStep[i] * oBlocks.height, cudaHostAllocDefault));
//			}
//		}
//
//		if (nMarker == 0x0DB)
//		{
//			// Quantization Tables
//			readQuantizationTables(pJpegData + nPos, aQuantizationTables);
//		}
//
//		if (nMarker == 0x0C4)
//		{
//			// Huffman Tables
//			readHuffmanTables(pJpegData + nPos, aHuffmanTables);
//		}
//
//		if (nMarker == 0x0DA)
//		{
//			// Scan
//			readScanHeader(pJpegData + nPos, oScanHeader);
//			nPos += 6 + oScanHeader.nComponents * 2;
//
//			int nAfterNextMarkerPos = nPos;
//			int nAfterScanMarker = nextMarker(pJpegData, nAfterNextMarkerPos, nInputLength);
//
//			if (nRestartInterval > 0)
//			{
//				while (nAfterScanMarker >= 0x0D0 && nAfterScanMarker <= 0x0D7)
//				{
//					// This is a restart marker, go on
//					nAfterScanMarker = nextMarker(pJpegData, nAfterNextMarkerPos, nInputLength);
//				}
//			}
//
//			NppiDecodeHuffmanSpec *apHuffmanDCTable[3];
//			NppiDecodeHuffmanSpec *apHuffmanACTable[3];
//
//			for (int i = 0; i < 3; ++i)
//			{
//				nppiDecodeHuffmanSpecInitAllocHost_JPEG(pHuffmanDCTables[(oScanHeader.aHuffmanTablesSelector[i] >> 4)].aCodes, nppiDCTable, &apHuffmanDCTable[i]);
//				nppiDecodeHuffmanSpecInitAllocHost_JPEG(pHuffmanACTables[(oScanHeader.aHuffmanTablesSelector[i] & 0x0f)].aCodes, nppiACTable, &apHuffmanACTable[i]);
//			}
//
//			NPP_CHECK_NPP(nppiDecodeHuffmanScanHost_JPEG_8u16s_P3R(pJpegData + nPos, nAfterNextMarkerPos - nPos - 2,
//				nRestartInterval, oScanHeader.nSs, oScanHeader.nSe, oScanHeader.nA >> 4, oScanHeader.nA & 0x0f,
//				aphDCT, aDCTStep,
//				apHuffmanDCTable,
//				apHuffmanACTable,
//				aSrcSize));
//
//			for (int i = 0; i < 3; ++i)
//			{
//				nppiDecodeHuffmanSpecFreeHost_JPEG(apHuffmanDCTable[i]);
//				nppiDecodeHuffmanSpecFreeHost_JPEG(apHuffmanACTable[i]);
//			}
//		}
//
//		nMarker = nextMarker(pJpegData, nPos, nInputLength);
//	}
//
//	// Copy DCT coefficients and Quantization Tables from host to device
//	for (int i = 0; i < 4; ++i)
//	{
//		NPP_CHECK_CUDA(cudaMemcpyAsync(pdQuantizationTables + i * 64, aQuantizationTables[i].aTable, 64, cudaMemcpyHostToDevice));
//	}
//
//	for (int i = 0; i < 3; ++i)
//	{
//		NPP_CHECK_CUDA(cudaMemcpyAsync(apdDCT[i], aphDCT[i], aDCTStep[i] * aSrcSize[i].height / 8, cudaMemcpyHostToDevice));
//	}
//
//	// Inverse DCT
//	//该函数实现了将jpeg图像 解码成 YUV数据
//	//for (int i = 0; i < 3; ++i)
//	//{
//	//	NPP_CHECK_NPP(nppiDCTQuantInv8x8LS_JPEG_16s8u_C1R_NEW(apdDCT[i], aDCTStep[i],
//	//		apSrcImage[i], aSrcImageStep[i],
//	//		pdQuantizationTables + oFrameHeader.aQuantizationTableSelector[i] * 64,
//	//		aSrcSize[i],
//	//		pDCTState));
//	//}
//
//	//后面的代码是关于图像编码的
//	/***************************
//	*
//	*   Processing
//	*
//	***************************/
//
//	// Compute channel sizes as stored in the output JPEG (8x8 blocks & MCU block layout)
//	/*************** 1. 求输出图像的大小********************/
//	NppiSize oDstImageSize;
//	float frameWidth =  floor((float)oFrameHeader.nWidth);  //原图像大小 * 防缩比例
//	float frameHeight = floor((float)oFrameHeader.nHeight);
//
//	oDstImageSize.width = (int)max(1.0f, frameWidth);
//	oDstImageSize.height = (int)max(1.0f, frameHeight);
//
//	cout << "Output Size: " << oDstImageSize.width << "x" << oDstImageSize.height << "x" << static_cast<int>(oFrameHeader.nComponents) << endl;
//
//
//	/*************** 2. 求aDstSize的大小********************/
//	for (int i = 0; i < oFrameHeader.nComponents; ++i)  //3次
//	{
//		NppiSize oBlocks;
//		NppiSize oBlocksPerMCU = { oFrameHeader.aSamplingFactors[i] & 0x0f, oFrameHeader.aSamplingFactors[i] >> 4 };
//
//		oBlocks.width = (int)ceil((oDstImageSize.width + 7) / 8 *
//			static_cast<float>(oBlocksPerMCU.width) / nMCUBlocksH);
//		oBlocks.width = DivUp(oBlocks.width, oBlocksPerMCU.width) * oBlocksPerMCU.width;
//
//		oBlocks.height = (int)ceil((oDstImageSize.height + 7) / 8 *
//			static_cast<float>(oBlocksPerMCU.height) / nMCUBlocksV);
//		oBlocks.height = DivUp(oBlocks.height, oBlocksPerMCU.height) * oBlocksPerMCU.height;
//
//		aDstSize[i].width = oBlocks.width * 8;
//		aDstSize[i].height = oBlocks.height * 8;
//		
//		cout << "***********" << aDstSize[i].width << " " << aDstSize[i].height << "***********" << endl;
//		////不影响保存 但是不确定能不能删除
//		 //Allocate Memory
//		/*size_t nPitch;
//		NPP_CHECK_CUDA(cudaMallocPitch(&apDstImage[i], &nPitch, aDstSize[i].width, aDstSize[i].height));
//		aDstImageStep[i] = static_cast<Npp32s>(nPitch);*/
//	}
//
//	/*************** 3. Huffman Encoding********************/
//	// Huffman Encoding
//	Npp8u *pdScan;
//	Npp32s nScanLength;
//	NPP_CHECK_CUDA(cudaMalloc(&pdScan, 4 << 20));
//
//	Npp8u *pJpegEncoderTemp;
//	Npp32s nTempSize;
//	NPP_CHECK_NPP(nppiEncodeHuffmanGetSize(aSrcSize[0], 3, &nTempSize));
//	NPP_CHECK_CUDA(cudaMalloc(&pJpegEncoderTemp, nTempSize));
//
//	NppiEncodeHuffmanSpec *apHuffmanDCTable[3];
//	NppiEncodeHuffmanSpec *apHuffmanACTable[3];
//
//	for (int i = 0; i < 3; ++i)
//	{
//		nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanDCTables[(oScanHeader.aHuffmanTablesSelector[i] >> 4)].aCodes, nppiDCTable, &apHuffmanDCTable[i]);
//		nppiEncodeHuffmanSpecInitAlloc_JPEG(pHuffmanACTables[(oScanHeader.aHuffmanTablesSelector[i] & 0x0f)].aCodes, nppiACTable, &apHuffmanACTable[i]);
//	}
//
//	//Npp16s *apdDCT1[3] = { 0, 0, 0 };
//	//Huffman Encode
//	NPP_CHECK_NPP(nppiEncodeHuffmanScan_JPEG_8u16s_P3R(apdDCT, aDCTStep,
//		0, oScanHeader.nSs, oScanHeader.nSe, oScanHeader.nA >> 4, oScanHeader.nA & 0x0f,
//		pdScan, &nScanLength,
//		apHuffmanDCTable,  //在这之前申请 在这之后释放
//		apHuffmanACTable,  //在这之前申请 在这之后释放
//		aDstSize,
//		pJpegEncoderTemp));
//
//	for (int i = 0; i < 3; ++i)
//	{
//		nppiEncodeHuffmanSpecFree_JPEG(apHuffmanDCTable[i]);
//		nppiEncodeHuffmanSpecFree_JPEG(apHuffmanACTable[i]);
//	}
//
//	//Write JPEG
//	unsigned char *pDstJpeg = new unsigned char[4 << 20];
//	unsigned char *pDstOutput = pDstJpeg;
//
//	oFrameHeader.nWidth = oDstImageSize.width;
//	oFrameHeader.nHeight = oDstImageSize.height;
//
//	writeMarker(0x0D8, pDstOutput);
//	writeJFIFTag(pDstOutput);
//	writeQuantizationTable(aQuantizationTables[0], pDstOutput);
//	writeQuantizationTable(aQuantizationTables[1], pDstOutput);
//	writeFrameHeader(oFrameHeader, pDstOutput);
//	writeHuffmanTable(pHuffmanDCTables[0], pDstOutput);
//	writeHuffmanTable(pHuffmanACTables[0], pDstOutput);
//	writeHuffmanTable(pHuffmanDCTables[1], pDstOutput);
//	writeHuffmanTable(pHuffmanACTables[1], pDstOutput);
//	writeScanHeader(oScanHeader, pDstOutput);
//	NPP_CHECK_CUDA(cudaMemcpy(pDstOutput, pdScan, nScanLength, cudaMemcpyDeviceToHost));
//	pDstOutput += nScanLength;
//	writeMarker(0x0D9, pDstOutput);
//
//	{
//		// Write result to file.
//		std::ofstream outputFile(szOutputFile, ios::out | ios::binary);
//		outputFile.write(reinterpret_cast<const char *>(pDstJpeg), static_cast<int>(pDstOutput - pDstJpeg));
//	}
//
//	// Cleanup
//	delete[] pJpegData;
//	delete[] pDstJpeg;
//
//	cudaFree(pJpegEncoderTemp);
//	cudaFree(pdQuantizationTables);
//	cudaFree(pdScan);
//
//	nppiDCTFree(pDCTState);
//
//	for (int i = 0; i < 3; ++i)
//	{
//		cudaFree(apdDCT[i]);
//		cudaFreeHost(aphDCT[i]);
//		cudaFree(apSrcImage[i]);
//		cudaFree(apDstImage[i]);
//	}
//
//	return EXIT_SUCCESS;
//}