Blame view

3rdparty/boost_1_81_0/libs/random/test/integrate.hpp 2.2 KB
73ef4ff3   Hu Chunming   提交三方库
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
  /* integrate.hpp header file
   *
   * Copyright Jens Maurer 2000
   * Distributed under the Boost Software License, Version 1.0. (See
   * accompanying file LICENSE_1_0.txt or copy at
   * http://www.boost.org/LICENSE_1_0.txt)
   *
   * $Id$
   *
   * Revision history
   *   01 April 2001: Modified to use new <boost/limits.hpp> header. (JMaddock)
   */
  
  #ifndef INTEGRATE_HPP
  #define INTEGRATE_HPP
  
  #include <boost/limits.hpp>
  
  template<class UnaryFunction>
  inline typename UnaryFunction::result_type 
  trapezoid(UnaryFunction f, typename UnaryFunction::argument_type a,
            typename UnaryFunction::argument_type b, int n)
  {
    typename UnaryFunction::result_type tmp = 0;
    for(int i = 1; i <= n-1; ++i)
      tmp += f(a+(b-a)/n*i);
    return (b-a)/2/n * (f(a) + f(b) + 2*tmp);
  }
  
  template<class UnaryFunction>
  inline typename UnaryFunction::result_type 
  simpson(UnaryFunction f, typename UnaryFunction::argument_type a,
          typename UnaryFunction::argument_type b, int n)
  {
    typename UnaryFunction::result_type tmp1 = 0;
    for(int i = 1; i <= n-1; ++i)
      tmp1 += f(a+(b-a)/n*i);
    typename UnaryFunction::result_type tmp2 = 0;
    for(int i = 1; i <= n ; ++i)
      tmp2 += f(a+(b-a)/2/n*(2*i-1));
  
    return (b-a)/6/n * (f(a) + f(b) + 2*tmp1 + 4*tmp2);
  }
  
  // compute b so that f(b) = y; assume f is monotone increasing
  template<class UnaryFunction, class T>
  inline T
  invert_monotone_inc(UnaryFunction f, typename UnaryFunction::result_type y,
                      T lower = -1,
                      T upper = 1)
  {
    while(upper-lower > 1e-6) {
      double middle = (upper+lower)/2;
      if(f(middle) > y)
        upper = middle;
      else
        lower = middle;
    }
    return (upper+lower)/2;
  }
  
  // compute b so that  I(f(x), a, b) == y
  template<class UnaryFunction>
  inline typename UnaryFunction::argument_type
  quantil(UnaryFunction f, typename UnaryFunction::argument_type a,
          typename UnaryFunction::result_type y,
          typename UnaryFunction::argument_type step)
  {
    typedef typename UnaryFunction::result_type result_type;
    if(y >= 1.0)
      return std::numeric_limits<result_type>::infinity();
    typename UnaryFunction::argument_type b = a;
    for(result_type result = 0; result < y; b += step)
      result += step*f(b);
    return b;
  }
  
  
  #endif /* INTEGRATE_HPP */