lambda.xml
118 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
<?xml version="1.0" encoding="ISO-Latin-1"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd">
<library name="Lambda" dirname="lambda" id="lambda"
last-revision="$Date$"
xmlns:xi="http://www.w3.org/2001/XInclude">
<libraryinfo>
<author>
<firstname>Jaakko</firstname>
<surname>Järvi</surname>
<email>jarvi at cs tamu edu</email>
</author>
<copyright>
<year>1999</year>
<year>2000</year>
<year>2001</year>
<year>2002</year>
<year>2003</year>
<year>2004</year>
<holder>Jaakko Järvi</holder>
<holder>Gary Powell</holder>
</copyright>
<legalnotice>
<para>Use, modification and distribution is subject to the Boost
Software License, Version 1.0. (See accompanying file
<filename>LICENSE_1_0.txt</filename> or copy at <ulink
url="http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</ulink>)</para>
</legalnotice>
<librarypurpose>Define small unnamed function objects at the actual call site, and more</librarypurpose>
<librarycategory name="category:higher-order"/>
</libraryinfo>
<title>Boost.Lambda</title>
<!-- -->
<section id="introduction">
<title>In a nutshell</title>
<para>
The Boost Lambda Library (BLL in the sequel) is a C++ template
library, which implements a form of <emphasis>lambda abstractions</emphasis> for C++.
The term originates from functional programming and lambda calculus, where a lambda abstraction defines an unnamed function.
The primary motivation for the BLL is to provide flexible and
convenient means to define unnamed function objects for STL algorithms.
In explaining what the library is about, a line of code says more than a thousand words; the
following line outputs the elements of some STL container
<literal>a</literal> separated by spaces:
<programlisting><![CDATA[for_each(a.begin(), a.end(), std::cout << _1 << ' ');]]></programlisting>
The expression <literal><![CDATA[std::cout << _1 << ' ']]></literal> defines a unary function object.
The variable <literal>_1</literal> is the parameter of this function, a <emphasis>placeholder</emphasis> for the actual argument.
Within each iteration of <literal>for_each</literal>, the function is
called with an element of <literal>a</literal> as the actual argument.
This actual argument is substituted for the placeholder, and the <quote>body</quote> of the function is evaluated.
</para>
<para>The essence of BLL is letting you define small unnamed function objects, such as the one above, directly on the call site of an STL algorithm.
</para>
</section>
<section id="lambda.getting_started">
<title>Getting Started</title>
<section>
<title>Installing the library</title>
<para>
The library consists of include files only, hence there is no
installation procedure. The <literal>boost</literal> include directory
must be on the include path.
There are a number of include files that give different functionality:
<!-- TODO: tarkista vielä riippuvuudet-->
<itemizedlist>
<listitem><para>
<filename>lambda/lambda.hpp</filename> defines lambda expressions for different C++
operators, see <xref linkend="lambda.operator_expressions"/>.
</para></listitem>
<listitem><para>
<filename>lambda/bind.hpp</filename> defines <literal>bind</literal> functions for up to 9 arguments, see <xref linkend="lambda.bind_expressions"/>.</para></listitem>
<listitem><para>
<filename>lambda/if.hpp</filename> defines lambda function equivalents for if statements and the conditional operator, see <xref linkend="lambda.lambda_expressions_for_control_structures"/> (includes <filename>lambda.hpp</filename>).
</para></listitem>
<listitem><para>
<filename>lambda/loops.hpp</filename> defines lambda function equivalent for looping constructs, see <xref linkend="lambda.lambda_expressions_for_control_structures"/>.
</para></listitem>
<listitem><para>
<filename>lambda/switch.hpp</filename> defines lambda function equivalent for the switch statement, see <xref linkend="lambda.lambda_expressions_for_control_structures"/>.
</para></listitem>
<listitem><para>
<filename>lambda/construct.hpp</filename> provides tools for writing lambda expressions with constructor, destructor, new and delete invocations, see <xref linkend="lambda.construction_and_destruction"/> (includes <filename>lambda.hpp</filename>).
</para></listitem>
<listitem><para>
<filename>lambda/casts.hpp</filename> provides lambda versions of different casts, as well as <literal>sizeof</literal> and <literal>typeid</literal>, see <xref linkend="lambda.cast_expressions"/>.
</para></listitem>
<listitem><para>
<filename>lambda/exceptions.hpp</filename> gives tools for throwing and catching
exceptions within lambda functions, <xref linkend="lambda.exceptions"/> (includes
<filename>lambda.hpp</filename>).
</para></listitem>
<listitem><para>
<filename>lambda/algorithm.hpp</filename> and <filename>lambda/numeric.hpp</filename> (cf. standard <filename>algortihm</filename> and <filename>numeric</filename> headers) allow nested STL algorithm invocations, see <xref linkend="lambda.nested_stl_algorithms"/>.
</para></listitem>
</itemizedlist>
Any other header files in the package are for internal use.
Additionally, the library depends on two other Boost Libraries, the
<emphasis>Tuple</emphasis> <xref linkend="cit:boost::tuple"/> and the <emphasis>type_traits</emphasis> <xref linkend="cit:boost::type_traits"/> libraries, and on the <filename>boost/ref.hpp</filename> header.
</para>
<para>
All definitions are placed in the namespace <literal>boost::lambda</literal> and its subnamespaces.
</para>
</section>
<section>
<title>Conventions used in this document</title>
<para>In most code examples, we omit the namespace prefixes for names in the <literal moreinfo="none">std</literal> and <literal moreinfo="none">boost::lambda</literal> namespaces.
Implicit using declarations
<programlisting>
using namespace std;
using namespace boost::lambda;
</programlisting>
are assumed to be in effect.
</para>
</section>
</section>
<section>
<title>Introduction</title>
<section>
<title>Motivation</title>
<para>The Standard Template Library (STL)
<xref role="citation" linkend="cit:stepanov:94"/>, now part of the C++ Standard Library <xref role="citation" linkend="cit:c++:98"/>, is a generic container and algorithm library.
Typically STL algorithms operate on container elements via <emphasis>function objects</emphasis>. These function objects are passed as arguments to the algorithms.
</para>
<para>
Any C++ construct that can be called with the function call syntax
is a function object.
The STL contains predefined function objects for some common cases (such as <literal>plus</literal>, <literal>less</literal> and <literal>not1</literal>).
As an example, one possible implementation for the standard <literal>plus</literal> template is:
<programlisting>
<![CDATA[template <class T>
struct plus : public binary_function<T, T, T> {
T operator()(const T& i, const T& j) const {
return i + j;
}
};]]>
</programlisting>
The base class <literal><![CDATA[binary_function<T, T, T>]]></literal> contains typedefs for the argument and return types of the function object, which are needed to make the function object <emphasis>adaptable</emphasis>.
</para>
<para>
In addition to the basic function object classes, such as the one above,
the STL contains <emphasis>binder</emphasis> templates for creating a unary function object from an adaptable binary function object by fixing one of the arguments to a constant value.
For example, instead of having to explicitly write a function object class like:
<programlisting>
<![CDATA[class plus_1 {
int _i;
public:
plus_1(const int& i) : _i(i) {}
int operator()(const int& j) { return _i + j; }
};]]>
</programlisting>
the equivalent functionality can be achieved with the <literal moreinfo="none">plus</literal> template and one of the binder templates (<literal moreinfo="none">bind1st</literal>).
E.g., the following two expressions create function objects with identical functionalities;
when invoked, both return the result of adding <literal moreinfo="none">1</literal> to the argument of the function object:
<programlisting>
<![CDATA[plus_1(1)
bind1st(plus<int>(), 1)]]>
</programlisting>
The subexpression <literal><![CDATA[plus<int>()]]></literal> in the latter line is a binary function object which computes the sum of two integers, and <literal>bind1st</literal> invokes this function object partially binding the first argument to <literal>1</literal>.
As an example of using the above function object, the following code adds <literal>1</literal> to each element of some container <literal>a</literal> and outputs the results into the standard output stream <literal>cout</literal>.
<programlisting>
<![CDATA[transform(a.begin(), a.end(), ostream_iterator<int>(cout),
bind1st(plus<int>(), 1));]]>
</programlisting>
</para>
<para>
To make the binder templates more generally applicable, the STL contains <emphasis>adaptors</emphasis> for making
pointers or references to functions, and pointers to member functions,
adaptable.
Finally, some STL implementations contain function composition operations as
extensions to the standard <xref linkend="cit:sgi:02"/>.
</para>
<para>
All these tools aim at one goal: to make it possible to specify
<emphasis>unnamed functions</emphasis> in a call of an STL algorithm,
in other words, to pass code fragments as an argument to a function.
However, this goal is attained only partially.
The simple example above shows that the definition of unnamed functions
with the standard tools is cumbersome.
Complex expressions involving functors, adaptors, binders and
function composition operations tend to be difficult to comprehend.
In addition to this, there are significant restrictions in applying
the standard tools. E.g. the standard binders allow only one argument
of a binary function to be bound; there are no binders for
3-ary, 4-ary etc. functions.
</para>
<para>
The Boost Lambda Library provides solutions for the problems described above:
<itemizedlist>
<listitem>
<para>
Unnamed functions can be created easily with an intuitive syntax.
The above example can be written as:
<programlisting>
<![CDATA[transform(a.begin(), a.end(), ostream_iterator<int>(cout),
1 + _1);]]>
</programlisting>
or even more intuitively:
<programlisting>
<![CDATA[for_each(a.begin(), a.end(), cout << (1 + _1));]]>
</programlisting>
</para>
</listitem>
<listitem>
<para>
Most of the restrictions in argument binding are removed,
arbitrary arguments of practically any C++ function can be bound.
</para>
</listitem>
<listitem>
<para>
Separate function composition operations are not needed,
as function composition is supported implicitly.
</para>
</listitem>
</itemizedlist>
</para>
</section>
<section>
<title>Introduction to lambda expressions</title>
<para>
Lambda expression are common in functional programming languages.
Their syntax varies between languages (and between different forms of lambda calculus), but the basic form of a lambda expressions is:
<programlisting>
lambda x<subscript>1</subscript> ... x<subscript>n</subscript>.e
</programlisting>
<!-- $\lambda x_1 \cdots x_n . e$ -->
A lambda expression defines an unnamed function and consists of:
<itemizedlist>
<listitem>
<para>
the parameters of this function: <literal>x<subscript>1</subscript> ... x<subscript>n</subscript></literal>.
<!--$x_1 \cdots x_n$-->
</para>
</listitem>
<listitem>
<para>the expression e which computes the value of the function in terms of the parameters <literal>x<subscript>1</subscript> ... x<subscript>n</subscript></literal>.
</para>
</listitem>
</itemizedlist>
A simple example of a lambda expression is
<programlisting>
lambda x y.x+y
</programlisting>
Applying the lambda function means substituting the formal parameters with the actual arguments:
<programlisting>
(lambda x y.x+y) 2 3 = 2 + 3 = 5
</programlisting>
</para>
<para>
In the C++ version of lambda expressions the <literal>lambda x<subscript>1</subscript> ... x<subscript>n</subscript></literal> part is missing and the formal parameters have predefined names.
In the current version of the library,
there are three such predefined formal parameters,
called <emphasis>placeholders</emphasis>:
<literal>_1</literal>, <literal>_2</literal> and <literal>_3</literal>.
They refer to the first, second and third argument of the function defined
by the lambda expression.
For example, the C++ version of the definition
<programlisting>lambda x y.x+y</programlisting>
is
<programlisting>_1 + _2</programlisting>
</para>
<para>
Hence, there is no syntactic keyword for C++ lambda expressions.
The use of a placeholder as an operand implies that the operator invocation is a lambda expression.
However, this is true only for operator invocations.
Lambda expressions containing function calls, control structures, casts etc. require special syntactic constructs.
Most importantly, function calls need to be wrapped inside a <literal>bind</literal> function.
As an example, consider the lambda expression:
<programlisting>lambda x y.foo(x,y)</programlisting>
Rather than <literal>foo(_1, _2)</literal>, the C++ counterpart for this expression is:
<programlisting>bind(foo, _1, _2)</programlisting>
We refer to this type of C++ lambda expressions as <emphasis>bind expressions</emphasis>.
</para>
<para>A lambda expression defines a C++ function object, hence function application syntax is like calling any other function object, for instance: <literal>(_1 + _2)(i, j)</literal>.
</para>
<section id="lambda.partial_function_application">
<title>Partial function application</title>
<para>
A bind expression is in effect a <emphasis>partial function application</emphasis>.
In partial function application, some of the arguments of a function are bound to fixed values.
The result is another function, with possibly fewer arguments.
When called with the unbound arguments, this new function invokes the original function with the merged argument list of bound and unbound arguments.
</para>
<!-- <para>The underlying implementation of the BLL unifies the two types of lambda expressions (bind expressions and lambda expressions consisting of operator calls).
If operators are regarded as functions, it is easy to see that lambda expressions using operators are partial function applications as well.
E.g. the lambda expression <literal>_1 + 1</literal> can be seen as syntactic sugar for the pseudo code <literal>bind(operator+, _1, 1)</literal>.
</para>
-->
</section>
<section id="lambda.terminology">
<title>Terminology</title>
<para>
A lambda expression defines a function. A C++ lambda expression concretely constructs a function object, <emphasis>a functor</emphasis>, when evaluated. We use the name <emphasis>lambda functor</emphasis> to refer to such a function object.
Hence, in the terminology adopted here, the result of evaluating a lambda expression is a lambda functor.
</para>
</section>
</section>
</section>
<section id = "lambda.using_library">
<title>Using the library</title>
<para>
The purpose of this section is to introduce the basic functionality of the library.
There are quite a lot of exceptions and special cases, but discussion of them is postponed until later sections.
</para>
<section id = "lambda.introductory_examples">
<title>Introductory Examples</title>
<para>
In this section we give basic examples of using BLL lambda expressions in STL algorithm invocations.
We start with some simple expressions and work up.
First, we initialize the elements of a container, say, a <literal>list</literal>, to the value <literal>1</literal>:
<programlisting>
<![CDATA[list<int> v(10);
for_each(v.begin(), v.end(), _1 = 1);]]></programlisting>
The expression <literal>_1 = 1</literal> creates a lambda functor which assigns the value <literal>1</literal> to every element in <literal>v</literal>.<footnote>
<para>
Strictly taken, the C++ standard defines <literal>for_each</literal> as a <emphasis>non-modifying sequence operation</emphasis>, and the function object passed to <literal moreinfo="none">for_each</literal> should not modify its argument.
The requirements for the arguments of <literal>for_each</literal> are unnecessary strict, since as long as the iterators are <emphasis>mutable</emphasis>, <literal>for_each</literal> accepts a function object that can have side-effects on their argument.
Nevertheless, it is straightforward to provide another function template with the functionality of<literal>std::for_each</literal> but more fine-grained requirements for its arguments.
</para>
</footnote>
</para>
<para>
Next, we create a container of pointers and make them point to the elements in the first container <literal>v</literal>:
<programlisting>
<![CDATA[vector<int*> vp(10);
transform(v.begin(), v.end(), vp.begin(), &_1);]]></programlisting>
The expression <literal><![CDATA[&_1]]></literal> creates a function object for getting the address of each element in <literal>v</literal>.
The addresses get assigned to the corresponding elements in <literal>vp</literal>.
</para>
<para>
The next code fragment changes the values in <literal>v</literal>.
For each element, the function <literal>foo</literal> is called.
The original value of the element is passed as an argument to <literal>foo</literal>.
The result of <literal>foo</literal> is assigned back to the element:
<programlisting>
<![CDATA[int foo(int);
for_each(v.begin(), v.end(), _1 = bind(foo, _1));]]></programlisting>
</para>
<para>
The next step is to sort the elements of <literal>vp</literal>:
<programlisting>sort(vp.begin(), vp.end(), *_1 > *_2);</programlisting>
In this call to <literal>sort</literal>, we are sorting the elements by their contents in descending order.
</para>
<para>
Finally, the following <literal>for_each</literal> call outputs the sorted content of <literal>vp</literal> separated by line breaks:
<programlisting>
<![CDATA[for_each(vp.begin(), vp.end(), cout << *_1 << '\n');]]>
</programlisting>
Note that a normal (non-lambda) expression as subexpression of a lambda expression is evaluated immediately.
This may cause surprises.
For instance, if the previous example is rewritten as
<programlisting>
<![CDATA[for_each(vp.begin(), vp.end(), cout << '\n' << *_1);]]>
</programlisting>
the subexpression <literal><![CDATA[cout << '\n']]></literal> is evaluated immediately and the effect is to output a single line break, followed by the elements of <literal>vp</literal>.
The BLL provides functions <literal>constant</literal> and <literal>var</literal> to turn constants and, respectively, variables into lambda expressions, and can be used to prevent the immediate evaluation of subexpressions:
<programlisting>
<![CDATA[for_each(vp.begin(), vp.end(), cout << constant('\n') << *_1);]]>
</programlisting>
These functions are described more thoroughly in <xref linkend="lambda.delaying_constants_and_variables"/>
</para>
</section>
<section id="lambda.parameter_and_return_types">
<title>Parameter and return types of lambda functors</title>
<para>
During the invocation of a lambda functor, the actual arguments are substituted for the placeholders.
The placeholders do not dictate the type of these actual arguments.
The basic rule is that a lambda function can be called with arguments of any types, as long as the lambda expression with substitutions performed is a valid C++ expression.
As an example, the expression
<literal>_1 + _2</literal> creates a binary lambda functor.
It can be called with two objects of any types <literal>A</literal> and <literal>B</literal> for which <literal>operator+(A,B)</literal> is defined (and for which BLL knows the return type of the operator, see below).
</para>
<para>
C++ lacks a mechanism to query a type of an expression.
However, this precise mechanism is crucial for the implementation of C++ lambda expressions.
Consequently, BLL includes a somewhat complex type deduction system which uses a set of traits classes for deducing the resulting type of lambda functions.
It handles expressions where the operands are of built-in types and many of the expressions with operands of standard library types.
Many of the user defined types are covered as well, particularly if the user defined operators obey normal conventions in defining the return types.
</para>
<!-- TODO: move this forward, and just refer to it. -->
<para>
There are, however, cases when the return type cannot be deduced. For example, suppose you have defined:
<programlisting>C operator+(A, B);</programlisting>
The following lambda function invocation fails, since the return type cannot be deduced:
<programlisting>A a; B b; (_1 + _2)(a, b);</programlisting>
</para>
<para>
There are two alternative solutions to this.
The first is to extend the BLL type deduction system to cover your own types (see <xref linkend="lambda.extending"/>).
The second is to use a special lambda expression (<literal>ret</literal>) which defines the return type in place (see <xref linkend = "lambda.overriding_deduced_return_type"/>):
<programlisting><![CDATA[A a; B b; ret<C>(_1 + _2)(a, b);]]></programlisting>
</para>
<para>
For bind expressions, the return type can be defined as a template argument of the bind function as well:
<programlisting><![CDATA[bind<int>(foo, _1, _2);]]></programlisting>
<!--
A rare case, where the <literal><![CDATA[ret<type>(bind(...))]]></literal> syntax does not work, but
<literal><![CDATA[bind<type>(...)]]></literal> does, is explained in <xref linkend="lambda.nullary_functors_and_ret"/>.
-->
</para>
</section>
<section id="lambda.actual_arguments_to_lambda_functors">
<title>About actual arguments to lambda functors</title>
<!-- <para><emphasis>This section is no longer (or currently) relevant;
acual arguments can be non-const rvalues.
The section can, however, become relevant again, if in the future BLL will support
lambda functors with higher arities than 3.</emphasis></para> -->
<para>A general restriction for the actual arguments is that they cannot be non-const rvalues.
For example:
<programlisting>
int i = 1; int j = 2;
(_1 + _2)(i, j); // ok
(_1 + _2)(1, 2); // error (!)
</programlisting>
This restriction is not as bad as it may look.
Since the lambda functors are most often called inside STL-algorithms,
the arguments originate from dereferencing iterators and the dereferencing operators seldom return rvalues.
And for the cases where they do, there are workarounds discussed in
<xref linkend="lambda.rvalues_as_actual_arguments"/>.
</para>
</section>
<section id="lambda.storing_bound_arguments">
<title>Storing bound arguments in lambda functions</title>
<para>
By default, temporary const copies of the bound arguments are stored
in the lambda functor.
This means that the value of a bound argument is fixed at the time of the
creation of the lambda function and remains constant during the lifetime
of the lambda function object.
For example:
<programlisting>
int i = 1;
(_1 = 2, _1 + i)(i);
</programlisting>
The comma operator is overloaded to combine lambda expressions into a sequence;
the resulting unary lambda functor first assigns 2 to its argument,
then adds the value of <literal>i</literal> to it.
The value of the expression in the last line is 3, not 4.
In other words, the lambda expression that is created is
<literal>lambda x.(x = 2, x + 1)</literal> rather than
<literal>lambda x.(x = 2, x + i)</literal>.
</para>
<para>
As said, this is the default behavior for which there are exceptions.
The exact rules are as follows:
<itemizedlist>
<listitem>
<para>
The programmer can control the storing mechanism with <literal>ref</literal>
and <literal>cref</literal> wrappers <xref linkend="cit:boost::ref"/>.
Wrapping an argument with <literal>ref</literal>, or <literal>cref</literal>,
instructs the library to store the argument as a reference,
or as a reference to const respectively.
For example, if we rewrite the previous example and wrap the variable
<literal>i</literal> with <literal>ref</literal>,
we are creating the lambda expression <literal>lambda x.(x = 2, x + i)</literal>
and the value of the expression in the last line will be 4:
<programlisting>
i = 1;
(_1 = 2, _1 + ref(i))(i);
</programlisting>
Note that <literal>ref</literal> and <literal>cref</literal> are different
from <literal>var</literal> and <literal>constant</literal>.
While the latter ones create lambda functors, the former do not.
For example:
<programlisting>
int i;
var(i) = 1; // ok
ref(i) = 1; // not ok, ref(i) is not a lambda functor
</programlisting>
The functions <literal>ref</literal> and <literal>cref</literal> mostly
exist for historical reasons,
and <literal>ref</literal> can always
be replaced with <literal>var</literal>, and <literal>cref</literal> with
<literal>constant_ref</literal>.
See <xref linkend="lambda.delaying_constants_and_variables"/> for details.
The <literal>ref</literal> and <literal>cref</literal> functions are
general purpose utility functions in Boost, and hence defined directly
in the <literal moreinfo="none">boost</literal> namespace.
</para>
</listitem>
<listitem>
<para>
Array types cannot be copied, they are thus stored as const reference by default.
</para>
</listitem>
<listitem>
<para>
For some expressions it makes more sense to store the arguments as references.
For example, the obvious intention of the lambda expression
<literal>i += _1</literal> is that calls to the lambda functor affect the
value of the variable <literal>i</literal>,
rather than some temporary copy of it.
As another example, the streaming operators take their leftmost argument
as non-const references.
The exact rules are:
<itemizedlist>
<listitem>
<para>The left argument of compound assignment operators (<literal>+=</literal>, <literal>*=</literal>, etc.) are stored as references to non-const.</para>
</listitem>
<listitem>
<para>If the left argument of <literal><![CDATA[<<]]></literal> or <literal><![CDATA[>>]]></literal> operator is derived from an instantiation of <literal>basic_ostream</literal> or respectively from <literal>basic_istream</literal>, the argument is stored as a reference to non-const.
For all other types, the argument is stored as a copy.
</para>
</listitem>
<listitem>
<para>
In pointer arithmetic expressions, non-const array types are stored as non-const references.
This is to prevent pointer arithmetic making non-const arrays const.
</para>
</listitem>
</itemizedlist>
</para>
</listitem>
</itemizedlist>
</para>
</section>
</section>
<section id="lambda.le_in_details">
<title>Lambda expressions in details</title>
<para>
This section describes different categories of lambda expressions in details.
We devote a separate section for each of the possible forms of a lambda expression.
</para>
<section id="lambda.placeholders">
<title>Placeholders</title>
<para>
The BLL defines three placeholder types: <literal>placeholder1_type</literal>, <literal>placeholder2_type</literal> and <literal>placeholder3_type</literal>.
BLL has a predefined placeholder variable for each placeholder type: <literal>_1</literal>, <literal>_2</literal> and <literal>_3</literal>.
However, the user is not forced to use these placeholders.
It is easy to define placeholders with alternative names.
This is done by defining new variables of placeholder types.
For example:
<programlisting>boost::lambda::placeholder1_type X;
boost::lambda::placeholder2_type Y;
boost::lambda::placeholder3_type Z;
</programlisting>
With these variables defined, <literal>X += Y * Z</literal> is equivalent to <literal>_1 += _2 * _3</literal>.
</para>
<para>
The use of placeholders in the lambda expression determines whether the resulting function is nullary, unary, binary or 3-ary.
The highest placeholder index is decisive. For example:
<programlisting>
_1 + 5 // unary
_1 * _1 + _1 // unary
_1 + _2 // binary
bind(f, _1, _2, _3) // 3-ary
_3 + 10 // 3-ary
</programlisting>
Note that the last line creates a 3-ary function, which adds <literal>10</literal> to its <emphasis>third</emphasis> argument.
The first two arguments are discarded.
Furthermore, lambda functors only have a minimum arity.
One can always provide more arguments (up the number of supported placeholders)
that is really needed.
The remaining arguments are just discarded.
For example:
<programlisting>
int i, j, k;
_1(i, j, k) // returns i, discards j and k
(_2 + _2)(i, j, k) // returns j+j, discards i and k
</programlisting>
See
<xref linkend="lambda.why_weak_arity"/> for the design rationale behind this
functionality.
</para>
<para>
In addition to these three placeholder types, there is also a fourth placeholder type <literal>placeholderE_type</literal>.
The use of this placeholder is defined in <xref linkend="lambda.exceptions"/> describing exception handling in lambda expressions.
</para>
<para>When an actual argument is supplied for a placeholder, the parameter passing mode is always by reference.
This means that any side-effects to the placeholder are reflected to the actual argument.
For example:
<programlisting>
<![CDATA[int i = 1;
(_1 += 2)(i); // i is now 3
(++_1, cout << _1)(i) // i is now 4, outputs 4]]>
</programlisting>
</para>
</section>
<section id="lambda.operator_expressions">
<title>Operator expressions</title>
<para>
The basic rule is that any C++ operator invocation with at least one argument being a lambda expression is itself a lambda expression.
Almost all overloadable operators are supported.
For example, the following is a valid lambda expression:
<programlisting><![CDATA[cout << _1, _2[_3] = _1 && false]]></programlisting>
</para>
<para>
However, there are some restrictions that originate from the C++ operator overloading rules, and some special cases.
</para>
<section>
<title>Operators that cannot be overloaded</title>
<para>
Some operators cannot be overloaded at all (<literal>::</literal>, <literal>.</literal>, <literal>.*</literal>).
For some operators, the requirements on return types prevent them to be overloaded to create lambda functors.
These operators are <literal>->.</literal>, <literal>-></literal>, <literal>new</literal>, <literal>new[]</literal>, <literal>delete</literal>, <literal>delete[]</literal> and <literal>?:</literal> (the conditional operator).
</para>
</section>
<section id="lambda.assignment_and_subscript">
<title>Assignment and subscript operators</title>
<para>
These operators must be implemented as class members.
Consequently, the left operand must be a lambda expression. For example:
<programlisting>
int i;
_1 = i; // ok
i = _1; // not ok. i is not a lambda expression
</programlisting>
There is a simple solution around this limitation, described in <xref linkend="lambda.delaying_constants_and_variables"/>.
In short,
the left hand argument can be explicitly turned into a lambda functor by wrapping it with a special <literal>var</literal> function:
<programlisting>
var(i) = _1; // ok
</programlisting>
</para>
</section>
<section id="lambda.logical_operators">
<title>Logical operators</title>
<para>
Logical operators obey the short-circuiting evaluation rules. For example, in the following code, <literal>i</literal> is never incremented:
<programlisting>
bool flag = true; int i = 0;
(_1 || ++_2)(flag, i);
</programlisting>
</para>
</section>
<section id="lambda.comma_operator">
<title>Comma operator</title>
<para>
Comma operator is the <quote>statement separator</quote> in lambda expressions.
Since comma is also the separator between arguments in a function call, extra parenthesis are sometimes needed:
<programlisting>
for_each(a.begin(), a.end(), (++_1, cout << _1));
</programlisting>
Without the extra parenthesis around <literal>++_1, cout << _1</literal>, the code would be interpreted as an attempt to call <literal>for_each</literal> with four arguments.
</para>
<para>
The lambda functor created by the comma operator adheres to the C++ rule of always evaluating the left operand before the right one.
In the above example, each element of <literal>a</literal> is first incremented, then written to the stream.
</para>
</section>
<section id="lambda.function_call_operator">
<title>Function call operator</title>
<para>
The function call operators have the effect of evaluating the lambda
functor.
Calls with too few arguments lead to a compile time error.
</para>
</section>
<section id="lambda.member_pointer_operator">
<title>Member pointer operator</title>
<para>
The member pointer operator <literal>operator->*</literal> can be overloaded freely.
Hence, for user defined types, member pointer operator is no special case.
The built-in meaning, however, is a somewhat more complicated case.
The built-in member pointer operator is applied if the left argument is a pointer to an object of some class <literal>A</literal>, and the right hand argument is a pointer to a member of <literal>A</literal>, or a pointer to a member of a class from which <literal>A</literal> derives.
We must separate two cases:
<itemizedlist>
<listitem>
<para>The right hand argument is a pointer to a data member.
In this case the lambda functor simply performs the argument substitution and calls the built-in member pointer operator, which returns a reference to the member pointed to.
For example:
<programlisting>
<![CDATA[struct A { int d; };
A* a = new A();
...
(a ->* &A::d); // returns a reference to a->d
(_1 ->* &A::d)(a); // likewise]]>
</programlisting>
</para>
</listitem>
<listitem>
<para>
The right hand argument is a pointer to a member function.
For a built-in call like this, the result is kind of a delayed member function call.
Such an expression must be followed by a function argument list, with which the delayed member function call is performed.
For example:
<programlisting>
<![CDATA[struct B { int foo(int); };
B* b = new B();
...
(b ->* &B::foo) // returns a delayed call to b->foo
// a function argument list must follow
(b ->* &B::foo)(1) // ok, calls b->foo(1)
(_1 ->* &B::foo)(b); // returns a delayed call to b->foo,
// no effect as such
(_1 ->* &B::foo)(b)(1); // calls b->foo(1)]]>
</programlisting>
</para>
</listitem>
</itemizedlist>
</para>
</section>
</section>
<section id="lambda.bind_expressions">
<title>Bind expressions</title>
<para>
Bind expressions can have two forms:
<!-- TODO: shouldn't really be emphasis, but a variable or something-->
<programlisting>
bind(<parameter>target-function</parameter>, <parameter>bind-argument-list</parameter>)
bind(<parameter>target-member-function</parameter>, <parameter>object-argument</parameter>, <parameter>bind-argument-list</parameter>)
</programlisting>
A bind expression delays the call of a function.
If this <emphasis>target function</emphasis> is <emphasis>n</emphasis>-ary, then the <literal><emphasis>bind-argument-list</emphasis></literal> must contain <emphasis>n</emphasis> arguments as well.
In the current version of the BLL, <inlineequation>0 <= n <= 9</inlineequation> must hold.
For member functions, the number of arguments must be at most <inlineequation>8</inlineequation>, as the object argument takes one argument position.
Basically, the
<emphasis><literal>bind-argument-list</literal></emphasis> must be a valid argument list for the target function, except that any argument can be replaced with a placeholder, or more generally, with a lambda expression.
Note that also the target function can be a lambda expression.
The result of a bind expression is either a nullary, unary, binary or 3-ary function object depending on the use of placeholders in the <emphasis><literal>bind-argument-list</literal></emphasis> (see <xref linkend="lambda.placeholders"/>).
</para>
<para>
The return type of the lambda functor created by the bind expression can be given as an explicitly specified template parameter, as in the following example:
<programlisting>
bind<<emphasis>RET</emphasis>>(<emphasis>target-function</emphasis>, <emphasis>bind-argument-list</emphasis>)
</programlisting>
This is only necessary if the return type of the target function cannot be deduced.
</para>
<para>
The following sections describe the different types of bind expressions.
</para>
<section id="lambda.function_pointers_as_targets">
<title>Function pointers or references as targets</title>
<para>The target function can be a pointer or a reference to a function and it can be either bound or unbound. For example:
<programlisting>
<![CDATA[X foo(A, B, C); A a; B b; C c;
bind(foo, _1, _2, c)(a, b);
bind(&foo, _1, _2, c)(a, b);
bind(_1, a, b, c)(foo);]]>
</programlisting>
The return type deduction always succeeds with this type of bind expressions.
</para>
<para>
Note, that in C++ it is possible to take the address of an overloaded function only if the address is assigned to, or used as an initializer of, a variable, the type of which solves the amibiguity, or if an explicit cast expression is used.
This means that overloaded functions cannot be used in bind expressions directly, e.g.:
<programlisting>
<![CDATA[void foo(int);
void foo(float);
int i;
...
bind(&foo, _1)(i); // error
...
void (*pf1)(int) = &foo;
bind(pf1, _1)(i); // ok
bind(static_cast<void(*)(int)>(&foo), _1)(i); // ok]]>
</programlisting>
</para>
</section>
<section id="member_functions_as_targets">
<title>Member functions as targets</title>
<para>
The syntax for using pointers to member function in bind expression is:
<programlisting>
bind(<parameter>target-member-function</parameter>, <parameter>object-argument</parameter>, <parameter>bind-argument-list</parameter>)
</programlisting>
The object argument can be a reference or pointer to the object, the BLL supports both cases with a uniform interface:
<programlisting>
<![CDATA[bool A::foo(int) const;
A a;
vector<int> ints;
...
find_if(ints.begin(), ints.end(), bind(&A::foo, a, _1));
find_if(ints.begin(), ints.end(), bind(&A::foo, &a, _1));]]>
</programlisting>
Similarly, if the object argument is unbound, the resulting lambda functor can be called both via a pointer or a reference:
<programlisting>
<![CDATA[bool A::foo(int);
list<A> refs;
list<A*> pointers;
...
find_if(refs.begin(), refs.end(), bind(&A::foo, _1, 1));
find_if(pointers.begin(), pointers.end(), bind(&A::foo, _1, 1));]]>
</programlisting>
</para>
<!--%The exact rules for the object argument (whether it is bound, or supplied in the lambda function invoction) are as follows:
%If the target function is a pointer to a member function of some class \snip{A}, then the object argument must be an expression of type \snip{B}, where either
%\begin{itemize}
%\item \snip{B} = \snip{A} or there is an implicit conversion from \snip{B} to \snip{A}.
%\item \snip{B} = \snip{A*}.
%\item \snip{B} = \snip{C*}, where \snip{C} is any class derived form \snip{A}.
%\end{itemize}
%For example:
%\begin{alltt}
%struct A \{
% virtual void f();
% void fc() const;
%\};
%
%struct B : public A \{
% virtual void f();
%\};
%
%struct C \{
% operator A const() \{ return A(); \}
%\};
%
% A a; B b; C c;
% ...
% bind(&A::f, a)();
% bind(&A::f, b)(); // calls B::f
% bind(&A::fc, c)();
%
% bind(&A::f, &a)();
% bind(&A::f, &b)(); // calls B::f
% bind(&A::f, &c)(); // error: no conversion from C* \(\rightarrow\) A,
%\end{alltt}
-->
<para>
Even though the interfaces are the same, there are important semantic differences between using a pointer or a reference as the object argument.
The differences stem from the way <literal>bind</literal>-functions take their parameters, and how the bound parameters are stored within the lambda functor.
The object argument has the same parameter passing and storing mechanism as any other bind argument slot (see <xref linkend="lambda.storing_bound_arguments"/>); it is passed as a const reference and stored as a const copy in the lambda functor.
This creates some asymmetry between the lambda functor and the original member function, and between seemingly similar lambda functors. For example:
<programlisting>
class A {
int i; mutable int j;
public:
A(int ii, int jj) : i(ii), j(jj) {};
void set_i(int x) { i = x; };
void set_j(int x) const { j = x; };
};
</programlisting>
When a pointer is used, the behavior is what the programmer might expect:
<programlisting>
<![CDATA[A a(0,0); int k = 1;
bind(&A::set_i, &a, _1)(k); // a.i == 1
bind(&A::set_j, &a, _1)(k); // a.j == 1]]>
</programlisting>
Even though a const copy of the object argument is stored, the original object <literal>a</literal> is still modified.
This is since the object argument is a pointer, and the pointer is copied, not the object it points to.
When we use a reference, the behaviour is different:
<programlisting>
<![CDATA[A a(0,0); int k = 1;
bind(&A::set_i, a, _1)(k); // error; a const copy of a is stored.
// Cannot call a non-const function set_i
bind(&A::set_j, a, _1)(k); // a.j == 0, as a copy of a is modified]]>
</programlisting>
</para>
<para>
To prevent the copying from taking place, one can use the <literal>ref</literal> or <literal>cref</literal> wrappers (<literal>var</literal> and <literal>constant_ref</literal> would do as well):
<programlisting>
<![CDATA[bind(&A::set_i, ref(a), _1)(k); // a.j == 1
bind(&A::set_j, cref(a), _1)(k); // a.j == 1]]>
</programlisting>
</para>
<para>Note that the preceding discussion is relevant only for bound arguments.
If the object argument is unbound, the parameter passing mode is always by reference.
Hence, the argument <literal>a</literal> is not copied in the calls to the two lambda functors below:
<programlisting>
<![CDATA[A a(0,0);
bind(&A::set_i, _1, 1)(a); // a.i == 1
bind(&A::set_j, _1, 1)(a); // a.j == 1]]>
</programlisting>
</para>
</section>
<section id="lambda.members_variables_as_targets">
<title>Member variables as targets</title>
<para>
A pointer to a member variable is not really a function, but
the first argument to the <literal>bind</literal> function can nevertheless
be a pointer to a member variable.
Invoking such a bind expression returns a reference to the data member.
For example:
<programlisting>
<![CDATA[struct A { int data; };
A a;
bind(&A::data, _1)(a) = 1; // a.data == 1]]>
</programlisting>
The cv-qualifiers of the object whose member is accessed are respected.
For example, the following tries to write into a const location:
<programlisting>
<![CDATA[const A ca = a;
bind(&A::data, _1)(ca) = 1; // error]]>
</programlisting>
</para>
</section>
<section id="lambda.function_objects_as_targets">
<title>Function objects as targets</title>
<para>
Function objects, that is, class objects which have the function call
operator defined, can be used as target functions.
In general, BLL cannot deduce the return type of an arbitrary function object.
However, there are two methods for giving BLL this capability for a certain
function object class.
</para>
<simplesect>
<title>The result_type typedef</title>
<para>
The BLL supports the standard library convention of declaring the return type
of a function object with a member typedef named <literal>result_type</literal> in the
function object class.
Here is a simple example:
<programlisting>
<![CDATA[struct A {
typedef B result_type;
B operator()(X, Y, Z);
};]]>
</programlisting>
If a function object does not define a <literal>result_type</literal> typedef,
the method described below (<literal>sig</literal> template)
is attempted to resolve the return type of the
function object. If a function object defines both <literal>result_type</literal>
and <literal>sig</literal>, <literal>result_type</literal> takes precedence.
</para>
</simplesect>
<simplesect>
<title>The sig template</title>
<para>
Another mechanism that make BLL aware of the return type(s) of a function object is defining
member template struct
<literal><![CDATA[sig<Args>]]></literal> with a typedef
<literal>type</literal> that specifies the return type.
Here is a simple example:
<programlisting>
<![CDATA[struct A {
template <class Args> struct sig { typedef B type; }
B operator()(X, Y, Z);
};]]>
</programlisting>
The template argument <literal>Args</literal> is a
<literal>tuple</literal> (or more precisely a <literal>cons</literal> list)
type <xref linkend="cit:boost::tuple"/>, where the first element
is the function
object type itself, and the remaining elements are the types of
the arguments, with which the function object is being called.
This may seem overly complex compared to defining the <literal>result_type</literal> typedef.
Howver, there are two significant restrictions with using just a simple
typedef to express the return type:
<orderedlist>
<listitem>
<para>
If the function object defines several function call operators, there is no way to specify different result types for them.
</para>
</listitem>
<listitem>
<para>
If the function call operator is a template, the result type may
depend on the template parameters.
Hence, the typedef ought to be a template too, which the C++ language
does not support.
</para>
</listitem>
</orderedlist>
The following code shows an example, where the return type depends on the type
of one of the arguments, and how that dependency can be expressed with the
<literal>sig</literal> template:
<programlisting>
<![CDATA[struct A {
// the return type equals the third argument type:
template<class T1, class T2, class T3>
T3 operator()(const T1& t1, const T2& t2, const T3& t3) const;
template <class Args>
class sig {
// get the third argument type (4th element)
typedef typename
boost::tuples::element<3, Args>::type T3;
public:
typedef typename
boost::remove_cv<T3>::type type;
};
};]]>
</programlisting>
The elements of the <literal>Args</literal> tuple are always
non-reference types.
Moreover, the element types can have a const or volatile qualifier
(jointly referred to as <emphasis>cv-qualifiers</emphasis>), or both.
This is since the cv-qualifiers in the arguments can affect the return type.
The reason for including the potentially cv-qualified function object
type itself into the <literal>Args</literal> tuple, is that the function
object class can contain both const and non-const (or volatile, even
const volatile) function call operators, and they can each have a different
return type.
</para>
<para>
The <literal>sig</literal> template can be seen as a
<emphasis>meta-function</emphasis> that maps the argument type tuple to
the result type of the call made with arguments of the types in the tuple.
As the example above demonstrates, the template can end up being somewhat
complex.
Typical tasks to be performed are the extraction of the relevant types
from the tuple, removing cv-qualifiers etc.
See the Boost type_traits <xref linkend="cit:boost::type_traits"/> and
Tuple <xref linkend="cit:boost::type_traits"/> libraries
for tools that can aid in these tasks.
The <literal>sig</literal> templates are a refined version of a similar
mechanism first introduced in the FC++ library
<xref linkend="cit:fc++"/>.
</para>
</simplesect>
</section>
</section>
<section id="lambda.overriding_deduced_return_type">
<title>Overriding the deduced return type</title>
<para>
The return type deduction system may not be able to deduce the return types of some user defined operators or bind expressions with class objects.
<!-- (see the example in <xref linkend="lambda.parameter_and_return_types"/>).-->
A special lambda expression type is provided for stating the return type explicitly and overriding the deduction system.
To state that the return type of the lambda functor defined by the lambda expression <literal>e</literal> is <literal>T</literal>, you can write:
<programlisting><![CDATA[ret<T>(e);]]></programlisting>
The effect is that the return type deduction is not performed for the lambda expression <literal>e</literal> at all, but instead, <literal>T</literal> is used as the return type.
Obviously <literal>T</literal> cannot be an arbitrary type, the true result of the lambda functor must be implicitly convertible to <literal>T</literal>.
For example:
<programlisting>
<![CDATA[A a; B b;
C operator+(A, B);
int operator*(A, B);
...
ret<D>(_1 + _2)(a, b); // error (C cannot be converted to D)
ret<C>(_1 + _2)(a, b); // ok
ret<float>(_1 * _2)(a, b); // ok (int can be converted to float)
...
struct X {
Y operator(int)();
};
...
X x; int i;
bind(x, _1)(i); // error, return type cannot be deduced
ret<Y>(bind(x, _1))(i); // ok]]>
</programlisting>
For bind expressions, there is a short-hand notation that can be used instead of <literal>ret</literal>.
The last line could alternatively be written as:
<programlisting><![CDATA[bind<Z>(x, _1)(i);]]></programlisting>
This feature is modeled after the Boost Bind library <xref linkend="cit:boost::bind"/>.
</para>
<para>Note that within nested lambda expressions,
the <literal>ret</literal> must be used at each subexpression where
the deduction would otherwise fail.
For example:
<programlisting>
<![CDATA[A a; B b;
C operator+(A, B); D operator-(C);
...
ret<D>( - (_1 + _2))(a, b); // error
ret<D>( - ret<C>(_1 + _2))(a, b); // ok]]>
</programlisting>
</para>
<para>If you find yourself using <literal>ret</literal> repeatedly with the same types, it is worth while extending the return type deduction (see <xref linkend="lambda.extending"/>).
</para>
<section id="lambda.nullary_functors_and_ret">
<title>Nullary lambda functors and ret</title>
<para>
As stated above, the effect of <literal>ret</literal> is to prevent the return type deduction to be performed.
However, there is an exception.
Due to the way the C++ template instantiation works, the compiler is always forced to instantiate the return type deduction templates for zero-argument lambda functors.
This introduces a slight problem with <literal>ret</literal>, best described with an example:
<programlisting>
<![CDATA[struct F { int operator()(int i) const; };
F f;
...
bind(f, _1); // fails, cannot deduce the return type
ret<int>(bind(f, _1)); // ok
...
bind(f, 1); // fails, cannot deduce the return type
ret<int>(bind(f, 1)); // fails as well!]]>
</programlisting>
The BLL cannot deduce the return types of the above bind calls, as <literal>F</literal> does not define the typedef <literal>result_type</literal>.
One would expect <literal>ret</literal> to fix this, but for the nullary lambda functor that results from a bind expression (last line above) this does not work.
The return type deduction templates are instantiated, even though it would not be necessary and the result is a compilation error.
</para>
<para>The solution to this is not to use the <literal>ret</literal> function, but rather define the return type as an explicitly specified template parameter in the <literal>bind</literal> call:
<programlisting>
<![CDATA[bind<int>(f, 1); // ok]]>
</programlisting>
The lambda functors created with
<literal>ret<<parameter>T</parameter>>(bind(<parameter>arg-list</parameter>))</literal> and
<literal>bind<<parameter>T</parameter>>(<parameter>arg-list</parameter>)</literal> have the exact same functionality —
apart from the fact that for some nullary lambda functors the former does not work while the latter does.
</para>
</section>
</section>
<section id="lambda.delaying_constants_and_variables">
<title>Delaying constants and variables</title>
<para>
The unary functions <literal>constant</literal>,
<literal>constant_ref</literal> and <literal>var</literal> turn their argument into a lambda functor, that implements an identity mapping.
The former two are for constants, the latter for variables.
The use of these <emphasis>delayed</emphasis> constants and variables is sometimes necessary due to the lack of explicit syntax for lambda expressions.
For example:
<programlisting>
<![CDATA[for_each(a.begin(), a.end(), cout << _1 << ' ');
for_each(a.begin(), a.end(), cout << ' ' << _1);]]>
</programlisting>
The first line outputs the elements of <literal>a</literal> separated by spaces, while the second line outputs a space followed by the elements of <literal>a</literal> without any separators.
The reason for this is that neither of the operands of
<literal><![CDATA[cout << ' ']]></literal> is a lambda expression, hence <literal><![CDATA[cout << ' ']]></literal> is evaluated immediately.
To delay the evaluation of <literal><![CDATA[cout << ' ']]></literal>, one of the operands must be explicitly marked as a lambda expression.
This is accomplished with the <literal>constant</literal> function:
<programlisting>
<![CDATA[for_each(a.begin(), a.end(), cout << constant(' ') << _1);]]>
</programlisting>
The call <literal>constant(' ')</literal> creates a nullary lambda functor which stores the character constant <literal>' '</literal>
and returns a reference to it when invoked.
The function <literal>constant_ref</literal> is similar, except that it
stores a constant reference to its argument.
The <literal>constant</literal> and <literal>consant_ref</literal> are only
needed when the operator call has side effects, like in the above example.
</para>
<para>
Sometimes we need to delay the evaluation of a variable.
Suppose we wanted to output the elements of a container in a numbered list:
<programlisting>
<![CDATA[int index = 0;
for_each(a.begin(), a.end(), cout << ++index << ':' << _1 << '\n');
for_each(a.begin(), a.end(), cout << ++var(index) << ':' << _1 << '\n');]]>
</programlisting>
The first <literal>for_each</literal> invocation does not do what we want; <literal>index</literal> is incremented only once, and its value is written into the output stream only once.
By using <literal>var</literal> to make <literal>index</literal> a lambda expression, we get the desired effect.
<!-- Note that <literal>var</literal> accepts const objects as well, in which case
calling <literal>var</literal> equals calling <literal>constant_ref</literal>.-->
</para>
<para>
In sum, <literal>var(x)</literal> creates a nullary lambda functor,
which stores a reference to the variable <literal>x</literal>.
When the lambda functor is invoked, a reference to <literal>x</literal> is returned.
</para>
<simplesect>
<title>Naming delayed constants and variables</title>
<para>
It is possible to predefine and name a delayed variable or constant outside a lambda expression.
The templates <literal>var_type</literal>, <literal>constant_type</literal>
and <literal>constant_ref_type</literal> serve for this purpose.
They are used as:
<programlisting>
<![CDATA[var_type<T>::type delayed_i(var(i));
constant_type<T>::type delayed_c(constant(c));]]>
</programlisting>
The first line defines the variable <literal>delayed_i</literal> which is a delayed version of the variable <literal>i</literal> of type <literal>T</literal>.
Analogously, the second line defines the constant <literal>delayed_c</literal> as a delayed version of the constant <literal>c</literal>.
For example:
<programlisting>
int i = 0; int j;
for_each(a.begin(), a.end(), (var(j) = _1, _1 = var(i), var(i) = var(j)));
</programlisting>
is equivalent to:
<programlisting>
<![CDATA[int i = 0; int j;
var_type<int>::type vi(var(i)), vj(var(j));
for_each(a.begin(), a.end(), (vj = _1, _1 = vi, vi = vj));]]>
</programlisting>
</para>
<para>
Here is an example of naming a delayed constant:
<programlisting>
<![CDATA[constant_type<char>::type space(constant(' '));
for_each(a.begin(),a.end(), cout << space << _1);]]>
</programlisting>
</para>
</simplesect>
<simplesect>
<title>About assignment and subscript operators</title>
<para>
As described in <xref linkend="lambda.assignment_and_subscript"/>, assignment and subscripting operators are always defined as member functions.
This means, that for expressions of the form
<literal>x = y</literal> or <literal>x[y]</literal> to be interpreted as lambda expressions, the left-hand operand <literal>x</literal> must be a lambda expression.
Consequently, it is sometimes necessary to use <literal>var</literal> for this purpose.
We repeat the example from <xref linkend="lambda.assignment_and_subscript"/>:
<programlisting>
int i;
i = _1; // error
var(i) = _1; // ok
</programlisting>
</para>
<para>
Note that the compound assignment operators <literal>+=</literal>, <literal>-=</literal> etc. can be defined as non-member functions, and thus they are interpreted as lambda expressions even if only the right-hand operand is a lambda expression.
Nevertheless, it is perfectly ok to delay the left operand explicitly.
For example, <literal>i += _1</literal> is equivalent to <literal>var(i) += _1</literal>.
</para>
</simplesect>
</section>
<section id="lambda.lambda_expressions_for_control_structures">
<title>Lambda expressions for control structures</title>
<para>
BLL defines several functions to create lambda functors that represent control structures.
They all take lambda functors as parameters and return <literal>void</literal>.
To start with an example, the following code outputs all even elements of some container <literal>a</literal>:
<programlisting>
<![CDATA[for_each(a.begin(), a.end(),
if_then(_1 % 2 == 0, cout << _1));]]>
</programlisting>
</para>
<para>
The BLL supports the following function templates for control structures:
<programlisting>
if_then(condition, then_part)
if_then_else(condition, then_part, else_part)
if_then_else_return(condition, then_part, else_part)
while_loop(condition, body)
while_loop(condition) // no body case
do_while_loop(condition, body)
do_while_loop(condition) // no body case
for_loop(init, condition, increment, body)
for_loop(init, condition, increment) // no body case
switch_statement(...)
</programlisting>
The return types of all control construct lambda functor is
<literal>void</literal>, except for <literal>if_then_else_return</literal>,
which wraps a call to the conditional operator
<programlisting>
condition ? then_part : else_part
</programlisting>
The return type rules for this operator are somewhat complex.
Basically, if the branches have the same type, this type is the return type.
If the type of the branches differ, one branch, say of type
<literal>A</literal>, must be convertible to the other branch,
say of type <literal>B</literal>.
In this situation, the result type is <literal>B</literal>.
Further, if the common type is an lvalue, the return type will be an lvalue
too.
</para>
<para>
Delayed variables tend to be commonplace in control structure lambda expressions.
For instance, here we use the <literal>var</literal> function to turn the arguments of <literal>for_loop</literal> into lambda expressions.
The effect of the code is to add 1 to each element of a two-dimensional array:
<programlisting>
<![CDATA[int a[5][10]; int i;
for_each(a, a+5,
for_loop(var(i)=0, var(i)<10, ++var(i),
_1[var(i)] += 1));]]>
</programlisting>
<!--
As explained in <xref linkend="lambda.delaying_constants_and_variables"/>, we can avoid the repeated use of wrapping of <literal>var</literal> if we define it beforehand:
<programlisting>
<![CDATA[int i;
var_type<int>::type vi(var(i));
for_each(a, a+5,
for_loop(vi=0, vi<10, ++vi, _1[vi] += 6));]]>
</programlisting>
-->
</para>
<para>
The BLL supports an alternative syntax for control expressions, suggested
by Joel de Guzmann.
By overloading the <literal>operator[]</literal> we can
get a closer resemblance with the built-in control structures:
<programlisting>
<![CDATA[if_(condition)[then_part]
if_(condition)[then_part].else_[else_part]
while_(condition)[body]
do_[body].while_(condition)
for_(init, condition, increment)[body]]]>
</programlisting>
For example, using this syntax the <literal>if_then</literal> example above
can be written as:
<programlisting>
<![CDATA[for_each(a.begin(), a.end(),
if_(_1 % 2 == 0)[ cout << _1 ])]]>
</programlisting>
As more experience is gained, we may end up deprecating one or the other
of these syntaces.
</para>
<section id="lambda.switch_statement">
<title>Switch statement</title>
</section>
<para>
The lambda expressions for <literal>switch</literal> control structures are more complex since the number of cases may vary.
The general form of a switch lambda expression is:
<programlisting>
switch_statement(<parameter>condition</parameter>,
case_statement<<parameter>label</parameter>>(<parameter>lambda expression</parameter>),
case_statement<<parameter>label</parameter>>(<parameter>lambda expression</parameter>),
...
default_statement(<parameter>lambda expression</parameter>)
)
</programlisting>
The <literal><parameter>condition</parameter></literal> argument must be a lambda expression that creates a lambda functor with an integral return type.
The different cases are created with the <literal>case_statement</literal> functions, and the optional default case with the <literal>default_statement</literal> function.
The case labels are given as explicitly specified template arguments to <literal>case_statement</literal> functions and
<literal>break</literal> statements are implicitly part of each case.
For example, <literal><![CDATA[case_statement<1>(a)]]></literal>, where <literal>a</literal> is some lambda functor, generates the code:
<programlisting>
case 1:
<parameter>evaluate lambda functor</parameter> a;
break;
</programlisting>
The <literal>switch_statement</literal> function is specialized for up to 9 case statements.
</para>
<para>
As a concrete example, the following code iterates over some container <literal>v</literal> and ouptuts <quote>zero</quote> for each <literal>0</literal>, <quote>one</quote> for each <literal>1</literal>, and <quote>other: <parameter>n</parameter></quote> for any other value <parameter>n</parameter>.
Note that another lambda expression is sequenced after the <literal>switch_statement</literal> to output a line break after each element:
<programlisting>
<![CDATA[std::for_each(v.begin(), v.end(),
(
switch_statement(
_1,
case_statement<0>(std::cout << constant("zero")),
case_statement<1>(std::cout << constant("one")),
default_statement(cout << constant("other: ") << _1)
),
cout << constant("\n")
)
);]]>
</programlisting>
</para>
</section>
<section id="lambda.exceptions">
<title>Exceptions</title>
<para>
The BLL provides lambda functors that throw and catch exceptions.
Lambda functors for throwing exceptions are created with the unary function <literal>throw_exception</literal>.
The argument to this function is the exception to be thrown, or a lambda functor which creates the exception to be thrown.
A lambda functor for rethrowing exceptions is created with the nullary <literal>rethrow</literal> function.
</para>
<para>
Lambda expressions for handling exceptions are somewhat more complex.
The general form of a lambda expression for try catch blocks is as follows:
<programlisting>
try_catch(
<parameter>lambda expression</parameter>,
catch_exception<<parameter>type</parameter>>(<parameter>lambda expression</parameter>),
catch_exception<<parameter>type</parameter>>(<parameter>lambda expression</parameter>),
...
catch_all(<parameter>lambda expression</parameter>)
)
</programlisting>
The first lambda expression is the try block.
Each <literal>catch_exception</literal> defines a catch block where the
explicitly specified template argument defines the type of the exception
to catch.
The lambda expression within the <literal>catch_exception</literal> defines
the actions to take if the exception is caught.
Note that the resulting exception handlers catch the exceptions as
references, i.e., <literal>catch_exception<T>(...)</literal>
results in the catch block:
<programlisting>
catch(T& e) { ... }
</programlisting>
The last catch block can alternatively be a call to
<literal>catch_exception<<parameter>type</parameter>></literal>
or to
<literal>catch_all</literal>, which is the lambda expression equivalent to
<literal>catch(...)</literal>.
</para>
<para>
The <xref linkend="ex:exceptions"/> demonstrates the use of the BLL
exception handling tools.
The first handler catches exceptions of type <literal>foo_exception</literal>.
Note the use of <literal>_1</literal> placeholder in the body of the handler.
</para>
<para>
The second handler shows how to throw exceptions, and demonstrates the
use of the <emphasis>exception placeholder</emphasis> <literal>_e</literal>.
It is a special placeholder, which refers to the caught exception object
within the handler body.
Here we are handling an exception of type <literal>std::exception</literal>,
which carries a string explaining the cause of the exception.
This explanation can be queried with the zero-argument member
function <literal>what</literal>.
The expression
<literal>bind(&std::exception::what, _e)</literal> creates the lambda
function for making that call.
Note that <literal>_e</literal> cannot be used outside of an exception handler lambda expression.
<!--Violating this rule is caught by the compiler.-->
The last line of the second handler constructs a new exception object and
throws that with <literal>throw exception</literal>.
Constructing and destructing objects within lambda expressions is
explained in <xref linkend="lambda.construction_and_destruction"/>
</para>
<para>
Finally, the third handler (<literal>catch_all</literal>) demonstrates
rethrowing exceptions.
</para>
<example id="ex:exceptions">
<title>Throwing and handling exceptions in lambda expressions.</title>
<programlisting>
<![CDATA[for_each(
a.begin(), a.end(),
try_catch(
bind(foo, _1), // foo may throw
catch_exception<foo_exception>(
cout << constant("Caught foo_exception: ")
<< "foo was called with argument = " << _1
),
catch_exception<std::exception>(
cout << constant("Caught std::exception: ")
<< bind(&std::exception::what, _e),
throw_exception(bind(constructor<bar_exception>(), _1)))
),
catch_all(
(cout << constant("Unknown"), rethrow())
)
)
);]]>
</programlisting>
</example>
</section>
<section id="lambda.construction_and_destruction">
<title>Construction and destruction</title>
<para>
Operators <literal>new</literal> and <literal>delete</literal> can be
overloaded, but their return types are fixed.
Particularly, the return types cannot be lambda functors,
which prevents them to be overloaded for lambda expressions.
It is not possible to take the address of a constructor,
hence constructors cannot be used as target functions in bind expressions.
The same is true for destructors.
As a way around these constraints, BLL defines wrapper classes for
<literal>new</literal> and <literal>delete</literal> calls,
as well as for constructors and destructors.
Instances of these classes are function objects, that can be used as
target functions of bind expressions.
For example:
<programlisting>
<![CDATA[int* a[10];
for_each(a, a+10, _1 = bind(new_ptr<int>()));
for_each(a, a+10, bind(delete_ptr(), _1));]]>
</programlisting>
The <literal>new_ptr<int>()</literal> expression creates
a function object that calls <literal>new int()</literal> when invoked,
and wrapping that inside <literal>bind</literal> makes it a lambda functor.
In the same way, the expression <literal>delete_ptr()</literal> creates
a function object that invokes <literal>delete</literal> on its argument.
Note that <literal>new_ptr<<parameter>T</parameter>>()</literal>
can take arguments as well.
They are passed directly to the constructor invocation and thus allow
calls to constructors which take arguments.
</para>
<para>
As an example of constructor calls in lambda expressions,
the following code reads integers from two containers <literal>x</literal>
and <literal>y</literal>,
constructs pairs out of them and inserts them into a third container:
<programlisting>
<![CDATA[vector<pair<int, int> > v;
transform(x.begin(), x.end(), y.begin(), back_inserter(v),
bind(constructor<pair<int, int> >(), _1, _2));]]>
</programlisting>
<xref linkend="table:constructor_destructor_fos"/> lists all the function
objects related to creating and destroying objects,
showing the expression to create and call the function object,
and the effect of evaluating that expression.
</para>
<table id="table:constructor_destructor_fos">
<title>Construction and destruction related function objects.</title>
<tgroup cols="2">
<thead>
<row>
<entry>Function object call</entry>
<entry>Wrapped expression</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>constructor<T>()(<parameter>arg_list</parameter>)</literal></entry>
<entry>T(<parameter>arg_list</parameter>)</entry>
</row>
<row>
<entry><literal>destructor()(a)</literal></entry>
<entry><literal>a.~A()</literal>, where <literal>a</literal> is of type <literal>A</literal></entry>
</row>
<row>
<entry><literal>destructor()(pa)</literal></entry>
<entry><literal>pa->~A()</literal>, where <literal>pa</literal> is of type <literal>A*</literal></entry>
</row>
<row>
<entry><literal>new_ptr<T>()(<parameter>arg_list</parameter>)</literal></entry>
<entry><literal>new T(<parameter>arg_list</parameter>)</literal></entry>
</row>
<row>
<entry><literal>new_array<T>()(sz)</literal></entry>
<entry><literal>new T[sz]</literal></entry>
</row>
<row>
<entry><literal>delete_ptr()(p)</literal></entry>
<entry><literal>delete p</literal></entry>
</row>
<row>
<entry><literal>delete_array()(p)</literal></entry>
<entry><literal>delete p[]</literal></entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section>
<title>Special lambda expressions</title>
<section>
<title>Preventing argument substitution</title>
<para>
When a lambda functor is called, the default behavior is to substitute
the actual arguments for the placeholders within all subexpressions.
This section describes the tools to prevent the substitution and
evaluation of a subexpression, and explains when these tools should be used.
</para>
<para>
The arguments to a bind expression can be arbitrary lambda expressions,
e.g., other bind expressions.
For example:
<programlisting>
int foo(int); int bar(int);
...
int i;
bind(foo, bind(bar, _1))(i);
</programlisting>
The last line makes the call <literal>foo(bar(i));</literal>
Note that the first argument in a bind expression, the target function,
is no exception, and can thus be a bind expression too.
The innermost lambda functor just has to return something that can be used
as a target function: another lambda functor, function pointer,
pointer to member function etc.
For example, in the following code the innermost lambda functor makes
a selection between two functions, and returns a pointer to one of them:
<programlisting>
int add(int a, int b) { return a+b; }
int mul(int a, int b) { return a*b; }
int(*)(int, int) add_or_mul(bool x) {
return x ? add : mul;
}
bool condition; int i; int j;
...
bind(bind(&add_or_mul, _1), _2, _3)(condition, i, j);
</programlisting>
</para>
<section id="lambda.unlambda">
<title>Unlambda</title>
<para>A nested bind expression may occur inadvertently,
if the target function is a variable with a type that depends on a
template parameter.
Typically the target function could be a formal parameter of a
function template.
In such a case, the programmer may not know whether the target function is a lambda functor or not.
</para>
<para>Consider the following function template:
<programlisting>
<![CDATA[template<class F>
int nested(const F& f) {
int x;
...
bind(f, _1)(x);
...
}]]>
</programlisting>
Somewhere inside the function the formal parameter
<literal>f</literal> is used as a target function in a bind expression.
In order for this <literal>bind</literal> call to be valid,
<literal>f</literal> must be a unary function.
Suppose the following two calls to <literal>nested</literal> are made:
<programlisting>
<![CDATA[int foo(int);
int bar(int, int);
nested(&foo);
nested(bind(bar, 1, _1));]]>
</programlisting>
Both are unary functions, or function objects, with appropriate argument
and return types, but the latter will not compile.
In the latter call, the bind expression inside <literal>nested</literal>
will become:
<programlisting>
bind(bind(bar, 1, _1), _1)
</programlisting>
When this is invoked with <literal>x</literal>,
after substituitions we end up trying to call
<programlisting>
bar(1, x)(x)
</programlisting>
which is an error.
The call to <literal>bar</literal> returns int,
not a unary function or function object.
</para>
<para>
In the example above, the intent of the bind expression in the
<literal>nested</literal> function is to treat <literal>f</literal>
as an ordinary function object, instead of a lambda functor.
The BLL provides the function template <literal>unlambda</literal> to
express this: a lambda functor wrapped inside <literal>unlambda</literal>
is not a lambda functor anymore, and does not take part into the
argument substitution process.
Note that for all other argument types <literal>unlambda</literal> is
an identity operation, except for making non-const objects const.
</para>
<para>
Using <literal>unlambda</literal>, the <literal>nested</literal>
function is written as:
<programlisting>
<![CDATA[template<class F>
int nested(const F& f) {
int x;
...
bind(unlambda(f), _1)(x);
...
}]]>
</programlisting>
</para>
</section>
<section>
<title>Protect</title>
<para>
The <literal>protect</literal> function is related to unlambda.
It is also used to prevent the argument substitution taking place,
but whereas <literal>unlambda</literal> turns a lambda functor into
an ordinary function object for good, <literal>protect</literal> does
this temporarily, for just one evaluation round.
For example:
<programlisting>
int x = 1, y = 10;
(_1 + protect(_1 + 2))(x)(y);
</programlisting>
The first call substitutes <literal>x</literal> for the leftmost
<literal>_1</literal>, and results in another lambda functor
<literal>x + (_1 + 2)</literal>, which after the call with
<literal>y</literal> becomes <literal>x + (y + 2)</literal>,
and thus finally 13.
</para>
<para>
Primary motivation for including <literal>protect</literal> into the library,
was to allow nested STL algorithm invocations
(<xref linkend="lambda.nested_stl_algorithms"/>).
</para>
</section>
</section>
<section id="lambda.rvalues_as_actual_arguments">
<title>Rvalues as actual arguments to lambda functors</title>
<!-- <para><emphasis>This section and all of its subsections
are no longer (or currently) relevant;
acual arguments can be non-const rvalues and these workarounds are thus
not needed.
The section can, however, become relevant again, if in the future BLL will support
lambda functors with higher arities than 3.</emphasis></para> -->
<para>
Actual arguments to the lambda functors cannot be non-const rvalues.
This is due to a deliberate design decision: either we have this restriction,
or there can be no side-effects to the actual arguments.
There are ways around this limitation.
We repeat the example from section
<xref linkend="lambda.actual_arguments_to_lambda_functors"/> and list the
different solutions:
<programlisting>
int i = 1; int j = 2;
(_1 + _2)(i, j); // ok
(_1 + _2)(1, 2); // error (!)
</programlisting>
<orderedlist>
<listitem>
<para>
If the rvalue is of a class type, the return type of the function that
creates the rvalue should be defined as const.
Due to an unfortunate language restriction this does not work for
built-in types, as built-in rvalues cannot be const qualified.
</para>
</listitem>
<listitem>
<para>
If the lambda function call is accessible, the <literal>make_const</literal>
function can be used to <emphasis>constify</emphasis> the rvalue. E.g.:
<programlisting>
(_1 + _2)(make_const(1), make_const(2)); // ok
</programlisting>
Commonly the lambda function call site is inside a standard algorithm
function template, preventing this solution to be used.
</para>
</listitem>
<listitem>
<para>
If neither of the above is possible, the lambda expression can be wrapped
in a <literal>const_parameters</literal> function.
It creates another type of lambda functor, which takes its arguments as
const references. For example:
<programlisting>
const_parameters(_1 + _2)(1, 2); // ok
</programlisting>
Note that <literal>const_parameters</literal> makes all arguments const.
Hence, in the case were one of the arguments is a non-const rvalue,
and another argument needs to be passed as a non-const reference,
this approach cannot be used.
</para>
</listitem>
<listitem>
<para>If none of the above is possible, there is still one solution,
which unfortunately can break const correctness.
The solution is yet another lambda functor wrapper, which we have named
<literal>break_const</literal> to alert the user of the potential dangers
of this function.
The <literal>break_const</literal> function creates a lambda functor that
takes its arguments as const, and casts away constness prior to the call
to the original wrapped lambda functor.
For example:
<programlisting>
int i;
...
(_1 += _2)(i, 2); // error, 2 is a non-const rvalue
const_parameters(_1 += _2)(i, 2); // error, i becomes const
break_const(_1 += _2)(i, 2); // ok, but dangerous
</programlisting>
Note, that the results of <literal> break_const</literal> or
<literal>const_parameters</literal> are not lambda functors,
so they cannot be used as subexpressions of lambda expressions. For instance:
<programlisting>
break_const(_1 + _2) + _3; // fails.
const_parameters(_1 + _2) + _3; // fails.
</programlisting>
However, this kind of code should never be necessary,
since calls to sub lambda functors are made inside the BLL,
and are not affected by the non-const rvalue problem.
</para>
</listitem>
</orderedlist>
</para>
</section>
</section>
<section>
<title>Casts, sizeof and typeid</title>
<section id="lambda.cast_expressions">
<title>
Cast expressions
</title>
<para>
The BLL defines its counterparts for the four cast expressions
<literal>static_cast</literal>, <literal>dynamic_cast</literal>,
<literal>const_cast</literal> and <literal>reinterpret_cast</literal>.
The BLL versions of the cast expressions have the prefix
<literal>ll_</literal>.
The type to cast to is given as an explicitly specified template argument,
and the sole argument is the expression from which to perform the cast.
If the argument is a lambda functor, the lambda functor is evaluated first.
For example, the following code uses <literal>ll_dynamic_cast</literal>
to count the number of <literal>derived</literal> instances in the container
<literal>a</literal>:
<programlisting>
<![CDATA[class base {};
class derived : public base {};
vector<base*> a;
...
int count = 0;
for_each(a.begin(), a.end(),
if_then(ll_dynamic_cast<derived*>(_1), ++var(count)));]]>
</programlisting>
</para>
</section>
<section>
<title>Sizeof and typeid</title>
<para>
The BLL counterparts for these expressions are named
<literal>ll_sizeof</literal> and <literal>ll_typeid</literal>.
Both take one argument, which can be a lambda expression.
The lambda functor created wraps the <literal>sizeof</literal> or
<literal>typeid</literal> call, and when the lambda functor is called
the wrapped operation is performed.
For example:
<programlisting>
<![CDATA[vector<base*> a;
...
for_each(a.begin(), a.end(),
cout << bind(&type_info::name, ll_typeid(*_1)));]]>
</programlisting>
Here <literal>ll_typeid</literal> creates a lambda functor for
calling <literal>typeid</literal> for each element.
The result of a <literal>typeid</literal> call is an instance of
the <literal>type_info</literal> class, and the bind expression creates
a lambda functor for calling the <literal>name</literal> member
function of that class.
</para>
</section>
</section>
<section id="lambda.nested_stl_algorithms">
<title>Nesting STL algorithm invocations</title>
<para>
The BLL defines common STL algorithms as function object classes,
instances of which can be used as target functions in bind expressions.
For example, the following code iterates over the elements of a
two-dimensional array, and computes their sum.
<programlisting>
int a[100][200];
int sum = 0;
std::for_each(a, a + 100,
bind(ll::for_each(), _1, _1 + 200, protect(sum += _1)));
</programlisting>
The BLL versions of the STL algorithms are classes, which define the function call operator (or several overloaded ones) to call the corresponding function templates in the <literal>std</literal> namespace.
All these structs are placed in the subnamespace <literal>boost::lambda:ll</literal>.
<!--The supported algorithms are listed in <xref linkend="table:nested_algorithms"/>.-->
</para>
<para>
Note that there is no easy way to express an overloaded member function
call in a lambda expression.
This limits the usefulness of nested STL algorithms, as for instance
the <literal>begin</literal> function has more than one overloaded
definitions in container templates.
In general, something analogous to the pseudo-code below cannot be written:
<programlisting>
std::for_each(a.begin(), a.end(),
bind(ll::for_each(), _1.begin(), _1.end(), protect(sum += _1)));
</programlisting>
Some aid for common special cases can be provided though.
The BLL defines two helper function object classes,
<literal>call_begin</literal> and <literal>call_end</literal>,
which wrap a call to the <literal>begin</literal> and, respectively,
<literal>end</literal> functions of a container, and return the
<literal>const_iterator</literal> type of the container.
With these helper templates, the above code becomes:
<programlisting>
std::for_each(a.begin(), a.end(),
bind(ll::for_each(),
bind(call_begin(), _1), bind(call_end(), _1),
protect(sum += _1)));
</programlisting>
</para>
<!--
<table id="table:nested_algorithms">
<title>The nested STL algorithms.</title>
<tgroup cols="1">
<thead>
<trow><entry>Otsikko</entry></trow>
</thead>
<tbody>
<row><entry><literal>for_each</literal></entry></row>
<row><entry><literal>find</literal></entry></row>
<row><entry><literal>find_if</literal></entry></row>
<row><entry><literal>find_end</literal></entry></row>
<row><entry><literal>find_first_of</literal></entry></row>
<row><entry><literal>transform</literal></entry></row>
</tbody>
</tgroup>
</table>
-->
</section>
</section>
<!--
<section>
<title>Common gothcas</title>
calling member functions a.begin()
calling templated functions ...
</section>
-->
<section id="lambda.extending">
<title>Extending return type deduction system</title>
<para>
<!--The <xref linkend = "lambda.overriding_deduced_return_type"/> showed how to make BLL aware of the return type of a function object in bind expressions.-->
In this section, we explain how to extend the return type deduction system
to cover user defined operators.
In many cases this is not necessary,
as the BLL defines default return types for operators.
For example, the default return type for all comparison operators is
<literal>bool</literal>, and as long as the user defined comparison operators
have a bool return type, there is no need to write new specializations
for the return type deduction classes.
Sometimes this cannot be avoided, though.
</para>
<para>
The overloadable user defined operators are either unary or binary.
For each arity, there are two traits templates that define the
return types of the different operators.
Hence, the return type system can be extended by providing more
specializations for these templates.
The templates for unary functors are
<literal>
<![CDATA[plain_return_type_1<Action, A>]]>
</literal>
and
<literal>
<![CDATA[return_type_1<Action, A>]]>
</literal>, and
<literal>
<![CDATA[plain_return_type_2<Action, A, B>]]>
</literal>
and
<literal>
<![CDATA[return_type_2<Action, A, B>]]>
</literal>
respectively for binary functors.
</para>
<para>
The first parameter (<literal>Action</literal>) to all these templates
is the <emphasis>action</emphasis> class, which specifies the operator.
Operators with similar return type rules are grouped together into
<emphasis>action groups</emphasis>,
and only the action class and action group together define the operator
unambiguously.
As an example, the action type
<literal><![CDATA[arithmetic_action<plus_action>]]></literal> stands for
<literal>operator+</literal>.
The complete listing of different action types is shown in
<xref linkend="table:actions"/>.
</para>
<para>
The latter parameters, <literal>A</literal> in the unary case,
or <literal>A</literal> and <literal>B</literal> in the binary case,
stand for the argument types of the operator call.
The two sets of templates,
<literal>plain_return_type_<parameter>n</parameter></literal> and
<literal>return_type_<parameter>n</parameter></literal>
(<parameter>n</parameter> is 1 or 2) differ in the way how parameter types
are presented to them.
For the former templates, the parameter types are always provided as
non-reference types, and do not have const or volatile qualifiers.
This makes specializing easy, as commonly one specialization for each
user defined operator, or operator group, is enough.
On the other hand, if a particular operator is overloaded for different
cv-qualifications of the same argument types,
and the return types of these overloaded versions differ, a more fine-grained control is needed.
Hence, for the latter templates, the parameter types preserve the
cv-qualifiers, and are non-reference types as well.
The downside is, that for an overloaded set of operators of the
kind described above, one may end up needing up to
16 <literal>return_type_2</literal> specializations.
</para>
<para>
Suppose the user has overloaded the following operators for some user defined
types <literal>X</literal>, <literal>Y</literal> and <literal>Z</literal>:
<programlisting>
<![CDATA[Z operator+(const X&, const Y&);
Z operator-(const X&, const Y&);]]>
</programlisting>
Now, one can add a specialization stating, that if the left hand argument
is of type <literal>X</literal>, and the right hand one of type
<literal>Y</literal>, the return type of all such binary arithmetic
operators is <literal>Z</literal>:
<programlisting>
<![CDATA[namespace boost {
namespace lambda {
template<class Act>
struct plain_return_type_2<arithmetic_action<Act>, X, Y> {
typedef Z type;
};
}
}]]>
</programlisting>
Having this specialization defined, BLL is capable of correctly
deducing the return type of the above two operators.
Note, that the specializations must be in the same namespace,
<literal>::boost::lambda</literal>, with the primary template.
For brevity, we do not show the namespace definitions in the examples below.
</para>
<para>
It is possible to specialize on the level of an individual operator as well,
in addition to providing a specialization for a group of operators.
Say, we add a new arithmetic operator for argument types <literal>X</literal>
and <literal>Y</literal>:
<programlisting>
<![CDATA[X operator*(const X&, const Y&);]]>
</programlisting>
Our first rule for all arithmetic operators specifies that the return
type of this operator is <literal>Z</literal>,
which obviously is not the case.
Hence, we provide a new rule for the multiplication operator:
<programlisting>
<![CDATA[template<>
struct plain_return_type_2<arithmetic_action<multiply_action>, X, Y> {
typedef X type;
};]]>
</programlisting>
</para>
<para>
The specializations can define arbitrary mappings from the argument types
to the return type.
Suppose we have some mathematical vector type, templated on the element type:
<programlisting>
<![CDATA[template <class T> class my_vector;]]>
</programlisting>
Suppose the addition operator is defined between any two
<literal>my_vector</literal> instantiations,
as long as the addition operator is defined between their element types.
Furthermore, the element type of the resulting <literal>my_vector</literal>
is the same as the result type of the addition between the element types.
E.g., adding <literal><![CDATA[my_vector<int>]]></literal> and
<literal><![CDATA[my_vector<double>]]></literal> results in
<literal><![CDATA[my_vector<double>]]></literal>.
The BLL has traits classes to perform the implicit built-in and standard
type conversions between integral, floating point, and complex classes.
Using BLL tools, the addition operator described above can be defined as:
<programlisting>
<![CDATA[template<class A, class B>
my_vector<typename return_type_2<arithmetic_action<plus_action>, A, B>::type>
operator+(const my_vector<A>& a, const my_vector<B>& b)
{
typedef typename
return_type_2<arithmetic_action<plus_action>, A, B>::type res_type;
return my_vector<res_type>();
}]]>
</programlisting>
</para>
<para>
To allow BLL to deduce the type of <literal>my_vector</literal>
additions correctly, we can define:
<programlisting>
<![CDATA[template<class A, class B>
class plain_return_type_2<arithmetic_action<plus_action>,
my_vector<A>, my_vector<B> > {
typedef typename
return_type_2<arithmetic_action<plus_action>, A, B>::type res_type;
public:
typedef my_vector<res_type> type;
};]]>
</programlisting>
Note, that we are reusing the existing specializations for the
BLL <literal>return_type_2</literal> template,
which require that the argument types are references.
</para>
<!-- TODO: is an example of specifying the other level needed at all -->
<!-- TODO: comma operator is a special case for that -->
<table id = "table:actions">
<title>Action types</title>
<tgroup cols="2">
<tbody>
<row><entry><literal><![CDATA[+]]></literal></entry><entry><literal><![CDATA[arithmetic_action<plus_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[-]]></literal></entry><entry><literal><![CDATA[arithmetic_action<minus_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[*]]></literal></entry><entry><literal><![CDATA[arithmetic_action<multiply_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[/]]></literal></entry><entry><literal><![CDATA[arithmetic_action<divide_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[%]]></literal></entry><entry><literal><![CDATA[arithmetic_action<remainder_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[+]]></literal></entry><entry><literal><![CDATA[unary_arithmetic_action<plus_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[-]]></literal></entry><entry><literal><![CDATA[unary_arithmetic_action<minus_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[&]]></literal></entry><entry><literal><![CDATA[bitwise_action<and_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[|]]></literal></entry><entry><literal><![CDATA[bitwise_action<or_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[~]]></literal></entry><entry><literal><![CDATA[bitwise_action<not_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[^]]></literal></entry><entry><literal><![CDATA[bitwise_action<xor_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[<<]]></literal></entry><entry><literal><![CDATA[bitwise_action<leftshift_action_no_stream>]]></literal></entry></row>
<row><entry><literal><![CDATA[>>]]></literal></entry><entry><literal><![CDATA[bitwise_action<rightshift_action_no_stream>]]></literal></entry></row>
<row><entry><literal><![CDATA[&&]]></literal></entry><entry><literal><![CDATA[logical_action<and_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[||]]></literal></entry><entry><literal><![CDATA[logical_action<or_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[!]]></literal></entry><entry><literal><![CDATA[logical_action<not_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[<]]></literal></entry><entry><literal><![CDATA[relational_action<less_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[>]]></literal></entry><entry><literal><![CDATA[relational_action<greater_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[<=]]></literal></entry><entry><literal><![CDATA[relational_action<lessorequal_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[>=]]></literal></entry><entry><literal><![CDATA[relational_action<greaterorequal_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[==]]></literal></entry><entry><literal><![CDATA[relational_action<equal_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[!=]]></literal></entry><entry><literal><![CDATA[relational_action<notequal_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[+=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<plus_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[-=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<minus_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[*=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<multiply_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[/=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<divide_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[%=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<remainder_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[&=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<and_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[=|]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<or_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[^=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<xor_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[<<=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<leftshift_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[>>=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<rightshift_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[++]]></literal></entry><entry><literal><![CDATA[pre_increment_decrement_action<increment_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[--]]></literal></entry><entry><literal><![CDATA[pre_increment_decrement_action<decrement_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[++]]></literal></entry><entry><literal><![CDATA[post_increment_decrement_action<increment_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[--]]></literal></entry><entry><literal><![CDATA[post_increment_decrement_action<decrement_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[&]]></literal></entry><entry><literal><![CDATA[other_action<address_of_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[*]]></literal></entry><entry><literal><![CDATA[other_action<contents_of_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[,]]></literal></entry><entry><literal><![CDATA[other_action<comma_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[->*]]></literal></entry><entry><literal><![CDATA[other_action<member_pointer_action>]]></literal></entry></row>
</tbody>
</tgroup>
</table>
</section>
<section>
<title>Practical considerations</title>
<section>
<title>Performance</title>
<para>In theory, all overhead of using STL algorithms and lambda functors
compared to hand written loops can be optimized away, just as the overhead
from standard STL function objects and binders can.
Depending on the compiler, this can also be true in practice.
We ran two tests with the GCC 3.0.4 compiler on 1.5 GHz Intel Pentium 4.
The optimization flag -03 was used.
</para>
<para>
In the first test we compared lambda functors against explicitly written
function objects.
We used both of these styles to define unary functions which multiply the
argument repeatedly by itself.
We started with the identity function, going up to
x<superscript>5</superscript>.
The expressions were called inside a <literal>std::transform</literal> loop,
reading the argument from one <literal><![CDATA[std::vector<int>]]></literal>
and placing the result into another.
The length of the vectors was 100 elements.
The running times are listed in
<xref linkend="table:increasing_arithmetic_test"/>.
We can observe that there is no significant difference between the
two approaches.
</para>
<para>
In the second test we again used <literal>std::transform</literal> to
perform an operation to each element in a 100-element long vector.
This time the element type of the vectors was <literal>double</literal>
and we started with very simple arithmetic expressions and moved to
more complex ones.
The running times are listed in <xref linkend="table:ll_vs_stl_test"/>.
Here, we also included classic STL style unnamed functions into tests.
We do not show these expressions, as they get rather complex.
For example, the
last expression in <xref linkend="table:ll_vs_stl_test"/> written with
classic STL tools contains 7 calls to <literal>compose2</literal>,
8 calls to <literal>bind1st</literal>
and altogether 14 constructor invocations for creating
<literal>multiplies</literal>, <literal>minus</literal>
and <literal>plus</literal> objects.
In this test the BLL expressions are a little slower (roughly 10% on average,
less than 14% in all cases)
than the corresponding hand-written function objects.
The performance hit is a bit greater with classic STL expressions,
up to 27% for the simplest expressios.
</para>
<para>
The tests suggest that the BLL does not introduce a loss of performance
compared to STL function objects.
With a reasonable optimizing compiler, one should expect the performance characteristics be comparable to using classic STL.
Moreover, with simple expressions the performance can be expected to be close
to that of explicitly written function objects.
<!-- We repeated both tests with the KAI C++ 4.0f compiler (using +K2 -O3 flags),
generally considered a good optimizing compiler.
We do not list the results here, since the running times for the two alternatives in the first test were essentially the same, just as the running times
for the three different alternatives in the second test.
These tests suggest there to be no performance penalty at all
with a good optimizing compiler.
-->
Note however, that evaluating a lambda functor consist of a sequence of calls to small functions that are declared inline.
If the compiler fails to actually expand these functions inline,
the performance can suffer.
The running time can more than double if this happens.
Although the above tests do not include such an expression, we have experienced
this for some seemingly simple expressions.
<table id = "table:increasing_arithmetic_test">
<title>Test 1</title>
<caption>CPU time of expressions with integer multiplication written as a lambda expression and as a traditional hand-coded function object class.
The running times are expressed in arbitrary units.</caption>
<tgroup cols="3">
<thead>
<row>
<entry>expression</entry><entry>lambda expression</entry><entry>hand-coded function object</entry></row>
</thead>
<tbody>
<row>
<entry>x</entry><entry>240</entry><entry>230</entry>
</row>
<row>
<entry>x*x</entry><entry>340</entry><entry>350</entry>
</row>
<row>
<entry>x*x*x</entry><entry>770</entry><entry>760</entry>
</row>
<row>
<entry>x*x*x*x</entry><entry>1180</entry><entry>1210</entry>
</row>
<row>
<entry>x*x*x*x*x</entry><entry>1950</entry><entry>1910</entry>
</row>
</tbody>
</tgroup>
</table>
</para>
<!--
16:19:49 bench [601] ./arith.out 100 1000000
Number of elements = 100
L1 : 240
L2 : 340
L3 : 770
L4 : 1180
L5 : 1950
P2 : 1700
P3 : 2130
P4 : 2530
P5 : 3000
F1 : 230
F2 : 350
F3 : 760
F4 : 1210
F5 : 1910
Number of elements = 100
Number of outer_iters = 1000000
L1 : 330
L2 : 350
L3 : 470
L4 : 620
L5 : 1660
LP : 1230
C1 : 370
C2 : 370
C3 : 500
C4 : 670
C5 : 1660
CP : 1770
F1 : 290
F2 : 310
F3 : 420
F4 : 600
F5 : 1460
FP : 1040
-->
<para>
<table id = "table:ll_vs_stl_test">
<title>Test 2</title>
<caption>CPU time of arithmetic expressions written as lambda
expressions, as classic STL unnamed functions (using <literal>compose2</literal>, <literal>bind1st</literal> etc.) and as traditional hand-coded function object classes.
Using BLL terminology,
<literal>a</literal> and <literal>b</literal> are bound arguments in the expressions, and <literal>x</literal> is open.
All variables were of types <literal>double</literal>.
The running times are expressed in arbitrary units.</caption>
<tgroup cols="4">
<thead>
<row>
<entry>expression</entry><entry>lambda expression</entry><entry>classic STL expression</entry><entry>hand-coded function object</entry></row>
</thead>
<tbody>
<row>
<entry>ax</entry><entry>330</entry><entry>370</entry><entry>290</entry>
</row>
<row>
<entry>-ax</entry><entry>350</entry><entry>370</entry><entry>310</entry>
</row>
<row>
<entry>ax-(a+x)</entry><entry>470</entry><entry>500</entry><entry>420</entry>
</row>
<row>
<entry>(ax-(a+x))(a+x)</entry><entry>620</entry><entry>670</entry><entry>600</entry>
</row>
<row>
<entry>((ax) - (a+x))(bx - (b+x))(ax - (b+x))(bx - (a+x))</entry><entry>1660</entry><entry>1660</entry><entry>1460</entry>
</row>
</tbody>
</tgroup>
</table>
</para>
<para>Some additional performance testing with an earlier version of the
library is described
<xref linkend="cit:jarvi:00"/>.
</para>
</section>
<section>
<title>About compiling</title>
<para>The BLL uses templates rather heavily, performing numerous recursive instantiations of the same templates.
This has (at least) three implications:
<itemizedlist>
<listitem>
<para>
While it is possible to write incredibly complex lambda expressions, it probably isn't a good idea.
Compiling such expressions may end up requiring a lot of memory
at compile time, and being slow to compile.
</para>
</listitem>
<listitem>
<para>
The types of lambda functors that result from even the simplest lambda expressions are cryptic.
Usually the programmer doesn't need to deal with the lambda functor types at all, but in the case of an error in a lambda expression, the compiler usually outputs the types of the lambda functors involved.
This can make the error messages very long and difficult to interpret, particularly if the compiler outputs the whole chain of template instantiations.
</para>
</listitem>
<listitem>
<para>
The C++ Standard suggests a template nesting level of 17 to help detect infinite recursion.
Complex lambda templates can easily exceed this limit.
Most compilers allow a greater number of nested templates, but commonly require the limit explicitly increased with a command line argument.
</para>
</listitem>
</itemizedlist></para>
</section>
<section>
<title>Portability</title>
<para>
The BLL works with the following compilers, that is, the compilers are capable of compiling the test cases that are included with the BLL:
<itemizedlist>
<listitem>GCC 3.0.4
</listitem>
<listitem>KCC 4.0f with EDG 2.43.1
</listitem>
<listitem>GCC 2.96 (fails with one test case, the <filename>exception_test.cpp</filename> results in an internal compiler error.
)
</listitem>
</itemizedlist>
</para>
<section>
<title>Test coverage</title>
<para>The following list describes the test files included and the features that each file covers:
<itemizedlist>
<listitem>
<para>
<filename>bind_tests_simple.cpp</filename> : Bind expressions of different arities and types of target functions: function pointers, function objects and member functions.
Function composition with bind expressions.</para>
</listitem>
<listitem>
<para><filename>bind_tests_simple_function_references.cpp</filename> :
Repeats all tests from <filename moreinfo="none">bind_tests_simple.cpp</filename> where the target function is a function pointer, but uses function references instead.
</para></listitem>
<listitem>
<para><filename>bind_tests_advanced.cpp</filename> : Contains tests for nested bind expressions, <literal>unlambda</literal>, <literal>protect</literal>, <literal>const_parameters</literal> and <literal>break_const</literal>.
Tests passing lambda functors as actual arguments to other lambda functors, currying, and using the <literal>sig</literal> template to specify the return type of a function object.
</para>
</listitem>
<listitem>
<para>
<filename>operator_tests_simple.cpp</filename> :
Tests using all operators that are overloaded for lambda expressions, that is, unary and binary arithmetic,
bitwise,
comparison,
logical,
increment and decrement,
compound,
assignment,
subscrict,
address of,
dereference, and comma operators.
The streaming nature of shift operators is tested, as well as pointer arithmetic with plus and minus operators.
</para>
</listitem>
<listitem>
<para><filename>member_pointer_test.cpp</filename> : The pointer to member operator is complex enough to warrant a separate test file.
</para>
</listitem>
<listitem>
<para>
<filename>control_structures.cpp</filename> :
Tests for the looping and if constructs.
</para></listitem>
<listitem>
<para>
<filename>switch_construct.cpp</filename> :
Includes tests for all supported arities of the switch statement, both with and without the default case.
</para>
</listitem>
<listitem>
<para>
<filename>exception_test.cpp</filename> :
Includes tests for throwing exceptions and for try/catch constructs with varying number of catch blocks.
</para>
</listitem>
<listitem>
<para>
<filename>constructor_tests.cpp</filename> :
Contains tests for <literal>constructor</literal>, <literal>destructor</literal>, <literal>new_ptr</literal>, <literal>delete_ptr</literal>, <literal>new_array</literal> and <literal>delete_array</literal>.
</para>
</listitem>
<listitem>
<para>
<filename>cast_test.cpp</filename> : Tests for the four cast expressions, as well as <filename>typeid</filename> and <literal>sizeof</literal>.
</para>
</listitem>
<listitem>
<para>
<filename>extending_return_type_traits.cpp</filename> : Tests extending the return type deduction system for user defined types.
Contains several user defined operators and the corresponding specializations for the return type deduction templates.
</para>
</listitem>
<listitem>
<para>
<filename>is_instance_of_test.cpp</filename> : Includes tests for an internally used traits template, which can detect whether a given type is an instance of a certain template or not.
</para></listitem>
<listitem>
<para>
<filename>bll_and_function.cpp</filename> :
Contains tests for using <literal>boost::function</literal> together with lambda functors.
</para></listitem>
</itemizedlist>
</para>
</section>
</section>
</section>
<section>
<title>Relation to other Boost libraries</title>
<section>
<title>Boost Function</title>
<para>Sometimes it is convenient to store lambda functors in variables.
However, the types of even the simplest lambda functors are long and unwieldy, and it is in general unfeasible to declare variables with lambda functor types.
<emphasis>The Boost Function library</emphasis> <xref linkend="cit:boost::function"/> defines wrappers for arbitrary function objects, for example
lambda functors; and these wrappers have types that are easy to type out.
For example:
<programlisting>
<![CDATA[boost::function<int(int, int)> f = _1 + _2;
boost::function<int&(int&)> g = (_1 += 10);
int i = 1, j = 2;
f(i, j); // returns 3
g(i); // sets i to = 11;]]>
</programlisting>
The return and parameter types of the wrapped function object must be written explicilty as the template argument to the wrapper template <literal>boost::function</literal>; even when lambda functors, which otherwise have generic parameters, are wrapped.
Wrapping a function object with <literal>boost::function</literal> introduces a performance cost comparable to virtual function dispatch, though virtual functions are not actually used.
Note that storing lambda functors inside <literal>boost::function</literal>
introduces a danger.
Certain types of lambda functors may store references to the bound
arguments, instead as taking copies of the arguments of the lambda expression.
When temporary lambda functor objects are used
in STL algorithm invocations this is always safe, as the lambda functor gets
destructed immediately after the STL algortihm invocation is completed.
However, a lambda functor wrapped inside <literal>boost::function</literal>
may continue to exist longer, creating the possibility of dangling references.
For example:
<programlisting>
<![CDATA[int* sum = new int();
*sum = 0;
boost::function<int&(int)> counter = *sum += _1;
counter(5); // ok, *sum = 5;
delete sum;
counter(3); // error, *sum does not exist anymore]]>
</programlisting>
</para>
</section>
<section>
<title>Boost Bind</title>
<para>
<emphasis>The Boost Bind</emphasis> <xref linkend="cit:boost::bind"/> library has partially overlapping functionality with the BLL.
Basically, the Boost Bind library (BB in the sequel) implements the bind expression part of BLL.
There are, however, some semantical differerences.
</para>
<para>
The BLL and BB evolved separately, and have different implementations.
This means that the bind expressions from the BB cannot be used within
bind expressions, or within other type of lambda expressions, of the BLL.
The same holds for using BLL bind expressions in the BB.
The libraries can coexist, however, as
the names of the BB library are in <literal>boost</literal> namespace,
whereas the BLL names are in <literal>boost::lambda</literal> namespace.
</para>
<para>
The BLL requires a compiler that is reasonably conformant to the
C++ standard, whereas the BB library is more portable, and works with
a larger set of compilers.
</para>
<para>
The following two sections describe what are the semantic differences
between the bind expressions in BB and BLL.
</para>
<section>
<title>First argument of bind expression</title>
In BB the first argument of the bind expression, the target function,
is treated differently from the other arguments,
as no argument substitution takes place within that argument.
In BLL the first argument is not a special case in this respect.
For example:
<programlisting>
<![CDATA[template<class F>
int foo(const F& f) {
int x;
..
bind(f, _1)(x);
...
}]]>
</programlisting>
<programlisting>
<![CDATA[int bar(int, int);
nested(bind(bar, 1, _1));]]>
</programlisting>
The bind expression inside <literal>foo</literal> becomes:
<programlisting>
bind(bind(bar, 1, _1), _1)(x)
</programlisting>
The BLL interpretes this as:
<programlisting>
bar(1, x)(x)
</programlisting>
whereas the BB library as
<programlisting>
bar(1, x)
</programlisting>
To get this functionality in BLL, the bind expression inside the <literal moreinfo="none">foo</literal> function can be written as:
<programlisting>
bind(unlambda(f), _1)(x);
</programlisting>
as explained in <xref linkend = "lambda.unlambda"/>.
</section>
<para>
The BB library supports up to nine placeholders, while the BLL
defines only three placeholders.
The rationale for not providing more, is that the highest arity of the
function objects accepted by any STL algorithm is two.
The placeholder count is easy to increase in the BB library.
In BLL it is possible, but more laborous.
The BLL currently passes the actual arguments to the lambda functors
internally just as they are and does not wrap them inside a tuple object.
The reason for this is that some widely used compilers are not capable
of optimizing the intermediate tuple objects away.
The creation of the intermediate tuples would cause a significant
performance hit, particularly for the simplest (and thus the most common)
lambda functors.
We are working on a hybrid approach, which will allow more placeholders
but not compromise the performance of simple lambda functors.
</para>
</section>
</section>
<section>
<title>Contributors</title>
The main body of the library was written by Jaakko Järvi and Gary Powell.
We've got outside help, suggestions and ideas from Jeremy Siek, Peter Higley, Peter Dimov, Valentin Bonnard, William Kempf.
We would particularly like to mention Joel de Guzmann and his work with
Phoenix which has influenced BLL significantly, making it considerably simpler
to extend the library with new features.
</section>
<section>
<title>Rationale for some of the design decisions</title>
<section id="lambda.why_weak_arity">
<title>
Lambda functor arity
</title>
<para>
The highest placeholder index in a lambda expression determines the arity of the resulting function object.
However, this is just the minimal arity, as the function object can take arbitrarily many arguments; those not needed are discarded.
Consider the two bind expressions and their invocations below:
<programlisting>
bind(g, _3, _3, _3)(x, y, z);
bind(g, _1, _1, _1)(x, y, z);
</programlisting>
This first line discards arguments <literal>x</literal> and
<literal>y</literal>, and makes the call:
<programlisting>
g(z, z, z)
</programlisting>
whereas the second line discards arguments <literal>y</literal> and
<literal>z</literal>, and calls:
<programlisting>
g(x, x, x)
</programlisting>
In earlier versions of the library, the latter line resulted in a compile
time error.
This is basically a tradeoff between safety and flexibility, and the issue
was extensively discussed during the Boost review period of the library.
The main points for the <emphasis>strict arity</emphasis> checking
was that it might
catch a programming error at an earlier time and that a lambda expression that
explicitly discards its arguments is easy to write:
<programlisting>
(_3, bind(g, _1, _1, _1))(x, y, z);
</programlisting>
This lambda expression takes three arguments.
The left-hand argument of the comma operator does nothing, and as comma
returns the result of evaluating the right-hand argument we end up with
the call
<literal>g(x, x, x)</literal>
even with the strict arity.
</para>
<para>
The main points against the strict arity checking were that the need to
discard arguments is commonplace, and should therefore be straightforward,
and that strict arity checking does not really buy that much more safety,
particularly as it is not symmetric.
For example, if the programmer wanted to write the expression
<literal>_1 + _2</literal> but mistakenly wrote <literal>_1 + 2</literal>,
with strict arity checking, the complier would spot the error.
However, if the erroneous expression was <literal>1 + _2</literal> instead,
the error would go unnoticed.
Furthermore, weak arity checking simplifies the implementation a bit.
Following the recommendation of the Boost review, strict arity checking
was dropped.
</para>
</section>
</section>
<bibliography>
<biblioentry id="cit:stepanov:94">
<abbrev>STL94</abbrev>
<authorgroup>
<author>
<surname>Stepanov</surname>
<firstname>A. A.</firstname>
</author>
<author>
<surname>Lee</surname>
<firstname>M.</firstname>
</author>
</authorgroup>
<title>The Standard Template Library</title>
<orgname>Hewlett-Packard Laboratories</orgname>
<pubdate>1994</pubdate>
<bibliomisc>
<ulink url="http://www.hpl.hp.com/techreports">www.hpl.hp.com/techreports</ulink>
</bibliomisc>
</biblioentry>
<biblioentry id="cit:sgi:02">
<abbrev>SGI02</abbrev>
<title>The SGI Standard Template Library</title>
<pubdate>2002</pubdate>
<bibliomisc><ulink url="https://www.boost.org/sgi/stl/">www.boost.org/sgi/stl/</ulink></bibliomisc>
</biblioentry>
<biblioentry id="cit:c++:98">
<abbrev>C++98</abbrev>
<title>International Standard, Programming Languages – C++</title>
<subtitle>ISO/IEC:14882</subtitle>
<pubdate>1998</pubdate>
</biblioentry>
<biblioentry id="cit:jarvi:99">
<abbrev>Jär99</abbrev>
<articleinfo>
<author>
<surname>Järvi</surname>
<firstname>Jaakko</firstname>
</author>
<title>C++ Function Object Binders Made Easy</title>
</articleinfo>
<title>Lecture Notes in Computer Science</title>
<volumenum>1977</volumenum>
<publishername>Springer</publishername>
<pubdate>2000</pubdate>
</biblioentry>
<biblioentry id="cit:jarvi:00">
<abbrev>Jär00</abbrev>
<author>
<surname>Järvi</surname>
<firstname>Jaakko</firstname>
</author>
<author>
<firstname>Gary</firstname>
<surname>Powell</surname>
</author>
<title>The Lambda Library : Lambda Abstraction in C++</title>
<orgname>Turku Centre for Computer Science</orgname>
<bibliomisc>Technical Report </bibliomisc>
<issuenum>378</issuenum>
<pubdate>2000</pubdate>
<bibliomisc><ulink url="http://www.tucs.fi/Publications/techreports/TR378.php">www.tucs.fi/publications</ulink></bibliomisc>
</biblioentry>
<biblioentry id="cit:jarvi:01">
<abbrev>Jär01</abbrev>
<author>
<surname>Järvi</surname>
<firstname>Jaakko</firstname>
</author>
<author>
<firstname>Gary</firstname>
<surname>Powell</surname>
</author>
<title>The Lambda Library : Lambda Abstraction in C++</title>
<confgroup>
<conftitle>Second Workshop on C++ Template Programming</conftitle>
<address>Tampa Bay, OOPSLA'01</address>
</confgroup>
<pubdate>2001</pubdate>
<bibliomisc><ulink url="http://www.oonumerics.org/tmpw01/">www.oonumerics.org/tmpw01/</ulink></bibliomisc>
</biblioentry>
<biblioentry id="cit:jarvi:03">
<abbrev>Jär03</abbrev>
<articleinfo>
<author>
<surname>Järvi</surname>
<firstname>Jaakko</firstname>
</author>
<author>
<firstname>Gary</firstname>
<surname>Powell</surname>
</author>
<author>
<firstname>Andrew</firstname>
<surname>Lumsdaine</surname>
</author>
<title>The Lambda Library : unnamed functions in C++</title>
</articleinfo>
<title>Software - Practice and Expreience</title>
<volumenum>33:259-291</volumenum>
<pubdate>2003</pubdate>
</biblioentry>
<biblioentry id="cit:boost::tuple">
<abbrev>tuple</abbrev>
<title>The Boost Tuple Library</title>
<bibliomisc><ulink url="http://www.boost.org/libs/tuple/doc/tuple_users_guide.html">www.boost.org/libs/tuple/doc/tuple_users_guide.html</ulink>
</bibliomisc>
<pubdate>2002</pubdate>
</biblioentry>
<biblioentry id="cit:boost::type_traits">
<abbrev>type_traits</abbrev>
<title>The Boost type_traits</title>
<bibliomisc><ulink url="http://www.boost.org/libs/type_traits/index.htm">www.boost.org/libs/type_traits/</ulink>
</bibliomisc>
<pubdate>2002</pubdate>
</biblioentry>
<biblioentry id="cit:boost::ref">
<abbrev>ref</abbrev>
<title>Boost ref</title>
<bibliomisc><ulink url="http://www.boost.org/libs/bind/ref.html">www.boost.org/libs/bind/ref.html</ulink>
</bibliomisc>
<pubdate>2002</pubdate>
</biblioentry>
<biblioentry id="cit:boost::bind">
<abbrev>bind</abbrev>
<title>Boost Bind Library</title>
<bibliomisc><ulink url="http://www.boost.org/libs/bind/bind.html">www.boost.org/libs/bind/bind.html</ulink>
</bibliomisc>
<pubdate>2002</pubdate>
</biblioentry>
<biblioentry id="cit:boost::function">
<abbrev>function</abbrev>
<title>Boost Function Library</title>
<bibliomisc><ulink url="http://www.boost.org/libs/function/">www.boost.org/libs/function/</ulink>
</bibliomisc>
<pubdate>2002</pubdate>
</biblioentry>
<biblioentry id="cit:fc++">
<abbrev>fc++</abbrev>
<title>The FC++ library: Functional Programming in C++</title>
<author>
<surname>Smaragdakis</surname>
<firstname>Yannis</firstname>
</author>
<author>
<firstname>Brian</firstname>
<surname>McNamara</surname>
</author>
<bibliomisc><ulink url="http://yanniss.github.io/fc++/">yanniss.github.io/fc++/ </ulink>
</bibliomisc>
<pubdate>2002</pubdate>
</biblioentry>
</bibliography>
</library>