lambda.xml 118 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
<?xml version="1.0" encoding="ISO-Latin-1"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
  "http://www.boost.org/tools/boostbook/dtd/boostbook.dtd">
<library name="Lambda" dirname="lambda" id="lambda" 
         last-revision="$Date$" 
         xmlns:xi="http://www.w3.org/2001/XInclude">
<libraryinfo>
  <author>
    <firstname>Jaakko</firstname>
    <surname>Järvi</surname>
     <email>jarvi at cs tamu edu</email>
  </author>

  <copyright>
    <year>1999</year>
    <year>2000</year>
    <year>2001</year>
    <year>2002</year>
    <year>2003</year>
    <year>2004</year>
    <holder>Jaakko Järvi</holder>
    <holder>Gary Powell</holder>
  </copyright>

  <legalnotice>
    <para>Use, modification and distribution is subject to the Boost
    Software License, Version 1.0. (See accompanying file
    <filename>LICENSE_1_0.txt</filename> or copy at <ulink
    url="http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</ulink>)</para>
  </legalnotice>

  <librarypurpose>Define small unnamed function objects at the actual call site, and more</librarypurpose>
  <librarycategory name="category:higher-order"/>
</libraryinfo>

<title>Boost.Lambda</title>

  <!--  -->

  <section id="introduction">

    <title>In a nutshell</title>

    <para>

      The Boost Lambda Library (BLL in the sequel) is a C++ template
      library, which implements a form of <emphasis>lambda abstractions</emphasis> for C++.
The term originates from functional programming and lambda calculus, where a lambda abstraction defines an unnamed function.
      The primary motivation for the BLL is to provide flexible and
      convenient means to define unnamed function objects for STL algorithms.
In explaining what the library is about, a line of code says more than a thousand words; the
      following line outputs the elements of some STL container
      <literal>a</literal> separated by spaces:

      <programlisting><![CDATA[for_each(a.begin(), a.end(), std::cout << _1 << ' ');]]></programlisting>

      The expression <literal><![CDATA[std::cout << _1 << ' ']]></literal> defines a unary function object. 
      The variable <literal>_1</literal> is the parameter of this function, a <emphasis>placeholder</emphasis> for the actual argument. 
      Within each iteration of <literal>for_each</literal>, the function is
      called with an element of <literal>a</literal> as the actual argument.
      This actual argument is substituted for the placeholder, and the <quote>body</quote> of the function is evaluated.
    </para>

    <para>The essence of BLL is letting you define small unnamed function objects, such as the one above, directly on the call site of an STL algorithm.
    </para>
  </section>

  <section id="lambda.getting_started">
    <title>Getting Started</title>

    <section>
      <title>Installing the library</title>
      

      <para>
	The library consists of include files only, hence there is no
	installation procedure. The <literal>boost</literal> include directory
	must be on the include path.
	There are a number of include files that give different functionality:

	<!-- TODO: tarkista vielä riippuvuudet-->
	<itemizedlist>

	  <listitem><para>
	      <filename>lambda/lambda.hpp</filename> defines lambda expressions for different C++
	      operators, see <xref linkend="lambda.operator_expressions"/>.
	    </para></listitem>

	  <listitem><para>
	      <filename>lambda/bind.hpp</filename> defines <literal>bind</literal> functions for up to 9 arguments, see <xref linkend="lambda.bind_expressions"/>.</para></listitem>


	  <listitem><para>
	      <filename>lambda/if.hpp</filename> defines lambda function equivalents for if statements and the conditional operator, see <xref linkend="lambda.lambda_expressions_for_control_structures"/> (includes <filename>lambda.hpp</filename>).
	    </para></listitem>

	  <listitem><para>
	      <filename>lambda/loops.hpp</filename> defines lambda function equivalent for looping constructs, see <xref linkend="lambda.lambda_expressions_for_control_structures"/>.
	    </para></listitem>

	  <listitem><para>
	      <filename>lambda/switch.hpp</filename> defines lambda function equivalent for the switch statement, see <xref linkend="lambda.lambda_expressions_for_control_structures"/>.
	    </para></listitem>

	  <listitem><para>
	      <filename>lambda/construct.hpp</filename> provides tools for writing lambda expressions with constructor, destructor, new and delete invocations, see <xref linkend="lambda.construction_and_destruction"/> (includes <filename>lambda.hpp</filename>).
	    </para></listitem>

	  <listitem><para>
	      <filename>lambda/casts.hpp</filename> provides lambda versions of different casts, as well as <literal>sizeof</literal> and <literal>typeid</literal>, see <xref linkend="lambda.cast_expressions"/>.
	    </para></listitem>

	  <listitem><para>
	      <filename>lambda/exceptions.hpp</filename> gives tools for throwing and catching
	      exceptions within lambda functions, <xref linkend="lambda.exceptions"/> (includes
	      <filename>lambda.hpp</filename>).
	    </para></listitem>

	  <listitem><para>
	      <filename>lambda/algorithm.hpp</filename> and <filename>lambda/numeric.hpp</filename> (cf. standard <filename>algortihm</filename> and <filename>numeric</filename> headers) allow nested STL algorithm invocations, see <xref linkend="lambda.nested_stl_algorithms"/>.
	    </para></listitem>

	</itemizedlist>

	Any other header files in the package are for internal use.
	Additionally, the library depends on two other Boost Libraries, the
	<emphasis>Tuple</emphasis> <xref linkend="cit:boost::tuple"/> and the <emphasis>type_traits</emphasis> <xref linkend="cit:boost::type_traits"/> libraries, and on the <filename>boost/ref.hpp</filename> header.
      </para>

      <para>
	All definitions are placed in the namespace <literal>boost::lambda</literal> and its subnamespaces.
      </para>

    </section>

    <section>
      <title>Conventions used in this document</title>

      <para>In most code examples, we omit the namespace prefixes for names in the <literal moreinfo="none">std</literal> and <literal moreinfo="none">boost::lambda</literal> namespaces.
Implicit using declarations
<programlisting>
using namespace std;
using namespace boost::lambda;
</programlisting>
are assumed to be in effect.
</para> 

    </section>
  </section>

  <section>
    <title>Introduction</title>

    <section>
      <title>Motivation</title>
      <para>The Standard Template Library (STL)
	<xref role="citation" linkend="cit:stepanov:94"/>, now part of the C++ Standard Library <xref role="citation" linkend="cit:c++:98"/>, is a generic container and algorithm library.
Typically STL algorithms operate on container elements via <emphasis>function objects</emphasis>. These function objects are passed as arguments to the algorithms.
</para>

<para>
Any C++ construct that can be called with the function call syntax
is a function object. 
The STL contains predefined function objects for some common cases (such as <literal>plus</literal>, <literal>less</literal> and <literal>not1</literal>). 
As an example, one possible implementation for the standard <literal>plus</literal> template is:

<programlisting>
<![CDATA[template <class T> 
struct plus : public binary_function<T, T, T> {
  T operator()(const T& i, const T& j) const {
    return i + j; 
  }
};]]>
</programlisting>

The base class <literal><![CDATA[binary_function<T, T, T>]]></literal> contains typedefs for the argument and return types of the function object, which are needed to make the function object <emphasis>adaptable</emphasis>.
</para>

<para>
In addition to the basic function object classes, such as the one above,
the STL contains <emphasis>binder</emphasis> templates for creating a unary function object from an adaptable binary function object by fixing one of the arguments to a constant value.
For example, instead of having to explicitly write a function object class like:

<programlisting>
<![CDATA[class plus_1 {
  int _i;
public:
  plus_1(const int& i) : _i(i) {}
  int operator()(const int& j) { return _i + j; }
};]]>
</programlisting>

the equivalent functionality can be achieved with the <literal moreinfo="none">plus</literal> template and one of the binder templates (<literal moreinfo="none">bind1st</literal>).
E.g., the following two expressions create function objects with identical functionalities; 
when invoked, both return the result of adding <literal moreinfo="none">1</literal> to the argument of the function object:

<programlisting>
<![CDATA[plus_1(1)
bind1st(plus<int>(), 1)]]>
</programlisting>

The subexpression <literal><![CDATA[plus<int>()]]></literal> in the latter line is a binary function object which computes the sum of two integers, and <literal>bind1st</literal> invokes this function object partially binding the first argument to <literal>1</literal>.
As an example of using the above function object, the following code adds <literal>1</literal> to each element of some container <literal>a</literal> and outputs the results into the standard output stream <literal>cout</literal>.

<programlisting>
<![CDATA[transform(a.begin(), a.end(), ostream_iterator<int>(cout),
          bind1st(plus<int>(), 1));]]>
</programlisting>

</para>

<para>
To make the binder templates more generally applicable, the STL contains <emphasis>adaptors</emphasis> for making 
pointers or references to functions, and pointers to member functions, 
adaptable.

Finally, some STL implementations contain function composition operations as
extensions to the standard <xref linkend="cit:sgi:02"/>.
      </para>

<para>
All these tools aim at one goal: to make it possible to specify 
<emphasis>unnamed functions</emphasis> in a call of an STL algorithm, 
in other words, to pass code fragments as an argument to a function. 

However, this goal is attained only partially.
The simple example above shows that the definition of unnamed functions 
with the standard tools is cumbersome.

Complex expressions involving functors, adaptors, binders and 
function composition operations tend to be difficult to comprehend.

In addition to this, there are significant restrictions in applying 
the standard tools. E.g. the standard binders allow only one argument 
of a binary function to be bound; there are no binders for 
3-ary, 4-ary etc. functions. 
</para>

<para>
The Boost Lambda Library provides solutions for the problems described above:

<itemizedlist>
<listitem>
<para>
Unnamed functions can be created easily with an intuitive syntax. 

The above example can be written as:

<programlisting>
<![CDATA[transform(a.begin(), a.end(), ostream_iterator<int>(cout), 
          1 + _1);]]>
</programlisting>

or even more intuitively:

<programlisting>
<![CDATA[for_each(a.begin(), a.end(), cout << (1 + _1));]]>
</programlisting>
</para>

</listitem>

<listitem>
<para>
Most of the restrictions in argument binding are removed, 
arbitrary arguments of practically any C++ function can be bound.
</para>
</listitem>

<listitem>
<para>
Separate function composition operations are not needed, 
as function composition is supported implicitly.

</para>
</listitem>

</itemizedlist>

</para>

</section>



<section>
      <title>Introduction to lambda expressions</title>

      <para>
	Lambda expression are common in functional programming languages. 
	Their syntax varies between languages (and between different forms of lambda calculus), but the basic form of a lambda expressions is:


<programlisting>
lambda x<subscript>1</subscript> ... x<subscript>n</subscript>.e
</programlisting>
	<!-- $\lambda x_1 \cdots x_n . e$ -->

	A lambda expression defines an unnamed function and consists of:
	<itemizedlist>
	  <listitem>
	    <para>
	      the parameters of this function: <literal>x<subscript>1</subscript> ... x<subscript>n</subscript></literal>.
	      <!--$x_1 \cdots x_n$-->
	    </para>
	  </listitem>
	  <listitem>
	    <para>the expression e which computes the value of the function in terms of the parameters <literal>x<subscript>1</subscript> ... x<subscript>n</subscript></literal>.
	    </para>
	  </listitem>
	</itemizedlist>

	A simple example of a lambda expression is 
<programlisting>
lambda x y.x+y
</programlisting>
Applying the lambda function means substituting the formal parameters with the actual arguments:
<programlisting>
(lambda x y.x+y) 2 3 = 2 + 3 = 5 
</programlisting>


      </para>

<para>
In the C++ version of lambda expressions the <literal>lambda x<subscript>1</subscript> ... x<subscript>n</subscript></literal> part is missing and the formal parameters have predefined names.
In the current version of the library, 
there are three such predefined formal parameters, 
called <emphasis>placeholders</emphasis>: 
<literal>_1</literal>, <literal>_2</literal> and <literal>_3</literal>. 
They refer to the first, second and third argument of the function defined 
by the lambda expression.
	
For example, the C++ version of the definition
<programlisting>lambda x y.x+y</programlisting>
is 
<programlisting>_1 + _2</programlisting>
</para>

      <para>
Hence, there is no syntactic keyword for C++ lambda expressions. 
	The use of a placeholder as an operand implies that the operator invocation is a lambda expression.
	However, this is true only for operator invocations.
	Lambda expressions containing function calls, control structures, casts etc. require special syntactic constructs. 
	Most importantly, function calls need to be wrapped inside a <literal>bind</literal> function. 

	As an example, consider the lambda expression:

	<programlisting>lambda x y.foo(x,y)</programlisting>

	Rather than <literal>foo(_1, _2)</literal>, the C++ counterpart for this expression is:

	<programlisting>bind(foo, _1, _2)</programlisting>

	We refer to this type of C++ lambda expressions as <emphasis>bind expressions</emphasis>. 
      </para>

      <para>A lambda expression defines a C++ function object, hence function application syntax is like calling any other function object, for instance: <literal>(_1 + _2)(i, j)</literal>.


      </para>



<section id="lambda.partial_function_application"> 
<title>Partial function application</title>

<para>
A bind expression is in effect a <emphasis>partial function application</emphasis>.
In partial function application, some of the arguments of a function are bound to fixed values. 
	  The result is another function, with possibly fewer arguments. 
	  When called with the unbound arguments, this new function invokes the original function with the merged argument list of bound and unbound arguments.
	</para>

<!--	<para>The underlying implementation of the BLL unifies the two types of lambda expressions (bind expressions and lambda expressions consisting of operator calls).
	  If operators are regarded as functions, it is easy to see that lambda expressions using operators are partial function applications as well. 
	  E.g. the lambda expression <literal>_1 + 1</literal> can be seen as syntactic sugar for the pseudo code <literal>bind(operator+, _1, 1)</literal>.
	</para>
-->

      </section>



      <section id="lambda.terminology">
	<title>Terminology</title>

	<para>
	  A lambda expression defines a function. A C++ lambda expression concretely constructs a function object, <emphasis>a functor</emphasis>, when evaluated. We use the name <emphasis>lambda functor</emphasis> to refer to such a function object. 
	  Hence, in the terminology adopted here, the result of evaluating a lambda expression is a lambda functor.
	</para>

      </section>

    </section>



  </section>

  <section id = "lambda.using_library">
    <title>Using the library</title>

    <para>
The purpose of this section is to introduce the basic functionality of the library.
There are quite a lot of exceptions and special cases, but discussion of them is postponed until later sections.


    </para>

    <section id = "lambda.introductory_examples">
      <title>Introductory Examples</title>

      <para>
	In this section we give basic examples of using BLL lambda expressions in STL algorithm invocations. 
	We start with some simple expressions and work up. 
	First, we initialize the elements of a container, say, a <literal>list</literal>, to the value <literal>1</literal>:


	<programlisting>
<![CDATA[list<int> v(10);
for_each(v.begin(), v.end(), _1 = 1);]]></programlisting>

	The expression <literal>_1 = 1</literal> creates a lambda functor which assigns the value <literal>1</literal> to every element in <literal>v</literal>.<footnote>
<para>
Strictly taken, the C++ standard defines <literal>for_each</literal> as a <emphasis>non-modifying sequence operation</emphasis>, and the function object passed to <literal moreinfo="none">for_each</literal> should not modify its argument. 
The requirements for the arguments of <literal>for_each</literal> are unnecessary strict, since as long as the iterators are <emphasis>mutable</emphasis>, <literal>for_each</literal> accepts a function object that can have side-effects on their argument.
Nevertheless, it is straightforward to provide another function template with the functionality of<literal>std::for_each</literal> but more fine-grained requirements for its arguments.
</para>
</footnote>
      </para>

      <para>
	Next, we create a container of pointers and make them point to the elements in the first container <literal>v</literal>:

	<programlisting>
<![CDATA[vector<int*> vp(10); 
transform(v.begin(), v.end(), vp.begin(), &_1);]]></programlisting>

The expression <literal><![CDATA[&_1]]></literal> creates a function object for getting the address of each element in <literal>v</literal>.
The addresses get assigned to the corresponding elements in <literal>vp</literal>.
      </para>

      <para>
	The next code fragment changes the values in <literal>v</literal>. 
	For each element, the function <literal>foo</literal> is called. 
The original value of the element is passed as an argument to <literal>foo</literal>.
The result of <literal>foo</literal> is assigned back to the element:


	<programlisting>
<![CDATA[int foo(int);
for_each(v.begin(), v.end(), _1 = bind(foo, _1));]]></programlisting>
      </para>


      <para>
	The next step is to sort the elements of <literal>vp</literal>:
	
	<programlisting>sort(vp.begin(), vp.end(), *_1 > *_2);</programlisting>

	In this call to <literal>sort</literal>, we are sorting the elements by their contents in descending order. 
      </para>

      <para>
	Finally, the following <literal>for_each</literal> call outputs the sorted content of <literal>vp</literal> separated by line breaks:

<programlisting>
<![CDATA[for_each(vp.begin(), vp.end(), cout << *_1 << '\n');]]>
</programlisting>

Note that a normal (non-lambda) expression as subexpression of a lambda expression is evaluated immediately.  
This may cause surprises. 
For instance, if the previous example is rewritten as
<programlisting>
<![CDATA[for_each(vp.begin(), vp.end(), cout << '\n' << *_1);]]>
</programlisting>
the subexpression <literal><![CDATA[cout << '\n']]></literal> is evaluated immediately and the effect is to output a single line break, followed by the elements of <literal>vp</literal>.
The BLL provides functions <literal>constant</literal> and <literal>var</literal> to turn constants and, respectively, variables into lambda expressions, and can be used to prevent the immediate evaluation of subexpressions:
<programlisting>
<![CDATA[for_each(vp.begin(), vp.end(), cout << constant('\n') << *_1);]]>
</programlisting>
These functions are described more thoroughly in <xref linkend="lambda.delaying_constants_and_variables"/>

</para>





    </section>


    <section id="lambda.parameter_and_return_types">
      <title>Parameter and return types of lambda functors</title>

      <para>
	During the invocation of a lambda functor, the actual arguments are substituted for the placeholders. 
	The placeholders do not dictate the type of these actual arguments.
	The basic rule is that a lambda function can be called with arguments of any types, as long as the lambda expression with substitutions performed is a valid C++ expression. 
	As an example, the expression
	<literal>_1 + _2</literal> creates a binary lambda functor. 
	It can be called with two objects of any types <literal>A</literal> and <literal>B</literal> for which <literal>operator+(A,B)</literal> is defined (and for which BLL knows the return type of the operator, see below).
      </para>

      <para>
	C++ lacks a mechanism to query a type of an expression. 
	However, this precise mechanism is crucial for the implementation of C++ lambda expressions.
	Consequently, BLL includes a somewhat complex type deduction system which uses a set of traits classes for deducing the resulting type of lambda functions.
	It handles expressions where the operands are of built-in types and many of the expressions with operands of standard library types.
	Many of the user defined types are covered as well, particularly if the user defined operators obey normal conventions in defining the return types. 
      </para>

      <!-- TODO: move  this forward, and just refer to it. -->
      <para>
	There are, however, cases when the return type cannot be deduced. For example, suppose you have defined:

	<programlisting>C operator+(A, B);</programlisting>

	The following lambda function invocation fails, since the return type cannot be deduced:

	<programlisting>A a; B b; (_1 + _2)(a, b);</programlisting>
      </para>

      <para>
	There are two alternative solutions to this. 
	The first is to extend the BLL type deduction system to cover your own types (see <xref linkend="lambda.extending"/>). 
	The second is to use a special lambda expression (<literal>ret</literal>) which defines the return type in place (see <xref linkend = "lambda.overriding_deduced_return_type"/>):

	<programlisting><![CDATA[A a; B b; ret<C>(_1 + _2)(a, b);]]></programlisting>
      </para>

      <para>
	For bind expressions, the return type can be defined as a template argument of the bind function as well: 
	<programlisting><![CDATA[bind<int>(foo, _1, _2);]]></programlisting>

<!--
	A rare case, where the <literal><![CDATA[ret<type>(bind(...))]]></literal> syntax does not work, but
	<literal><![CDATA[bind<type>(...)]]></literal> does, is explained in <xref linkend="lambda.nullary_functors_and_ret"/>.
-->
      </para>
    </section>

    <section id="lambda.actual_arguments_to_lambda_functors">
      <title>About actual arguments to lambda functors</title>

<!--      <para><emphasis>This section is no longer (or currently) relevant;
       acual arguments can be non-const rvalues.
       The section can, however, become relevant again, if in the future BLL will support
       lambda functors with higher arities than 3.</emphasis></para> -->

      <para>A general restriction for the actual arguments is that they cannot be non-const rvalues. 
	For example:

<programlisting>
int i = 1; int j = 2; 
(_1 + _2)(i, j); // ok
(_1 + _2)(1, 2); // error (!)
</programlisting>

	This restriction is not as bad as it may look. 
	Since the lambda functors are most often called inside STL-algorithms, 
	the arguments originate from dereferencing iterators and the dereferencing operators seldom return rvalues.
	And for the cases where they do, there are workarounds discussed in 
<xref linkend="lambda.rvalues_as_actual_arguments"/>.


      </para>

    </section>


<section id="lambda.storing_bound_arguments">

<title>Storing bound arguments in lambda functions</title>
      
<para>

By default, temporary const copies of the bound arguments are stored 
in the lambda functor.

This means that the value of a bound argument is fixed at the time of the 
creation of the lambda function and remains constant during the lifetime 
of the lambda function object.
For example:
<programlisting>
int i = 1;
(_1 = 2, _1 + i)(i);
</programlisting>
The comma operator is overloaded to combine lambda expressions into a sequence;
the resulting unary lambda functor first assigns 2 to its argument, 
then adds the value of <literal>i</literal> to it.
The value of the expression in the last line is 3, not 4. 
In other words, the lambda expression that is created is
<literal>lambda x.(x = 2, x + 1)</literal> rather than
<literal>lambda x.(x = 2, x + i)</literal>.
      
</para>

<para>

As said, this is the default behavior for which there are exceptions.
The exact rules are as follows:

<itemizedlist>

<listitem>

<para>

The programmer can control the storing mechanism with <literal>ref</literal> 
and <literal>cref</literal> wrappers <xref linkend="cit:boost::ref"/>.

Wrapping an argument with <literal>ref</literal>, or <literal>cref</literal>, 
instructs the library to store the argument as a reference, 
or as a reference to const respectively.

For example, if we rewrite the previous example and wrap the variable 
<literal>i</literal> with <literal>ref</literal>, 
we are creating the lambda expression <literal>lambda x.(x = 2, x + i)</literal> 
and the value of the expression in the last line will be 4:

<programlisting>
i = 1;
(_1 = 2, _1 + ref(i))(i);
</programlisting>

Note that <literal>ref</literal> and <literal>cref</literal> are different
from <literal>var</literal> and <literal>constant</literal>.

While the latter ones create lambda functors, the former do not. 
For example:

<programlisting>
int i; 
var(i) = 1; // ok
ref(i) = 1; // not ok, ref(i) is not a lambda functor
</programlisting>

The functions <literal>ref</literal> and <literal>cref</literal> mostly 
exist for historical reasons,
and <literal>ref</literal> can always
be replaced with <literal>var</literal>, and <literal>cref</literal> with
<literal>constant_ref</literal>. 
See <xref linkend="lambda.delaying_constants_and_variables"/> for details.
The <literal>ref</literal> and <literal>cref</literal> functions are
general purpose utility functions in Boost, and hence defined directly
in the <literal moreinfo="none">boost</literal> namespace.

</para>
</listitem>
	  
<listitem>
<para>
Array types cannot be copied, they are thus stored as const reference by default.
</para>
</listitem>

<listitem>

<para> 
For some expressions it makes more sense to store the arguments as references. 

For example, the obvious intention of the lambda expression 
<literal>i += _1</literal> is that calls to the lambda functor affect the 
value of the variable <literal>i</literal>, 
rather than some temporary copy of it. 

As another example, the streaming operators take their leftmost argument 
as non-const references. 

The exact rules are:

<itemizedlist>
<listitem>
<para>The left argument of compound assignment operators (<literal>+=</literal>, <literal>*=</literal>, etc.) are stored as references to non-const.</para>
</listitem>

<listitem>
<para>If the left argument of <literal><![CDATA[<<]]></literal> or <literal><![CDATA[>>]]></literal>  operator is derived from an instantiation of <literal>basic_ostream</literal> or respectively from <literal>basic_istream</literal>, the argument is stored as a reference to non-const. 
For all other types, the argument is stored as a copy.
</para>
</listitem>

<listitem>
<para>
In pointer arithmetic expressions, non-const array types are stored as non-const references.
This is to prevent pointer arithmetic making non-const arrays const. 

</para>
</listitem> 

</itemizedlist>

</para>
</listitem>

</itemizedlist>
</para>

</section>

</section>

<section id="lambda.le_in_details">
<title>Lambda expressions in details</title>

<para>
This section describes different categories of lambda expressions in details.
We devote a separate section for each of the possible forms of a lambda expression.


</para>

<section id="lambda.placeholders">
<title>Placeholders</title>

<para>
The BLL defines three placeholder types: <literal>placeholder1_type</literal>, <literal>placeholder2_type</literal> and <literal>placeholder3_type</literal>. 
BLL has a predefined placeholder variable for each placeholder type: <literal>_1</literal>, <literal>_2</literal> and <literal>_3</literal>. 
However, the user is not forced to use these placeholders. 
It is easy to define placeholders with alternative names.
This is done by defining new variables of placeholder types. 
For example:

<programlisting>boost::lambda::placeholder1_type X;
boost::lambda::placeholder2_type Y;
boost::lambda::placeholder3_type Z;
</programlisting>

With these variables defined, <literal>X += Y * Z</literal> is equivalent to <literal>_1 += _2 * _3</literal>.
</para>

<para>
The use of placeholders in the lambda expression determines whether the resulting function is nullary, unary, binary or 3-ary. 
The highest placeholder index is decisive. For example:

<programlisting>
_1 + 5              // unary
_1 * _1 + _1        // unary
_1 + _2             // binary
bind(f, _1, _2, _3) // 3-ary
_3 + 10             // 3-ary
</programlisting>

Note that the last line creates a 3-ary function, which adds <literal>10</literal> to its <emphasis>third</emphasis> argument. 
The first two arguments are discarded.
Furthermore, lambda functors only have a minimum arity.
One can always provide more arguments (up the number of supported placeholders)
that is really needed.
The remaining arguments are just discarded.
For example:

<programlisting>
int i, j, k; 
_1(i, j, k)        // returns i, discards j and k
(_2 + _2)(i, j, k) // returns j+j, discards i and k
</programlisting>

See
<xref linkend="lambda.why_weak_arity"/> for the design rationale behind this
functionality.

</para>

<para>
In addition to these three placeholder types, there is also a fourth placeholder type <literal>placeholderE_type</literal>.
The use of this placeholder is defined in <xref linkend="lambda.exceptions"/> describing exception handling in lambda expressions. 
</para>

<para>When an actual argument is supplied for a placeholder, the parameter passing mode is always by reference. 
This means that any side-effects to the placeholder are reflected to the actual argument. 
For example:


<programlisting>
<![CDATA[int i = 1; 
(_1 += 2)(i);         // i is now 3
(++_1, cout << _1)(i) // i is now 4, outputs 4]]>
</programlisting>
</para>

</section>

<section id="lambda.operator_expressions">
<title>Operator expressions</title>

<para>
The basic rule is that any C++ operator invocation with at least one argument being a lambda expression is itself a lambda expression.
Almost all overloadable operators are supported. 
For example, the following is a valid lambda expression:

<programlisting><![CDATA[cout << _1, _2[_3] = _1 && false]]></programlisting>
</para>

<para>
However, there are some restrictions that originate from the C++ operator overloading rules, and some special cases.
</para>


<section>
<title>Operators that cannot be overloaded</title>

<para>
Some operators cannot be overloaded at all (<literal>::</literal>, <literal>.</literal>, <literal>.*</literal>).
For some operators, the requirements on return types prevent them to be overloaded to create lambda functors.
These operators are <literal>->.</literal>, <literal>-></literal>, <literal>new</literal>, <literal>new[]</literal>, <literal>delete</literal>, <literal>delete[]</literal> and <literal>?:</literal> (the conditional operator).
</para>

</section>

<section id="lambda.assignment_and_subscript">
<title>Assignment and subscript operators</title>

<para>
These operators must be implemented as class members. 
Consequently, the left operand must be a lambda expression. For example:

<programlisting>
int i; 
_1 = i;      // ok
i = _1;      // not ok. i is not a lambda expression
</programlisting>

There is a simple solution around this limitation, described in <xref linkend="lambda.delaying_constants_and_variables"/>.
In short, 
the left hand argument can be explicitly turned into a lambda functor by wrapping it with a special <literal>var</literal> function:
<programlisting>
var(i) = _1; // ok
</programlisting>

</para>
</section>

<section id="lambda.logical_operators">
<title>Logical operators</title>

<para>
Logical operators obey the short-circuiting evaluation rules. For example, in the following code, <literal>i</literal> is never incremented:
<programlisting>
bool flag = true; int i = 0;
(_1 || ++_2)(flag, i);
</programlisting>
</para>
</section>

<section id="lambda.comma_operator">
<title>Comma operator</title>

<para>
Comma operator is the <quote>statement separator</quote> in lambda expressions. 
Since comma is also the separator between arguments in a function call, extra parenthesis are sometimes needed:

<programlisting>
for_each(a.begin(), a.end(), (++_1, cout &lt;&lt; _1));
</programlisting>

Without the extra parenthesis around <literal>++_1, cout &lt;&lt; _1</literal>, the code would be interpreted as an attempt to call <literal>for_each</literal> with four arguments.
</para>
<para>
The lambda functor created by the comma operator adheres to the C++ rule of always evaluating the left operand before the right one.
In the above example, each element of <literal>a</literal> is first incremented, then written to the stream.
</para>
</section>

<section id="lambda.function_call_operator">
<title>Function call operator</title>

<para>
The function call operators have the effect of evaluating the lambda
functor. 
Calls with too few arguments lead to a compile time error.
</para>
</section>

<section id="lambda.member_pointer_operator">
<title>Member pointer operator</title>

<para>
The member pointer operator <literal>operator->*</literal> can be overloaded freely. 
Hence, for user defined types, member pointer operator is no special case.
The built-in meaning, however, is a somewhat more complicated case.
The built-in member pointer operator is applied if the left argument is a pointer to an object of some class <literal>A</literal>, and the right hand argument is a pointer to a member of <literal>A</literal>, or a pointer to a member of a class from which <literal>A</literal> derives.
We must separate two cases:

<itemizedlist>

<listitem>
<para>The right hand argument is a pointer to a data member. 
In this case the lambda functor simply performs the argument substitution and calls the built-in member pointer operator, which returns a reference to the member pointed to. 
For example:
<programlisting>
<![CDATA[struct A { int d; };
A* a = new A();
  ...
(a ->* &A::d);     // returns a reference to a->d 
(_1 ->* &A::d)(a); // likewise]]>
</programlisting>
</para>
</listitem>

<listitem>
<para>
The right hand argument is a pointer to a member function.
For a built-in call like this, the result is kind of a delayed member function call. 
Such an expression must be followed by a function argument list, with which the delayed member function call is performed.
For example:
<programlisting>
<![CDATA[struct B { int foo(int); };
B* b = new B();
  ...
(b ->* &B::foo)         // returns a delayed call to b->foo
                        // a function argument list must follow
(b ->* &B::foo)(1)      // ok, calls b->foo(1)

(_1 ->* &B::foo)(b);    // returns a delayed call to b->foo, 
                        // no effect as such
(_1 ->* &B::foo)(b)(1); // calls b->foo(1)]]>
</programlisting>
</para>
</listitem>
</itemizedlist>
</para>
</section>

</section>

<section id="lambda.bind_expressions">
<title>Bind expressions</title>

<para>
Bind expressions can have two forms: 

<!-- TODO: shouldn't really be emphasis, but a variable or something-->
<programlisting>
bind(<parameter>target-function</parameter>, <parameter>bind-argument-list</parameter>)
bind(<parameter>target-member-function</parameter>, <parameter>object-argument</parameter>, <parameter>bind-argument-list</parameter>)
</programlisting>

A bind expression delays the call of a function. 
If this <emphasis>target function</emphasis> is <emphasis>n</emphasis>-ary, then the <literal><emphasis>bind-argument-list</emphasis></literal> must contain <emphasis>n</emphasis> arguments as well.
In the current version of the BLL, <inlineequation>0 &lt;= n &lt;= 9</inlineequation> must hold. 
For member functions, the number of arguments must be at most <inlineequation>8</inlineequation>, as the object argument takes one argument position.

Basically, the
<emphasis><literal>bind-argument-list</literal></emphasis> must be a valid argument list for the target function, except that any argument can be replaced with a placeholder, or more generally, with a lambda expression. 
Note that also the target function can be a lambda expression.

The result of a bind expression is either a nullary, unary, binary or 3-ary function object depending on the use of placeholders in the <emphasis><literal>bind-argument-list</literal></emphasis> (see <xref linkend="lambda.placeholders"/>).
</para>

<para>
The return type of the lambda functor created by the bind expression can be given as an explicitly specified template parameter, as in the following example:
<programlisting>
bind&lt;<emphasis>RET</emphasis>&gt;(<emphasis>target-function</emphasis>, <emphasis>bind-argument-list</emphasis>)
</programlisting>
This is only necessary if the return type of the target function cannot be deduced.
</para>

<para>
The following sections describe the different types of bind expressions.
</para>

<section id="lambda.function_pointers_as_targets">
<title>Function pointers or references as targets</title>

<para>The target function can be a pointer or a reference to a function and it can be either bound or unbound. For example:
<programlisting>
<![CDATA[X foo(A, B, C); A a; B b; C c;
bind(foo, _1, _2, c)(a, b);
bind(&foo, _1, _2, c)(a, b);
bind(_1, a, b, c)(foo);]]>
</programlisting>
 
The return type deduction always succeeds with this type of bind expressions. 
</para>

<para>
Note, that in C++ it is possible to take the address of an overloaded function only if the address is assigned to, or used as an initializer of, a variable, the type of which solves the amibiguity, or if an explicit cast expression is used.
This means that overloaded functions cannot be used in bind expressions directly, e.g.:
<programlisting>
<![CDATA[void foo(int);
void foo(float);
int i; 
  ...
bind(&foo, _1)(i);                            // error 
  ...
void (*pf1)(int) = &foo;
bind(pf1, _1)(i);                             // ok
bind(static_cast<void(*)(int)>(&foo), _1)(i); // ok]]>
</programlisting>
</para>
</section>

<section id="member_functions_as_targets">
<title>Member functions as targets</title>

<para>
The syntax for using pointers to member function in bind expression is:
<programlisting>
bind(<parameter>target-member-function</parameter>, <parameter>object-argument</parameter>, <parameter>bind-argument-list</parameter>)
</programlisting>

The object argument can be a reference or pointer to the object, the BLL supports both cases with a uniform interface: 

<programlisting>
<![CDATA[bool A::foo(int) const; 
A a;
vector<int> ints; 
  ...
find_if(ints.begin(), ints.end(), bind(&A::foo, a, _1)); 
find_if(ints.begin(), ints.end(), bind(&A::foo, &a, _1));]]>
</programlisting>

Similarly, if the object argument is unbound, the resulting lambda functor can be called both via a pointer or a reference:

<programlisting>
<![CDATA[bool A::foo(int); 
list<A> refs; 
list<A*> pointers; 
  ...
find_if(refs.begin(), refs.end(), bind(&A::foo, _1, 1)); 
find_if(pointers.begin(), pointers.end(), bind(&A::foo, _1, 1));]]>
</programlisting>

</para>

<!--%The exact rules for the object argument (whether it is bound, or supplied in the lambda function invoction) are as follows:
%If the target function is a pointer to a member function of some class \snip{A}, then the object argument must be an expression of type \snip{B}, where either
%\begin{itemize}
%\item \snip{B} = \snip{A} or there is an implicit conversion from \snip{B} to \snip{A}.
%\item \snip{B} = \snip{A*}.
%\item \snip{B} = \snip{C*}, where \snip{C} is any class derived form \snip{A}.
%\end{itemize}
%For example:
%\begin{alltt}
%struct A \{
%  virtual void f();
%  void fc() const;
%\};
%
%struct B : public A \{ 
%  virtual void f(); 
%\};
%
%struct C \{
%  operator A const() \{ return A(); \}
%\};
%
% A a; B b; C c;
%  ...
% bind(&A::f, a)(); 
% bind(&A::f, b)(); // calls B::f
% bind(&A::fc, c)(); 
%
% bind(&A::f, &a)();
% bind(&A::f, &b)(); // calls B::f
% bind(&A::f, &c)(); // error: no conversion from C* \(\rightarrow\) A, 
%\end{alltt}
-->

<para>
Even though the interfaces are the same, there are important semantic differences between using a pointer or a reference as the object argument.
The differences stem from the way <literal>bind</literal>-functions take their parameters, and how the bound parameters are stored within the lambda functor.
The object argument has the same parameter passing and storing mechanism as any other bind argument slot (see <xref linkend="lambda.storing_bound_arguments"/>); it is passed as a const reference and stored as a const copy in the lambda functor.
This creates some asymmetry between the lambda functor and the original member function, and between seemingly similar lambda functors. For example:
<programlisting>
class A {
  int i; mutable int j;
public:

  A(int ii, int jj) : i(ii), j(jj) {};
  void set_i(int x) { i = x; }; 
  void set_j(int x) const { j = x; }; 
};
</programlisting>

When a pointer is used, the behavior is what the programmer might expect:

<programlisting>
<![CDATA[A a(0,0); int k = 1;
bind(&A::set_i, &a, _1)(k); // a.i == 1
bind(&A::set_j, &a, _1)(k); // a.j == 1]]>
</programlisting>

Even though a const copy of the object argument is stored, the original object <literal>a</literal> is still modified.
This is since the object argument is a pointer, and the pointer is copied, not the object it points to.
When we use a reference, the behaviour is different:

<programlisting>
<![CDATA[A a(0,0); int k = 1;
bind(&A::set_i, a, _1)(k); // error; a const copy of a is stored. 
                           // Cannot call a non-const function set_i
bind(&A::set_j, a, _1)(k); // a.j == 0, as a copy of a is modified]]>
</programlisting>
</para>

<para>
To prevent the copying from taking place, one can use the <literal>ref</literal> or <literal>cref</literal> wrappers (<literal>var</literal> and <literal>constant_ref</literal> would do as well):
<programlisting>
<![CDATA[bind(&A::set_i, ref(a), _1)(k); // a.j == 1
bind(&A::set_j, cref(a), _1)(k); // a.j == 1]]>
</programlisting>
</para>

<para>Note that the preceding discussion is relevant only for bound arguments. 
If the object argument is unbound, the parameter passing mode is always by reference. 
Hence, the argument <literal>a</literal> is not copied in the calls to the two lambda functors below:
<programlisting>
<![CDATA[A a(0,0);
bind(&A::set_i, _1, 1)(a); // a.i == 1
bind(&A::set_j, _1, 1)(a); // a.j == 1]]>
</programlisting>
</para>
</section>

<section id="lambda.members_variables_as_targets">
<title>Member variables as targets</title>

<para>
A pointer to a member variable is not really a function, but 
the first argument to the <literal>bind</literal> function can nevertheless
be a pointer to a member variable.
Invoking such a bind expression returns a reference to the data member.
For example:

<programlisting>
<![CDATA[struct A { int data; };
A a;
bind(&A::data, _1)(a) = 1;     // a.data == 1]]>
</programlisting>

The cv-qualifiers of the object whose member is accessed are respected.
For example, the following tries to write into a const location:
<programlisting>
<![CDATA[const A ca = a;
bind(&A::data, _1)(ca) = 1;     // error]]>
</programlisting>

</para>
</section>

<section id="lambda.function_objects_as_targets">
<title>Function objects as targets</title>

<para>

Function objects, that is, class objects which have the function call 
operator defined, can be used as target functions. 

In general, BLL cannot deduce the return type of an arbitrary function object. 

However, there are two methods for giving BLL this capability for a certain 
function object class.

</para>

<simplesect>

<title>The result_type typedef</title>

<para>

The BLL supports the standard library convention of declaring the return type
of a function object with a member typedef named <literal>result_type</literal> in the
function object class.

Here is a simple example:
<programlisting>
<![CDATA[struct A {
  typedef B result_type;
  B operator()(X, Y, Z); 
};]]>
</programlisting>

If a function object does not define a <literal>result_type</literal> typedef, 
the method described below (<literal>sig</literal> template) 
is attempted to resolve the return type of the
function object. If a function object defines both <literal>result_type</literal>
and <literal>sig</literal>, <literal>result_type</literal> takes precedence.

</para>

</simplesect>

<simplesect>

<title>The sig template</title>

<para>
Another mechanism that make BLL aware of the return type(s) of a function object is defining
member template struct 
<literal><![CDATA[sig<Args>]]></literal> with a typedef 
<literal>type</literal> that specifies the return type.

Here is a simple example:
<programlisting>
<![CDATA[struct A {
  template <class Args> struct sig { typedef B type; }
  B operator()(X, Y, Z); 
};]]>
</programlisting>

The template argument <literal>Args</literal> is a 
<literal>tuple</literal> (or more precisely a <literal>cons</literal> list) 
type <xref linkend="cit:boost::tuple"/>, where the first element 
is the function 
object type itself, and the remaining elements are the types of 
the arguments, with which the function object is being called.

This may seem overly complex compared to defining the <literal>result_type</literal> typedef.
Howver, there are two significant restrictions with using just a simple
typedef to express the return type:
<orderedlist>
<listitem>
<para>
If the function object defines several function call operators, there is no way to specify different result types for them.
</para>
</listitem>
<listitem>
<para>
If the function call operator is a template, the result type may 
depend on the template parameters. 
Hence, the typedef ought to be a template too, which the C++ language 
does not support.
</para>
</listitem>
</orderedlist>

The following code shows an example, where the return type depends on the type
of one of the arguments, and how that dependency can be expressed with the
<literal>sig</literal> template:

<programlisting>
<![CDATA[struct A {

  // the return type equals the third argument type:
  template<class T1, class T2, class T3>
  T3 operator()(const T1& t1, const T2& t2, const T3& t3) const;

  template <class Args> 
  class sig {
    // get the third argument type (4th element)
    typedef typename 
      boost::tuples::element<3, Args>::type T3;
  public:
    typedef typename 
      boost::remove_cv<T3>::type type;
  };
};]]>
</programlisting>


The elements of the <literal>Args</literal> tuple are always 
non-reference types.

Moreover, the element types can have a const or volatile qualifier
(jointly referred to as <emphasis>cv-qualifiers</emphasis>), or both.
This is since the cv-qualifiers in the arguments can affect the return type.
The reason for including the potentially cv-qualified function object 
type itself into the <literal>Args</literal> tuple, is that the function
object class can contain both const and non-const (or volatile, even
const volatile) function call operators, and they can each have a different
return type.
</para>

<para>
The <literal>sig</literal> template can be seen as a 
<emphasis>meta-function</emphasis> that maps the argument type tuple to 
the result type of the call made with arguments of the types in the tuple.

As the example above demonstrates, the template can end up being somewhat 
complex.
Typical tasks to be performed are the extraction of the relevant types 
from the tuple, removing cv-qualifiers etc.
See the Boost type_traits <xref linkend="cit:boost::type_traits"/> and
Tuple <xref linkend="cit:boost::type_traits"/> libraries 
for tools that can aid in these tasks.
The <literal>sig</literal> templates are a refined version of a similar
mechanism first introduced in the FC++ library  
<xref linkend="cit:fc++"/>.
</para>

</simplesect>

</section>



</section>

<section id="lambda.overriding_deduced_return_type">
<title>Overriding the deduced return type</title>

<para>
The return type deduction system may not be able to deduce the return types of some user defined operators or bind expressions with class objects.
<!-- (see the example in <xref linkend="lambda.parameter_and_return_types"/>).-->
A special lambda expression type is provided for stating the return type explicitly and overriding the deduction system. 
To state that the return type of the lambda functor defined by the lambda expression <literal>e</literal> is <literal>T</literal>, you can write:

<programlisting><![CDATA[ret<T>(e);]]></programlisting>

The effect is that the return type deduction is not performed for the lambda expression <literal>e</literal> at all, but instead, <literal>T</literal> is used as the return type. 
Obviously <literal>T</literal> cannot be an arbitrary type, the true result of the lambda functor must be implicitly convertible to <literal>T</literal>. 
For example:

<programlisting>
<![CDATA[A a; B b;
C operator+(A, B);
int operator*(A, B); 
  ...
ret<D>(_1 + _2)(a, b);     // error (C cannot be converted to D)
ret<C>(_1 + _2)(a, b);     // ok
ret<float>(_1 * _2)(a, b); // ok (int can be converted to float)
  ...
struct X {
  Y operator(int)();   
};
  ...
X x; int i;
bind(x, _1)(i);            // error, return type cannot be deduced
ret<Y>(bind(x, _1))(i);    // ok]]>
</programlisting>
For bind expressions, there is a short-hand notation that can be used instead of <literal>ret</literal>. 
The last line could alternatively be written as:

<programlisting><![CDATA[bind<Z>(x, _1)(i);]]></programlisting>
This feature is modeled after the Boost Bind library <xref linkend="cit:boost::bind"/>.

</para>

<para>Note that within nested lambda expressions, 
the <literal>ret</literal> must be used at each subexpression where 
the deduction would otherwise fail. 
For example:
<programlisting>
<![CDATA[A a; B b;
C operator+(A, B); D operator-(C);
  ...
ret<D>( - (_1 + _2))(a, b); // error 
ret<D>( - ret<C>(_1 + _2))(a, b); // ok]]>
</programlisting>
</para>

<para>If you find yourself using  <literal>ret</literal> repeatedly with the same types, it is worth while extending the return type deduction (see <xref linkend="lambda.extending"/>).
</para>

<section id="lambda.nullary_functors_and_ret">
<title>Nullary lambda functors and ret</title>

<para>
As stated above, the effect of <literal>ret</literal> is to prevent the return type deduction to be performed. 
However, there is an exception. 
Due to the way the C++ template instantiation works, the compiler is always forced to instantiate the return type deduction templates for zero-argument lambda functors.
This introduces a slight problem with <literal>ret</literal>, best described with an example:

<programlisting>
<![CDATA[struct F { int operator()(int i) const; }; 
F f;
  ...
bind(f, _1);           // fails, cannot deduce the return type
ret<int>(bind(f, _1)); // ok
  ...
bind(f, 1);            // fails, cannot deduce the return type
ret<int>(bind(f, 1));  // fails as well!]]>
</programlisting>
The BLL cannot deduce the return types of the above bind calls, as <literal>F</literal> does not define the typedef <literal>result_type</literal>. 
One would expect <literal>ret</literal> to fix this, but for the nullary lambda functor that results from a bind expression (last line above) this does not work.
The return type deduction templates are instantiated, even though it would not be necessary and the result is a compilation error.
</para>

<para>The solution to this is not to use the <literal>ret</literal> function, but rather define the return type as an explicitly specified template parameter in the <literal>bind</literal> call:
<programlisting>
<![CDATA[bind<int>(f, 1);       // ok]]>
</programlisting>

The lambda functors created with 
<literal>ret&lt;<parameter>T</parameter>&gt;(bind(<parameter>arg-list</parameter>))</literal> and 
<literal>bind&lt;<parameter>T</parameter>&gt;(<parameter>arg-list</parameter>)</literal> have the exact same functionality &mdash;
apart from the fact that for some nullary lambda functors the former does not work while the latter does. 
</para>
</section>
</section>


<section id="lambda.delaying_constants_and_variables">
<title>Delaying constants and variables</title>

<para>
The unary functions <literal>constant</literal>,
<literal>constant_ref</literal> and <literal>var</literal> turn their argument into a lambda functor, that implements an identity mapping.
The former two are for constants, the latter for variables. 
The use of these <emphasis>delayed</emphasis> constants and variables is sometimes necessary due to the lack of explicit syntax for lambda expressions. 
For example:
<programlisting>
<![CDATA[for_each(a.begin(), a.end(), cout << _1 << ' ');
for_each(a.begin(), a.end(), cout << ' ' << _1);]]>
</programlisting>
The first line outputs the elements of <literal>a</literal> separated by spaces, while the second line outputs a space followed by the elements of <literal>a</literal> without any separators.
The reason for this is that neither of the operands of 
<literal><![CDATA[cout << ' ']]></literal> is a lambda expression, hence <literal><![CDATA[cout << ' ']]></literal> is evaluated immediately.

To delay the evaluation of <literal><![CDATA[cout << ' ']]></literal>, one of the operands must be explicitly marked as a lambda expression. 
This is accomplished with the <literal>constant</literal> function:
<programlisting>
<![CDATA[for_each(a.begin(), a.end(), cout << constant(' ') << _1);]]>
</programlisting>

The call <literal>constant(' ')</literal> creates a nullary lambda functor which stores the character constant <literal>' '</literal> 
and returns a reference to it when invoked. 
The function <literal>constant_ref</literal> is similar, except that it
stores a constant reference to its argument.

The <literal>constant</literal> and <literal>consant_ref</literal> are only
needed when the operator call has side effects, like in the above example.
</para>

<para>
Sometimes we need to delay the evaluation of a variable. 
Suppose we wanted to output the elements of a container in a numbered list:

<programlisting>
<![CDATA[int index = 0; 
for_each(a.begin(), a.end(), cout << ++index << ':' << _1 << '\n');
for_each(a.begin(), a.end(), cout << ++var(index) << ':' << _1 << '\n');]]>
</programlisting>

The first <literal>for_each</literal> invocation does not do what we want; <literal>index</literal> is incremented only once, and its value is written into the output stream only once.
By using <literal>var</literal> to make <literal>index</literal> a lambda expression, we get the desired effect.
<!-- Note that <literal>var</literal> accepts const objects as well, in which case
calling <literal>var</literal> equals calling <literal>constant_ref</literal>.-->
</para>

<para>
In sum, <literal>var(x)</literal> creates a nullary lambda functor, 
which stores a reference to the variable <literal>x</literal>. 
When the lambda functor is invoked, a reference to <literal>x</literal> is returned.
</para>

<simplesect>
<title>Naming delayed constants and variables</title>

<para>
It is possible to predefine and name a delayed variable or constant outside a lambda expression. 
The templates <literal>var_type</literal>, <literal>constant_type</literal> 
and <literal>constant_ref_type</literal> serve for this purpose. 
They are used as:
<programlisting>
<![CDATA[var_type<T>::type delayed_i(var(i));
constant_type<T>::type delayed_c(constant(c));]]>
</programlisting>
The first line defines the variable <literal>delayed_i</literal> which is a delayed version of the variable <literal>i</literal> of type <literal>T</literal>.
Analogously, the second line defines the constant <literal>delayed_c</literal> as a delayed version of the constant <literal>c</literal>.
For example:

<programlisting>
int i = 0; int j;
for_each(a.begin(), a.end(), (var(j) = _1, _1 = var(i), var(i) = var(j))); 
</programlisting>
is equivalent to:
<programlisting>
<![CDATA[int i = 0; int j;
var_type<int>::type vi(var(i)), vj(var(j));
for_each(a.begin(), a.end(), (vj = _1, _1 = vi, vi = vj));]]>
</programlisting>
</para>
<para>
Here is an example of naming a delayed constant:
<programlisting>
<![CDATA[constant_type<char>::type space(constant(' '));
for_each(a.begin(),a.end(), cout << space << _1);]]>
</programlisting>
</para>

</simplesect>

<simplesect>
<title>About assignment and subscript operators</title>

<para>
As described in <xref linkend="lambda.assignment_and_subscript"/>, assignment and subscripting operators are always defined as member functions.
This means, that for expressions of the form
<literal>x = y</literal> or <literal>x[y]</literal> to be interpreted as lambda expressions, the left-hand operand <literal>x</literal> must be a lambda expression. 
Consequently, it is sometimes necessary to use <literal>var</literal> for this purpose.
We repeat the example from <xref linkend="lambda.assignment_and_subscript"/>:

<programlisting>
int i; 
i = _1;       // error
var(i) = _1;  // ok
</programlisting>
</para>

<para>

Note that the compound assignment operators <literal>+=</literal>, <literal>-=</literal> etc. can be defined as non-member functions, and thus they are interpreted as lambda expressions even if only the right-hand operand is a lambda expression.
Nevertheless, it is perfectly ok to delay the left operand explicitly. 
For example, <literal>i += _1</literal> is equivalent to <literal>var(i) += _1</literal>.
</para>
</simplesect>

</section>

<section id="lambda.lambda_expressions_for_control_structures">
<title>Lambda expressions for control structures</title>

<para>
BLL defines several functions to create lambda functors that represent control structures. 
They all take lambda functors as parameters and return <literal>void</literal>.
To start with an example, the following code outputs all even elements of some container <literal>a</literal>:

<programlisting>
<![CDATA[for_each(a.begin(), a.end(), 
         if_then(_1 % 2 == 0, cout << _1));]]>  
</programlisting>
</para>

<para>
The BLL supports the following function templates for control structures: 

<programlisting>
if_then(condition, then_part)
if_then_else(condition, then_part, else_part)
if_then_else_return(condition, then_part, else_part)
while_loop(condition, body)
while_loop(condition) // no body case
do_while_loop(condition, body)
do_while_loop(condition) // no body case 
for_loop(init, condition, increment, body)
for_loop(init, condition, increment) // no body case
switch_statement(...)
</programlisting>

The return types of all control construct lambda functor is 
<literal>void</literal>, except for <literal>if_then_else_return</literal>,
which wraps a call to the conditional operator 
<programlisting>
condition ? then_part : else_part
</programlisting>
The return type rules for this operator are somewhat complex. 
Basically, if the branches have the same type, this type is the return type.
If the type of the branches differ, one branch, say of type 
<literal>A</literal>, must be convertible to the other branch, 
say of type <literal>B</literal>.
In this situation, the result type is <literal>B</literal>.
Further, if the common type is an lvalue, the return type will be an lvalue
too.
</para>


<para>
Delayed variables tend to be commonplace in control structure lambda expressions. 
For instance, here we use the <literal>var</literal> function to turn the arguments of <literal>for_loop</literal> into lambda expressions. 
The effect of the code is to add 1 to each element of a two-dimensional array:

<programlisting>
<![CDATA[int a[5][10]; int i;
for_each(a, a+5, 
  for_loop(var(i)=0, var(i)<10, ++var(i), 
           _1[var(i)] += 1));]]>  
</programlisting>

<!--
As explained in <xref linkend="lambda.delaying_constants_and_variables"/>, we can avoid the repeated use of wrapping of <literal>var</literal> if we define it beforehand:

<programlisting>
<![CDATA[int i;
var_type<int>::type vi(var(i));
for_each(a, a+5, 
  for_loop(vi=0, vi<10, ++vi, _1[vi] += 6));]]>  
</programlisting>

-->
</para>

<para>
The BLL supports an alternative syntax for control expressions, suggested
by Joel de Guzmann. 
By overloading the <literal>operator[]</literal> we can
get a closer resemblance with the built-in control structures:

<programlisting>
<![CDATA[if_(condition)[then_part]
if_(condition)[then_part].else_[else_part]
while_(condition)[body]
do_[body].while_(condition)
for_(init, condition, increment)[body]]]>
</programlisting>

For example, using this syntax the <literal>if_then</literal> example above
can be written as:
<programlisting>
<![CDATA[for_each(a.begin(), a.end(), 
         if_(_1 % 2 == 0)[ cout << _1 ])]]>  
</programlisting>

As more experience is gained, we may end up deprecating one or the other 
of these syntaces. 

</para>



<section id="lambda.switch_statement">
<title>Switch statement</title>
</section>

<para>
The lambda expressions for <literal>switch</literal> control structures are more complex since the number of cases may vary. 
The general form of a switch lambda expression is:

<programlisting>
switch_statement(<parameter>condition</parameter>, 
  case_statement&lt;<parameter>label</parameter>&gt;(<parameter>lambda expression</parameter>),
  case_statement&lt;<parameter>label</parameter>&gt;(<parameter>lambda expression</parameter>),
  ...
  default_statement(<parameter>lambda expression</parameter>)
)
</programlisting>

The <literal><parameter>condition</parameter></literal> argument must be a lambda expression that creates a lambda functor with an integral return type.
The different cases are created with the <literal>case_statement</literal> functions, and the optional default case with the <literal>default_statement</literal> function.
The case labels are given as explicitly specified template arguments to <literal>case_statement</literal> functions and 
<literal>break</literal> statements are implicitly part of each case. 
For example, <literal><![CDATA[case_statement<1>(a)]]></literal>, where <literal>a</literal> is some lambda functor,  generates the code:

<programlisting>
case 1: 
  <parameter>evaluate lambda functor</parameter> a; 
  break;
</programlisting>
The <literal>switch_statement</literal> function is specialized for up to 9 case statements.

</para>

<para>
As a concrete example, the following code iterates over some container <literal>v</literal> and ouptuts <quote>zero</quote> for each <literal>0</literal>, <quote>one</quote> for each <literal>1</literal>, and <quote>other: <parameter>n</parameter></quote> for any other value <parameter>n</parameter>.
Note that another lambda expression is sequenced after the <literal>switch_statement</literal> to output a line break after each element:

<programlisting>
<![CDATA[std::for_each(v.begin(), v.end(),
  ( 
    switch_statement(
      _1,
      case_statement<0>(std::cout << constant("zero")),
      case_statement<1>(std::cout << constant("one")),
      default_statement(cout << constant("other: ") << _1)
    ), 
    cout << constant("\n") 
  )
);]]>
</programlisting>
</para>

</section>

<section id="lambda.exceptions">
<title>Exceptions</title>

<para>
The BLL provides lambda functors that throw and catch exceptions.
Lambda functors for throwing exceptions are created with the unary function <literal>throw_exception</literal>.
The argument to this function is the exception to be thrown, or a lambda functor which creates the exception to be thrown.
A lambda functor for rethrowing exceptions is created with the nullary <literal>rethrow</literal> function.
</para>

<para>
Lambda expressions for handling exceptions are somewhat more complex.
The general form of a lambda expression for try catch blocks is as follows:

<programlisting>
try_catch(
  <parameter>lambda expression</parameter>,
  catch_exception&lt;<parameter>type</parameter>&gt;(<parameter>lambda expression</parameter>),
  catch_exception&lt;<parameter>type</parameter>&gt;(<parameter>lambda expression</parameter>),
  ...
  catch_all(<parameter>lambda expression</parameter>)
)
</programlisting>

The first lambda expression is the try block. 
Each <literal>catch_exception</literal> defines a catch block where the 
explicitly specified template argument defines the type of the exception 
to catch.

The lambda expression within the <literal>catch_exception</literal> defines 
the actions to take if the exception is caught.

Note that the resulting exception handlers catch the exceptions as 
references, i.e., <literal>catch_exception&lt;T&gt;(...)</literal> 
results in the catch block:

<programlisting>
catch(T&amp; e) { ... }
</programlisting>

The last catch block can alternatively be a call to 
<literal>catch_exception&lt;<parameter>type</parameter>&gt;</literal> 
or to 
<literal>catch_all</literal>, which is the lambda expression equivalent to 
<literal>catch(...)</literal>.

</para>

<para>

The <xref linkend="ex:exceptions"/> demonstrates the use of the BLL 
exception handling tools. 
The first handler catches exceptions of type <literal>foo_exception</literal>. 
Note the use of <literal>_1</literal> placeholder in the body of the handler.
</para>

<para>
The second handler shows how to throw exceptions, and demonstrates the 
use of the <emphasis>exception placeholder</emphasis> <literal>_e</literal>.

It is a special placeholder, which refers to the caught exception object 
within the handler body.

Here we are handling an exception of type <literal>std::exception</literal>, 
which carries a string explaining the cause of the exception. 

This explanation can be queried with the zero-argument member 
function <literal>what</literal>.

The expression
<literal>bind(&amp;std::exception::what, _e)</literal> creates the lambda 
function for making that call.

Note that <literal>_e</literal> cannot be used outside of an exception handler lambda expression.
<!--Violating this rule is caught by the compiler.-->

The last line of the second handler constructs a new exception object and 
throws that with <literal>throw exception</literal>. 

Constructing and destructing objects within lambda expressions is 
explained in <xref linkend="lambda.construction_and_destruction"/>
</para>

<para>
Finally, the third handler (<literal>catch_all</literal>) demonstrates 
rethrowing exceptions.
</para>

<example id="ex:exceptions">
<title>Throwing and handling exceptions in lambda expressions.</title>
<programlisting>
<![CDATA[for_each(
  a.begin(), a.end(),
  try_catch(
    bind(foo, _1),                 // foo may throw
    catch_exception<foo_exception>(
      cout << constant("Caught foo_exception: ") 
           << "foo was called with argument = " << _1
    ),
    catch_exception<std::exception>(
      cout << constant("Caught std::exception: ") 
           << bind(&std::exception::what, _e),
      throw_exception(bind(constructor<bar_exception>(), _1)))
    ),      
    catch_all(
      (cout << constant("Unknown"), rethrow())
    )
  )
);]]>
</programlisting>
</example>

</section>

<section id="lambda.construction_and_destruction">
<title>Construction and destruction</title>


<para>
Operators <literal>new</literal> and <literal>delete</literal> can be 
overloaded, but their return types are fixed. 

Particularly, the return types cannot be lambda functors, 
which prevents them to be overloaded for lambda expressions.

It is not possible to take the address of a constructor, 
hence constructors cannot be used as target functions in bind expressions.

The same is true for destructors.

As a way around these constraints, BLL defines wrapper classes for 
<literal>new</literal> and <literal>delete</literal> calls, 
as well as for constructors and destructors.

Instances of these classes are function objects, that can be used as 
target functions of bind expressions. 

For example:

<programlisting>
<![CDATA[int* a[10];
for_each(a, a+10, _1 = bind(new_ptr<int>())); 
for_each(a, a+10, bind(delete_ptr(), _1));]]>
</programlisting>

The <literal>new_ptr&lt;int&gt;()</literal> expression creates 
a function object that calls <literal>new int()</literal> when invoked, 
and wrapping that inside <literal>bind</literal> makes it a lambda functor.

In the same way, the expression <literal>delete_ptr()</literal> creates 
a function object that invokes <literal>delete</literal> on its argument. 

Note that <literal>new_ptr&lt;<parameter>T</parameter>&gt;()</literal> 
can take arguments as well.

They are passed directly to the constructor invocation and thus allow 
calls to constructors which take arguments. 

</para>

<para>

As an example of constructor calls in lambda expressions, 
the following code reads integers from two containers <literal>x</literal> 
and <literal>y</literal>, 
constructs pairs out of them and inserts them into a third container:

<programlisting>
<![CDATA[vector<pair<int, int> > v;
transform(x.begin(), x.end(), y.begin(), back_inserter(v),
          bind(constructor<pair<int, int> >(), _1, _2));]]>
</programlisting>

<xref linkend="table:constructor_destructor_fos"/> lists all the function 
objects related to creating and destroying objects,
 showing the expression to create and call the function object, 
and the effect of evaluating that expression.

</para>



<table id="table:constructor_destructor_fos">
<title>Construction and destruction related function objects.</title>
<tgroup cols="2">
<thead>
<row>
<entry>Function object call</entry>
<entry>Wrapped expression</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>constructor&lt;T&gt;()(<parameter>arg_list</parameter>)</literal></entry>
<entry>T(<parameter>arg_list</parameter>)</entry>
</row>
<row>
<entry><literal>destructor()(a)</literal></entry>
<entry><literal>a.~A()</literal>, where <literal>a</literal> is of type <literal>A</literal></entry>
</row>
<row>
<entry><literal>destructor()(pa)</literal></entry>
<entry><literal>pa->~A()</literal>, where <literal>pa</literal> is of type <literal>A*</literal></entry>
</row>
<row>
<entry><literal>new_ptr&lt;T&gt;()(<parameter>arg_list</parameter>)</literal></entry>
<entry><literal>new T(<parameter>arg_list</parameter>)</literal></entry>
</row>
<row>
<entry><literal>new_array&lt;T&gt;()(sz)</literal></entry>
<entry><literal>new T[sz]</literal></entry>
</row>
<row>
<entry><literal>delete_ptr()(p)</literal></entry>
<entry><literal>delete p</literal></entry>
</row>
<row>
<entry><literal>delete_array()(p)</literal></entry>
<entry><literal>delete p[]</literal></entry>
</row>


</tbody>
</tgroup>
</table> 

</section>


<section>
<title>Special lambda expressions</title>

<section>
<title>Preventing argument substitution</title>

<para>
When a lambda functor is called, the default behavior is to substitute 
the actual arguments for the placeholders within all subexpressions.

This section describes the tools to prevent the substitution and 
evaluation of a subexpression, and explains when these tools should be used.
</para>


<para>
The arguments to a bind expression can be arbitrary lambda expressions, 
e.g., other bind expressions.

For example:

<programlisting>
int foo(int); int bar(int);
...
int i;
bind(foo, bind(bar, _1))(i);
</programlisting>

The last line makes the call <literal>foo(bar(i));</literal>

Note that the first argument in a bind expression, the target function, 
is no exception, and can thus be a bind expression too.

The innermost lambda functor just has to return something that can be used 
as a target function: another lambda functor, function pointer, 
pointer to member function etc. 

For example, in the following code the innermost lambda functor makes 
a selection between two functions, and returns a pointer to one of them:

<programlisting>
int add(int a, int b) { return a+b; }
int mul(int a, int b) { return a*b; }

int(*)(int, int)  add_or_mul(bool x) { 
  return x ? add : mul; 
}

bool condition; int i; int j;
...
bind(bind(&amp;add_or_mul, _1), _2, _3)(condition, i, j);
</programlisting>

</para>



<section id="lambda.unlambda">
<title>Unlambda</title>

<para>A nested bind expression may occur inadvertently, 
if the target function is a variable with a type that depends on a 
template parameter. 

Typically the target function could be a formal parameter of a 
function template. 

In such a case, the programmer may not know whether the target function is a lambda functor or not.
</para>

<para>Consider the following function template:

<programlisting>
<![CDATA[template<class F>
int nested(const F& f) {
  int x;
  ...
  bind(f, _1)(x);
  ...
}]]>
</programlisting>

Somewhere inside the function the formal parameter
<literal>f</literal> is used as a target function in a bind expression. 

In order for this <literal>bind</literal> call to be valid, 
<literal>f</literal> must be a unary function.

Suppose the following two calls to <literal>nested</literal> are made:

<programlisting>
<![CDATA[int foo(int);
int bar(int, int);
nested(&foo);
nested(bind(bar, 1, _1));]]>
</programlisting>

Both are unary functions, or function objects, with appropriate argument 
and return types, but the latter will not compile.

In the latter call, the bind expression inside <literal>nested</literal> 
will become:

<programlisting>
bind(bind(bar, 1, _1), _1) 
</programlisting>

When this is invoked with <literal>x</literal>, 
after substituitions we end up trying to call

<programlisting>
bar(1, x)(x)
</programlisting>

which is an error. 

The call to <literal>bar</literal> returns int, 
not a unary function or function object.
</para>

<para>
In the example above, the intent of the bind expression in the 
<literal>nested</literal> function is to treat <literal>f</literal> 
as an ordinary function object, instead of a lambda functor. 

The BLL provides the function template <literal>unlambda</literal> to 
express this: a lambda functor wrapped inside <literal>unlambda</literal> 
is not a lambda functor anymore, and does not take part into the 
argument substitution process.

Note that for all other argument types <literal>unlambda</literal> is 
an identity operation, except for making non-const objects const.
</para>

<para>
Using <literal>unlambda</literal>, the <literal>nested</literal> 
function is written as:

<programlisting>
<![CDATA[template<class F>
int nested(const F& f) {
  int x;
  ...
  bind(unlambda(f), _1)(x);
  ...
}]]>
</programlisting>

</para>

</section>

<section>
<title>Protect</title>

<para>
The <literal>protect</literal> function is related to unlambda. 

It is also used to prevent the argument substitution taking place, 
but whereas <literal>unlambda</literal> turns a lambda functor into 
an ordinary function object for good, <literal>protect</literal> does 
this temporarily, for just one evaluation round.

For example:

<programlisting>
int x = 1, y = 10;
(_1 + protect(_1 + 2))(x)(y);
</programlisting>
    
The first call substitutes <literal>x</literal> for the leftmost 
<literal>_1</literal>, and results in another lambda functor 
<literal>x + (_1 + 2)</literal>, which after the call with 
<literal>y</literal> becomes <literal>x + (y + 2)</literal>, 
and thus finally 13.
</para>

<para>
Primary motivation for including <literal>protect</literal> into the library, 
was to allow nested STL algorithm invocations 
(<xref linkend="lambda.nested_stl_algorithms"/>).
</para>

</section>

</section>

<section id="lambda.rvalues_as_actual_arguments">
<title>Rvalues as actual arguments to lambda functors</title>

<!--      <para><emphasis>This section and all of its subsections
       are no longer (or currently) relevant;
       acual arguments can be non-const rvalues and these workarounds are thus
       not needed.
       The section can, however, become relevant again, if in the future BLL will support
       lambda functors with higher arities than 3.</emphasis></para> -->

<para>
Actual arguments to the lambda functors cannot be non-const rvalues.
This is due to a deliberate design decision: either we have this restriction, 
or there can be no side-effects to the actual arguments.

There are ways around this limitation.

We repeat the example from section 
<xref linkend="lambda.actual_arguments_to_lambda_functors"/> and list the 
different solutions:

<programlisting>
int i = 1; int j = 2; 
(_1 + _2)(i, j); // ok
(_1 + _2)(1, 2); // error (!)
</programlisting>

<orderedlist>
<listitem>
<para>
If the rvalue is of a class type, the return type of the function that 
creates the rvalue should be defined as const. 
Due to an unfortunate language restriction this does not work for 
built-in types, as built-in rvalues cannot be const qualified. 
</para>
</listitem>

<listitem>
<para>
If the lambda function call is accessible, the <literal>make_const</literal> 
function can be used to <emphasis>constify</emphasis> the rvalue. E.g.:

<programlisting>
(_1 + _2)(make_const(1), make_const(2)); // ok
</programlisting>

Commonly the lambda function call site is inside a standard algorithm 
function template, preventing this solution to be used.

</para>
</listitem>

<listitem>
<para>
If neither of the above is possible, the lambda expression can be wrapped 
in a <literal>const_parameters</literal> function. 
It creates another type of lambda functor, which takes its arguments as 
const references. For example:

<programlisting>
const_parameters(_1 + _2)(1, 2); // ok
</programlisting>

Note that <literal>const_parameters</literal> makes all arguments const.
Hence, in the case were one of the arguments is a non-const rvalue, 
and another argument needs to be passed as a non-const reference, 
this approach cannot be used.
</para>

</listitem>

<listitem>
<para>If none of the above is possible, there is still one solution, 
which unfortunately can break const correctness.

The solution is yet another lambda functor wrapper, which we have named 
<literal>break_const</literal> to alert the user of the potential dangers 
of this function. 

The <literal>break_const</literal> function creates a lambda functor that 
takes its arguments as const, and casts away constness prior to the call 
to the original wrapped lambda functor.

For example:
<programlisting>
int i; 
...
(_1 += _2)(i, 2);                 // error, 2 is a non-const rvalue
const_parameters(_1 += _2)(i, 2); // error, i becomes const
break_const(_1 += _2)(i, 2);      // ok, but dangerous
</programlisting>

Note, that the results of <literal> break_const</literal> or 
<literal>const_parameters</literal> are not lambda functors, 
so they cannot be used as subexpressions of lambda expressions. For instance:

<programlisting>
break_const(_1 + _2) + _3; // fails.
const_parameters(_1 + _2) + _3; // fails.
</programlisting>

However, this kind of code should never be necessary, 
since calls to sub lambda functors are made inside the BLL, 
and are not affected by the non-const rvalue problem.
</para>
</listitem>

</orderedlist>

</para>
</section>

</section>


<section>
<title>Casts, sizeof and typeid</title>

<section id="lambda.cast_expressions">
<title>
Cast expressions
</title>
<para>
The BLL defines its counterparts for the four cast expressions 
<literal>static_cast</literal>, <literal>dynamic_cast</literal>, 
<literal>const_cast</literal> and <literal>reinterpret_cast</literal>.

The BLL versions of the cast expressions have the prefix 
<literal>ll_</literal>.

The type to cast to is given as an explicitly specified template argument, 
and the sole argument is the expression from which to perform the cast.

If the argument is a lambda functor, the lambda functor is evaluated first.

For example, the following code uses <literal>ll_dynamic_cast</literal> 
to count the number of <literal>derived</literal> instances in the container 
<literal>a</literal>:

<programlisting>
<![CDATA[class base {};
class derived : public base {};

vector<base*> a;
...
int count = 0;
for_each(a.begin(), a.end(), 
         if_then(ll_dynamic_cast<derived*>(_1), ++var(count)));]]>
</programlisting>
</para>
</section>

<section>
<title>Sizeof and typeid</title>
<para>
The BLL counterparts for these expressions are named 
<literal>ll_sizeof</literal> and <literal>ll_typeid</literal>.

Both take one argument, which can be a lambda expression.
The lambda functor created wraps the <literal>sizeof</literal> or 
<literal>typeid</literal> call, and when the lambda functor is called 
the wrapped operation is performed.

For example:

<programlisting>
<![CDATA[vector<base*> a; 
...
for_each(a.begin(), a.end(), 
         cout << bind(&type_info::name, ll_typeid(*_1)));]]>
</programlisting>

Here <literal>ll_typeid</literal> creates a lambda functor for 
calling <literal>typeid</literal> for each element.

The result of a <literal>typeid</literal> call is an instance of 
the <literal>type_info</literal> class, and the bind expression creates 
a lambda functor for calling the <literal>name</literal> member 
function of that class.

</para>
</section>



</section>

<section id="lambda.nested_stl_algorithms">
<title>Nesting STL algorithm invocations</title>

<para>
The BLL defines common STL algorithms as function object classes, 
instances of which can be used as target functions in bind expressions.
For example, the following code iterates over the elements of a 
two-dimensional array, and computes their sum.

<programlisting>
int a[100][200];
int sum = 0;

std::for_each(a, a + 100, 
	      bind(ll::for_each(), _1, _1 + 200, protect(sum += _1)));
</programlisting>

The BLL versions of the STL algorithms are classes, which define the function call operator (or several overloaded ones) to call the corresponding function templates in the <literal>std</literal> namespace.
All these structs are placed in the subnamespace <literal>boost::lambda:ll</literal>. 
<!--The supported algorithms are listed in <xref linkend="table:nested_algorithms"/>.-->
</para>

<para>
Note that there is no easy way to express an overloaded member function 
call in a lambda expression. 

This limits the usefulness of nested STL algorithms, as for instance 
the <literal>begin</literal> function has more than one overloaded 
definitions in container templates.

In general, something analogous to the pseudo-code below cannot be written:

<programlisting>
std::for_each(a.begin(), a.end(), 
	      bind(ll::for_each(), _1.begin(), _1.end(), protect(sum += _1)));
</programlisting>

Some aid for common special cases can be provided though.

The BLL defines two helper function object classes, 
<literal>call_begin</literal> and <literal>call_end</literal>, 
which wrap a call to the <literal>begin</literal> and, respectively, 
<literal>end</literal> functions of a container, and return the 
<literal>const_iterator</literal> type of the container.

With these helper templates, the above code becomes:
<programlisting>
std::for_each(a.begin(), a.end(), 
	      bind(ll::for_each(), 
                   bind(call_begin(), _1), bind(call_end(), _1),
                        protect(sum += _1)));
</programlisting>

</para>

<!--
<table id="table:nested_algorithms">
<title>The nested STL algorithms.</title>
<tgroup cols="1">
<thead>
<trow><entry>Otsikko</entry></trow>
</thead>
<tbody>
<row><entry><literal>for_each</literal></entry></row>
<row><entry><literal>find</literal></entry></row>
<row><entry><literal>find_if</literal></entry></row>
<row><entry><literal>find_end</literal></entry></row>
<row><entry><literal>find_first_of</literal></entry></row>
<row><entry><literal>transform</literal></entry></row>
</tbody>
</tgroup>

</table>

-->

</section>


</section>


<!--
<section>
<title>Common gothcas</title>

calling member functions a.begin() 

calling templated functions ...

</section>

-->

<section id="lambda.extending">
<title>Extending return type deduction system</title>

<para>
<!--The <xref linkend = "lambda.overriding_deduced_return_type"/> showed how to make BLL aware of the return type of a function object in bind expressions.-->

In this section, we explain  how to extend the return type deduction system 
to cover user defined operators. 

In many cases this is not necessary, 
as the BLL defines default return types for operators.

For example, the default return type for all comparison operators is 
<literal>bool</literal>, and as long as the user defined comparison operators 
have a bool return type, there is no need to write new specializations 
for the return type deduction classes.

Sometimes this cannot be avoided, though.

</para>

<para>
The overloadable user defined operators are either unary or binary. 

For each arity, there are two traits templates that define the 
return types of the different operators.

Hence, the return type system can be extended by providing more 
specializations for these templates.

The templates for unary functors are

<literal>
<![CDATA[plain_return_type_1<Action, A>]]>
</literal>

and 

<literal>
<![CDATA[return_type_1<Action, A>]]>
</literal>, and 

<literal>
<![CDATA[plain_return_type_2<Action, A, B>]]>
</literal>

and 

<literal>
<![CDATA[return_type_2<Action, A, B>]]>
</literal>

respectively for binary functors.

</para>

<para>
The first parameter (<literal>Action</literal>) to all these templates 
is the <emphasis>action</emphasis> class, which specifies the operator. 

Operators with similar return type rules are grouped together into 
<emphasis>action groups</emphasis>, 
and only the action class and action group together define the operator 
unambiguously. 

As an example, the action type 
<literal><![CDATA[arithmetic_action<plus_action>]]></literal> stands for 
<literal>operator+</literal>. 

The complete listing of different action types is shown in 
<xref linkend="table:actions"/>. 
</para>

<para>
The latter parameters, <literal>A</literal> in the unary case, 
or <literal>A</literal> and <literal>B</literal> in the binary case, 
stand for the argument types of the operator call. 

The two sets of templates, 
<literal>plain_return_type_<parameter>n</parameter></literal> and 
<literal>return_type_<parameter>n</parameter></literal> 
(<parameter>n</parameter> is 1 or 2) differ in the way how parameter types 
are presented to them.

For the former templates, the parameter types are always provided as 
non-reference types, and do not have const or volatile qualifiers.

This makes specializing easy, as commonly one specialization for each 
user defined operator, or operator group, is enough.

On the other hand, if a particular operator is overloaded for different 
cv-qualifications of the same argument types, 
and the return types of these overloaded versions differ, a more fine-grained control is needed.

Hence, for the latter templates, the parameter types preserve the 
cv-qualifiers, and are non-reference types as well. 
 
The downside is, that for an overloaded set of operators of the 
kind described above, one may end up needing up to 
16 <literal>return_type_2</literal> specializations.
</para>

<para>
Suppose the user has overloaded the following operators for some user defined 
types <literal>X</literal>, <literal>Y</literal> and <literal>Z</literal>:

<programlisting>
<![CDATA[Z operator+(const X&, const Y&);
Z operator-(const X&, const Y&);]]>
</programlisting>

Now, one can add a specialization stating, that if the left hand argument 
is of type <literal>X</literal>, and the right hand one of type 
<literal>Y</literal>, the return type of all such binary arithmetic 
operators is <literal>Z</literal>:

<programlisting>
<![CDATA[namespace boost { 
namespace lambda {
  
template<class Act> 
struct plain_return_type_2<arithmetic_action<Act>, X, Y> {
  typedef Z type;
};

}
}]]>
</programlisting>

Having this specialization defined, BLL is capable of correctly 
deducing the return type of the above two operators.

Note, that the specializations must be in the same namespace, 
<literal>::boost::lambda</literal>, with the primary template. 

For brevity, we do not show the namespace definitions in the examples below.
</para>

<para>
It is possible to specialize on the level of an individual operator as well, 
in addition to providing a specialization for a group of operators. 
Say, we add a new arithmetic operator for argument types <literal>X</literal> 
and <literal>Y</literal>:

<programlisting>
<![CDATA[X operator*(const X&, const Y&);]]>
</programlisting>

Our first rule for all arithmetic operators specifies that the return 
type of this operator is <literal>Z</literal>, 
which obviously is not the case.
Hence, we provide a new rule for the multiplication operator:

<programlisting>
<![CDATA[template<> 
struct plain_return_type_2<arithmetic_action<multiply_action>, X, Y> {
  typedef X type;
};]]>
</programlisting>
</para>

<para>
The specializations can define arbitrary mappings from the argument types 
to the return type. 

Suppose we have some mathematical vector type, templated on the element type:

<programlisting>
<![CDATA[template <class T> class my_vector;]]>
</programlisting>

Suppose the addition operator is defined between any two 
<literal>my_vector</literal> instantiations, 
as long as the addition operator is defined between their element types. 

Furthermore, the element type of the resulting <literal>my_vector</literal> 
is the same as the result type of the addition between the element types.

E.g., adding <literal><![CDATA[my_vector<int>]]></literal> and 
<literal><![CDATA[my_vector<double>]]></literal> results in 
<literal><![CDATA[my_vector<double>]]></literal>.

The BLL has traits classes to perform the implicit built-in and standard 
type conversions between integral, floating point, and complex classes.

Using BLL tools, the addition operator described above can be defined as:

<programlisting>
<![CDATA[template<class A, class B> 
my_vector<typename return_type_2<arithmetic_action<plus_action>, A, B>::type>
operator+(const my_vector<A>& a, const my_vector<B>& b)
{
  typedef typename 
    return_type_2<arithmetic_action<plus_action>, A, B>::type res_type;
  return my_vector<res_type>();
}]]>
</programlisting>
</para>

<para>
To allow BLL to deduce the type of <literal>my_vector</literal> 
additions correctly, we can define:

<programlisting>
<![CDATA[template<class A, class B> 
class plain_return_type_2<arithmetic_action<plus_action>, 
                           my_vector<A>, my_vector<B> > {
  typedef typename 
    return_type_2<arithmetic_action<plus_action>, A, B>::type res_type;
public:
  typedef my_vector<res_type> type;
};]]>
</programlisting>
Note, that we are reusing the existing specializations for the 
BLL <literal>return_type_2</literal> template, 
which require that the argument types are references. 
</para>

<!-- TODO: is an example of specifying the other level needed at all -->
<!-- TODO: comma operator is a special case for that -->

<table id = "table:actions">
<title>Action types</title>
<tgroup cols="2">
<tbody>

<row><entry><literal><![CDATA[+]]></literal></entry><entry><literal><![CDATA[arithmetic_action<plus_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[-]]></literal></entry><entry><literal><![CDATA[arithmetic_action<minus_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[*]]></literal></entry><entry><literal><![CDATA[arithmetic_action<multiply_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[/]]></literal></entry><entry><literal><![CDATA[arithmetic_action<divide_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[%]]></literal></entry><entry><literal><![CDATA[arithmetic_action<remainder_action>]]></literal></entry></row>



<row><entry><literal><![CDATA[+]]></literal></entry><entry><literal><![CDATA[unary_arithmetic_action<plus_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[-]]></literal></entry><entry><literal><![CDATA[unary_arithmetic_action<minus_action>]]></literal></entry></row>



<row><entry><literal><![CDATA[&]]></literal></entry><entry><literal><![CDATA[bitwise_action<and_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[|]]></literal></entry><entry><literal><![CDATA[bitwise_action<or_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[~]]></literal></entry><entry><literal><![CDATA[bitwise_action<not_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[^]]></literal></entry><entry><literal><![CDATA[bitwise_action<xor_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[<<]]></literal></entry><entry><literal><![CDATA[bitwise_action<leftshift_action_no_stream>]]></literal></entry></row>
<row><entry><literal><![CDATA[>>]]></literal></entry><entry><literal><![CDATA[bitwise_action<rightshift_action_no_stream>]]></literal></entry></row>



<row><entry><literal><![CDATA[&&]]></literal></entry><entry><literal><![CDATA[logical_action<and_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[||]]></literal></entry><entry><literal><![CDATA[logical_action<or_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[!]]></literal></entry><entry><literal><![CDATA[logical_action<not_action>]]></literal></entry></row>



<row><entry><literal><![CDATA[<]]></literal></entry><entry><literal><![CDATA[relational_action<less_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[>]]></literal></entry><entry><literal><![CDATA[relational_action<greater_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[<=]]></literal></entry><entry><literal><![CDATA[relational_action<lessorequal_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[>=]]></literal></entry><entry><literal><![CDATA[relational_action<greaterorequal_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[==]]></literal></entry><entry><literal><![CDATA[relational_action<equal_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[!=]]></literal></entry><entry><literal><![CDATA[relational_action<notequal_action>]]></literal></entry></row>



<row><entry><literal><![CDATA[+=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<plus_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[-=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<minus_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[*=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<multiply_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[/=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<divide_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[%=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<remainder_action>]]></literal></entry></row>



<row><entry><literal><![CDATA[&=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<and_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[=|]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<or_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[^=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<xor_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[<<=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<leftshift_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[>>=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<rightshift_action>]]></literal></entry></row>



<row><entry><literal><![CDATA[++]]></literal></entry><entry><literal><![CDATA[pre_increment_decrement_action<increment_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[--]]></literal></entry><entry><literal><![CDATA[pre_increment_decrement_action<decrement_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[++]]></literal></entry><entry><literal><![CDATA[post_increment_decrement_action<increment_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[--]]></literal></entry><entry><literal><![CDATA[post_increment_decrement_action<decrement_action>]]></literal></entry></row>



<row><entry><literal><![CDATA[&]]></literal></entry><entry><literal><![CDATA[other_action<address_of_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[*]]></literal></entry><entry><literal><![CDATA[other_action<contents_of_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[,]]></literal></entry><entry><literal><![CDATA[other_action<comma_action>]]></literal></entry></row>
<row><entry><literal><![CDATA[->*]]></literal></entry><entry><literal><![CDATA[other_action<member_pointer_action>]]></literal></entry></row>

</tbody>
</tgroup>
</table>

</section>


<section>
<title>Practical considerations</title>


<section>
<title>Performance</title>

<para>In theory, all overhead of using STL algorithms and lambda functors 
compared to hand written loops can be optimized away, just as the overhead 
from standard STL function objects and binders can.

Depending on the compiler, this can also be true in practice.
We ran two tests with the GCC 3.0.4 compiler on 1.5 GHz Intel Pentium 4.
The optimization flag -03 was used.
</para>

<para>
In the first test we compared lambda functors against explicitly written 
function objects. 
We used both of these styles to define unary functions which multiply the
argument repeatedly by itself. 
We started with the identity function, going up to 
x<superscript>5</superscript>.
The expressions were called inside a <literal>std::transform</literal> loop, 
reading the argument from one <literal><![CDATA[std::vector<int>]]></literal> 
and placing the result into another.
The length of the vectors was 100 elements.
The running times are listed in 
<xref linkend="table:increasing_arithmetic_test"/>.

We can observe that there is no significant difference between the
two approaches.
</para>

<para>
In the second test we again used <literal>std::transform</literal> to 
perform an operation to each element in a 100-element long vector.
This time the element type of the vectors was <literal>double</literal>
and we started with very simple arithmetic expressions and moved to 
more complex ones.
The running times are listed in <xref linkend="table:ll_vs_stl_test"/>.

Here, we also included classic STL style unnamed functions into tests.
We do not show these expressions, as they get rather complex. 
For example, the
last expression in <xref linkend="table:ll_vs_stl_test"/> written with
classic STL tools contains 7 calls to <literal>compose2</literal>, 
8 calls to <literal>bind1st</literal>
and altogether 14 constructor invocations for creating 
<literal>multiplies</literal>, <literal>minus</literal> 
and <literal>plus</literal> objects.

In this test the BLL expressions are a little slower (roughly 10% on average,
less than 14% in all cases)
than the corresponding hand-written function objects.
The performance hit is a bit greater with classic STL expressions,
up to 27% for the simplest expressios.
</para>

<para>
The tests suggest that the BLL does not introduce a loss of performance 
compared to STL function objects.  
With a reasonable optimizing compiler, one should expect the performance characteristics be comparable to using classic STL.
Moreover, with simple expressions the performance can be expected to be close
to that of explicitly written function objects.

<!-- We repeated both tests with the KAI C++ 4.0f compiler (using +K2 -O3 flags), 
generally considered a good optimizing compiler.
We do not list the results here, since the running times for the two alternatives in the first test were essentially the same, just as the running times
for the three different alternatives in the second test.
These tests suggest there to be no performance penalty at all
with a good optimizing compiler.
-->

Note however, that evaluating a lambda functor consist of a sequence of calls to small functions that are declared inline. 
If the compiler fails to actually expand these functions inline, 
the performance can suffer. 
The running time can more than double if this happens.
Although the above tests do not include such an expression, we have experienced
this for some seemingly simple expressions.


<table id = "table:increasing_arithmetic_test">
<title>Test 1</title>
<caption>CPU time of expressions with integer multiplication written as a lambda expression and as a traditional hand-coded function object class. 
The running times are expressed in arbitrary units.</caption>
<tgroup cols="3">
<thead>
<row>
<entry>expression</entry><entry>lambda expression</entry><entry>hand-coded function object</entry></row>
</thead>

<tbody>

<row>
<entry>x</entry><entry>240</entry><entry>230</entry>
</row>

<row>
<entry>x*x</entry><entry>340</entry><entry>350</entry>
</row>

<row>
<entry>x*x*x</entry><entry>770</entry><entry>760</entry>
</row>

<row>
<entry>x*x*x*x</entry><entry>1180</entry><entry>1210</entry>
</row>

<row>
<entry>x*x*x*x*x</entry><entry>1950</entry><entry>1910</entry>
</row>

</tbody>
</tgroup>
</table>
</para>

<!--
16:19:49 bench [601] ./arith.out 100 1000000

Number of elements = 100
L1 : 240
L2 : 340
L3 : 770
L4 : 1180
L5 : 1950

P2 : 1700
P3 : 2130
P4 : 2530
P5 : 3000

F1 : 230
F2 : 350
F3 : 760
F4 : 1210
F5 : 1910


Number of elements    = 100
Number of outer_iters = 1000000
L1 : 330
L2 : 350
L3 : 470
L4 : 620
L5 : 1660
LP : 1230
C1 : 370
C2 : 370
C3 : 500
C4 : 670
C5 : 1660
CP : 1770
F1 : 290
F2 : 310
F3 : 420
F4 : 600
F5 : 1460
FP : 1040

-->


<para>
<table id = "table:ll_vs_stl_test">
<title>Test 2</title>
<caption>CPU time of arithmetic expressions written as lambda 
expressions, as classic STL unnamed functions (using <literal>compose2</literal>, <literal>bind1st</literal> etc.) and as traditional hand-coded function object classes. 
Using BLL terminology, 
<literal>a</literal> and <literal>b</literal> are bound arguments in the expressions, and <literal>x</literal> is open. 
All variables were of types <literal>double</literal>.
The running times are expressed in arbitrary units.</caption>
<tgroup cols="4">
<thead>
<row>
<entry>expression</entry><entry>lambda expression</entry><entry>classic STL expression</entry><entry>hand-coded function object</entry></row>
</thead>

<tbody>

<row>
<entry>ax</entry><entry>330</entry><entry>370</entry><entry>290</entry>
</row>

<row>
<entry>-ax</entry><entry>350</entry><entry>370</entry><entry>310</entry>
</row>

<row>
<entry>ax-(a+x)</entry><entry>470</entry><entry>500</entry><entry>420</entry>
</row>

<row>
<entry>(ax-(a+x))(a+x)</entry><entry>620</entry><entry>670</entry><entry>600</entry>
</row>

<row>
<entry>((ax) - (a+x))(bx - (b+x))(ax - (b+x))(bx - (a+x))</entry><entry>1660</entry><entry>1660</entry><entry>1460</entry>
</row>

</tbody>
</tgroup>

</table>
</para>


<para>Some additional performance testing with an earlier version of the
library is described
<xref linkend="cit:jarvi:00"/>.
</para>

</section>
    <section>
      <title>About compiling</title>

      <para>The BLL uses templates rather heavily, performing numerous recursive instantiations of the same templates. 
This has (at least) three implications:
<itemizedlist>

<listitem>
<para>
While it is possible to write incredibly complex lambda expressions, it probably isn't a good idea. 
Compiling such expressions may end up requiring a lot of memory 
at compile time, and being slow to compile.
</para>
</listitem>


<listitem>
<para>
The types of lambda functors that result from even the simplest lambda expressions are cryptic. 
Usually the programmer doesn't need to deal with the lambda functor types at all, but in the case of an error in a lambda expression, the compiler usually outputs the types of the lambda functors involved. 
This can make the error messages very long and difficult to interpret, particularly if the compiler outputs the whole chain of template instantiations.
</para>
</listitem>

<listitem>
<para>
The C++ Standard suggests a template nesting level of 17 to help detect infinite recursion. 
Complex lambda templates can easily exceed this limit. 
Most compilers allow a greater number of nested templates, but commonly require the limit explicitly increased with a command line argument.
</para>
</listitem>
</itemizedlist></para>

    </section>

    <section>
      <title>Portability</title>
      <para>
The BLL works with the following compilers, that is, the compilers are capable of compiling the test cases that are included with the BLL:

      <itemizedlist>
	<listitem>GCC 3.0.4
	</listitem>
	<listitem>KCC 4.0f with EDG 2.43.1
	</listitem>
	<listitem>GCC 2.96 (fails with one test case, the <filename>exception_test.cpp</filename> results in an internal compiler error.
)

	</listitem>
      </itemizedlist>
</para>

      <section>
	<title>Test coverage</title>

<para>The following list describes the test files included and the features that each file covers:

<itemizedlist>
<listitem>
<para>
<filename>bind_tests_simple.cpp</filename> : Bind expressions of different arities and types of target functions: function pointers, function objects and member functions.
Function composition with bind expressions.</para>
</listitem>

<listitem>
<para><filename>bind_tests_simple_function_references.cpp</filename> :
Repeats all tests from <filename moreinfo="none">bind_tests_simple.cpp</filename> where the target function is a function pointer, but uses function references instead.
</para></listitem>

	    
<listitem>
<para><filename>bind_tests_advanced.cpp</filename> : Contains tests for nested bind expressions, <literal>unlambda</literal>, <literal>protect</literal>, <literal>const_parameters</literal> and <literal>break_const</literal>.
Tests passing lambda functors as actual arguments to other lambda functors, currying, and using the <literal>sig</literal> template to specify the return type of a function object.
</para>
</listitem>

<listitem>
<para>
<filename>operator_tests_simple.cpp</filename> :
Tests using all operators that are overloaded for lambda expressions, that is, unary and binary arithmetic, 
bitwise, 
comparison, 
logical,
increment and decrement, 
compound, 
assignment,
subscrict, 
address of,
dereference, and comma operators.
The streaming nature of shift operators is tested, as well as pointer arithmetic with plus and minus operators.
</para>
</listitem>
	    
<listitem>
<para><filename>member_pointer_test.cpp</filename> : The pointer to member operator is complex enough to warrant a separate test file.
</para>
</listitem>

<listitem>
<para>
<filename>control_structures.cpp</filename> :
Tests for the looping and if constructs.
</para></listitem>

<listitem>
<para>
<filename>switch_construct.cpp</filename> :
Includes tests for all supported arities of the switch statement, both with and without the default case.
</para>
</listitem>

<listitem>
<para>
<filename>exception_test.cpp</filename> :
Includes tests for throwing exceptions and for try/catch constructs with varying number of catch blocks.
</para>
</listitem>

<listitem>
<para>
<filename>constructor_tests.cpp</filename> :
Contains tests for <literal>constructor</literal>, <literal>destructor</literal>, <literal>new_ptr</literal>, <literal>delete_ptr</literal>, <literal>new_array</literal> and <literal>delete_array</literal>.
</para>
</listitem>

<listitem>
<para>
<filename>cast_test.cpp</filename> : Tests for the four cast expressions, as well as <filename>typeid</filename> and <literal>sizeof</literal>.
</para>
</listitem>

<listitem>
<para>
<filename>extending_return_type_traits.cpp</filename> : Tests extending the return type deduction system for user defined types.
Contains several user defined operators and the corresponding specializations for the return type deduction templates.
</para>
</listitem>

<listitem>
<para>
<filename>is_instance_of_test.cpp</filename> : Includes tests for an internally used traits template, which can detect whether a given type is an instance of a certain template or not. 
</para></listitem>

<listitem>
<para>
<filename>bll_and_function.cpp</filename> :
Contains tests for using <literal>boost::function</literal> together with lambda functors.
</para></listitem>

	  </itemizedlist>

</para>

      </section>

    </section>


</section>


<section>
<title>Relation to other Boost libraries</title>

<section>
<title>Boost Function</title>

<para>Sometimes it is convenient to store lambda functors in variables.
However, the types of even the simplest lambda functors are long and unwieldy, and it is in general unfeasible to declare variables with lambda functor types.
<emphasis>The Boost Function library</emphasis> <xref linkend="cit:boost::function"/> defines wrappers for arbitrary function objects, for example 
lambda functors; and these wrappers have types that are easy to type out.

For example:

<programlisting>
<![CDATA[boost::function<int(int, int)> f = _1 + _2;
boost::function<int&(int&)> g = (_1 += 10);
int i = 1, j = 2;
f(i, j); // returns 3
g(i);    // sets i to = 11;]]>
</programlisting>

The return and parameter types of the wrapped function object must be written explicilty as the template argument to the wrapper template <literal>boost::function</literal>; even when lambda functors, which otherwise have generic parameters, are wrapped.
Wrapping a function object with <literal>boost::function</literal> introduces a performance cost comparable to virtual function dispatch, though virtual functions are not actually used.

Note that storing lambda functors inside <literal>boost::function</literal> 
introduces a danger.
Certain types of lambda functors may store references to the bound 
arguments, instead as taking copies of the arguments of the lambda expression.
When temporary lambda functor objects are used 
in STL algorithm invocations this is always safe, as the lambda functor gets 
destructed immediately after the STL algortihm invocation is completed.

However, a lambda functor wrapped inside <literal>boost::function</literal> 
may continue to exist longer, creating the possibility of dangling references.
For example:

<programlisting>
<![CDATA[int* sum = new int();
*sum = 0;
boost::function<int&(int)> counter = *sum += _1;
counter(5); // ok, *sum = 5;
delete sum; 
counter(3); // error, *sum does not exist anymore]]>
</programlisting>

</para>

</section>

<section>
<title>Boost Bind</title>
<para>
<emphasis>The Boost Bind</emphasis> <xref linkend="cit:boost::bind"/> library has partially overlapping functionality with the BLL. 
Basically, the Boost Bind library (BB in the sequel) implements the bind expression part of BLL.
There are, however, some semantical differerences.
</para>
<para>
The BLL and BB evolved separately, and have different implementations. 
This means that the bind expressions from the BB cannot be used within 
bind expressions, or within other type of lambda expressions, of the BLL.
The same holds for using BLL bind expressions in the BB.
The libraries can coexist, however, as
the names of the BB library are in <literal>boost</literal> namespace, 
whereas the BLL names are in <literal>boost::lambda</literal> namespace.
</para>

<para>
The BLL requires a compiler that is reasonably conformant to the 
C++ standard, whereas the BB library is more portable, and works with 
a larger set of compilers. 
</para>

<para>
The following two sections describe what are the semantic differences 
between the bind expressions in BB and BLL.
</para>




<section>
<title>First argument of bind expression</title>

In BB the first argument of the bind expression, the target function, 
is treated differently from the other arguments, 
as no argument substitution takes place within that argument.
In BLL the first argument is not a special case in this respect.

For example:

<programlisting>
<![CDATA[template<class F>
int foo(const F& f) {
  int x;
  ..
  bind(f, _1)(x);
  ...
}]]>
</programlisting>

<programlisting>
<![CDATA[int bar(int, int);
nested(bind(bar, 1, _1));]]>
</programlisting>

The bind expression inside <literal>foo</literal> becomes:
<programlisting>
bind(bind(bar, 1, _1), _1)(x)
</programlisting>

The BLL interpretes this as:
<programlisting>
bar(1, x)(x)
</programlisting>
whereas the BB library as
<programlisting>
bar(1, x)
</programlisting>

To get this functionality in BLL, the bind expression inside the <literal moreinfo="none">foo</literal> function can be written as:
<programlisting>
bind(unlambda(f), _1)(x);
</programlisting>
as explained in <xref linkend = "lambda.unlambda"/>. 

</section>




<para>
The BB library supports up to nine placeholders, while the BLL 
defines only three placeholders. 
The rationale for not providing more, is that the highest arity of the
function objects accepted by any STL algorithm is two. 
The placeholder count is easy to increase in the BB library.
In BLL it is possible, but more laborous.
The BLL currently passes the actual arguments to the lambda functors
internally just as they are and does not wrap them inside a tuple object.
The reason for this is that some widely used compilers are not capable
of optimizing the intermediate tuple objects away. 
The creation of the intermediate tuples would cause a significant
performance hit, particularly for the simplest (and thus the most common) 
lambda functors.  
We are working on a hybrid approach, which will allow more placeholders
but not compromise the performance of simple lambda functors.
</para>

</section>

  </section>


<section>
<title>Contributors</title>

The main body of the library was written by Jaakko Järvi and Gary Powell.
We've got outside help, suggestions and ideas from Jeremy Siek, Peter Higley, Peter Dimov, Valentin Bonnard, William Kempf.
We would particularly like to mention Joel de Guzmann and his work with 
Phoenix which has influenced BLL significantly, making it considerably simpler 
to extend the library with new features.

</section>



<section>
<title>Rationale for some of the design decisions</title>

<section id="lambda.why_weak_arity">
<title>
Lambda functor arity
</title>

<para>
The highest placeholder index in a lambda expression determines the arity of the resulting function object.
However, this is just the minimal arity, as the function object can take arbitrarily many arguments; those not needed are discarded.
Consider the two bind expressions and their invocations below:

<programlisting>
bind(g, _3, _3, _3)(x, y, z); 
bind(g, _1, _1, _1)(x, y, z); 
</programlisting>

This first line discards arguments <literal>x</literal> and
<literal>y</literal>, and makes the call:
<programlisting>
g(z, z, z) 
</programlisting>
whereas the second line discards arguments <literal>y</literal> and
<literal>z</literal>, and calls:
<programlisting>
g(x, x, x)
</programlisting>
In earlier versions of the library, the latter line resulted in a compile 
time error.

This is basically a tradeoff between safety and flexibility, and the issue
was extensively discussed during the Boost review period of the library.
The main points for the <emphasis>strict arity</emphasis> checking
was that it might
catch a programming error at an earlier time and that a lambda expression that
explicitly discards its arguments is easy to write:
<programlisting>
(_3, bind(g, _1, _1, _1))(x, y, z);
</programlisting>
This lambda expression takes three arguments.
The left-hand argument of the comma operator does nothing, and as comma 
returns the result of evaluating the right-hand argument we end up with 
the call
<literal>g(x, x, x)</literal>
even with the strict arity.
</para>

<para>
The main points against the strict arity checking were that the need to 
discard arguments is commonplace, and should therefore be straightforward, 
and that strict arity checking does not really buy that much more safety, 
particularly as it is not symmetric.
For example, if the programmer wanted to write the expression 
<literal>_1 + _2</literal> but mistakenly wrote <literal>_1 + 2</literal>, 
with strict arity checking, the complier would spot the error.
However, if the erroneous expression was <literal>1 + _2</literal> instead,
the error would go unnoticed.
Furthermore, weak arity checking simplifies the implementation a bit.
Following the recommendation of the Boost review, strict arity checking 
was dropped.
</para>

</section>

</section>



<bibliography>

<biblioentry id="cit:stepanov:94">
<abbrev>STL94</abbrev>
<authorgroup>
<author>
<surname>Stepanov</surname>
<firstname>A. A.</firstname>
</author>
<author>
<surname>Lee</surname>
<firstname>M.</firstname>
</author>
</authorgroup>      
<title>The Standard Template Library</title>
<orgname>Hewlett-Packard Laboratories</orgname>
<pubdate>1994</pubdate>
<bibliomisc>
<ulink url="http://www.hpl.hp.com/techreports">www.hpl.hp.com/techreports</ulink>
</bibliomisc>
</biblioentry>

<biblioentry id="cit:sgi:02">
<abbrev>SGI02</abbrev>
<title>The SGI Standard Template Library</title>
<pubdate>2002</pubdate>
<bibliomisc><ulink url="https://www.boost.org/sgi/stl/">www.boost.org/sgi/stl/</ulink></bibliomisc>

</biblioentry>
    
<biblioentry id="cit:c++:98">
<abbrev>C++98</abbrev>
<title>International Standard, Programming Languages &ndash; C++</title>
<subtitle>ISO/IEC:14882</subtitle>
<pubdate>1998</pubdate>
</biblioentry>


<biblioentry id="cit:jarvi:99">
<abbrev>Jär99</abbrev>

<articleinfo>
<author>
<surname>Järvi</surname>
<firstname>Jaakko</firstname>
</author>
<title>C++ Function Object Binders Made Easy</title>
</articleinfo>

<title>Lecture Notes in Computer Science</title>
<volumenum>1977</volumenum>
<publishername>Springer</publishername>

<pubdate>2000</pubdate>
</biblioentry>



<biblioentry id="cit:jarvi:00">
<abbrev>Jär00</abbrev>
<author>
<surname>Järvi</surname>
<firstname>Jaakko</firstname>
</author>
<author>
<firstname>Gary</firstname>
<surname>Powell</surname>
</author>
<title>The Lambda Library : Lambda Abstraction in C++</title>
      <orgname>Turku Centre for Computer Science</orgname>
<bibliomisc>Technical Report </bibliomisc>
      <issuenum>378</issuenum>
<pubdate>2000</pubdate>
<bibliomisc><ulink url="http://www.tucs.fi/Publications/techreports/TR378.php">www.tucs.fi/publications</ulink></bibliomisc>


</biblioentry>


<biblioentry id="cit:jarvi:01">
<abbrev>Jär01</abbrev>
<author>
<surname>Järvi</surname>
<firstname>Jaakko</firstname>
</author>
<author>
<firstname>Gary</firstname>
<surname>Powell</surname>
</author>
<title>The Lambda Library : Lambda Abstraction in C++</title>
      <confgroup>
	<conftitle>Second  Workshop on C++ Template Programming</conftitle>
	<address>Tampa Bay, OOPSLA'01</address>
      </confgroup>
<pubdate>2001</pubdate>
<bibliomisc><ulink url="http://www.oonumerics.org/tmpw01/">www.oonumerics.org/tmpw01/</ulink></bibliomisc>
</biblioentry>

<biblioentry id="cit:jarvi:03">
<abbrev>Jär03</abbrev>

<articleinfo>

<author>
<surname>Järvi</surname>
<firstname>Jaakko</firstname>
</author>

<author>
<firstname>Gary</firstname>
<surname>Powell</surname>
</author>

<author>
<firstname>Andrew</firstname>
<surname>Lumsdaine</surname>
</author>
<title>The Lambda Library : unnamed functions in C++</title>

</articleinfo>

<title>Software - Practice and Expreience</title>
<volumenum>33:259-291</volumenum>


<pubdate>2003</pubdate>
</biblioentry>


<biblioentry id="cit:boost::tuple">
<abbrev>tuple</abbrev>
<title>The Boost Tuple Library</title>
<bibliomisc><ulink url="http://www.boost.org/libs/tuple/doc/tuple_users_guide.html">www.boost.org/libs/tuple/doc/tuple_users_guide.html</ulink>
</bibliomisc>
<pubdate>2002</pubdate>
</biblioentry>

<biblioentry id="cit:boost::type_traits">
<abbrev>type_traits</abbrev>
<title>The Boost type_traits</title>
<bibliomisc><ulink url="http://www.boost.org/libs/type_traits/index.htm">www.boost.org/libs/type_traits/</ulink>
</bibliomisc>
<pubdate>2002</pubdate>
</biblioentry>

<biblioentry id="cit:boost::ref">
<abbrev>ref</abbrev>
<title>Boost ref</title>
<bibliomisc><ulink url="http://www.boost.org/libs/bind/ref.html">www.boost.org/libs/bind/ref.html</ulink>
</bibliomisc>
<pubdate>2002</pubdate>
</biblioentry>

<biblioentry id="cit:boost::bind">
<abbrev>bind</abbrev>
<title>Boost Bind Library</title>
<bibliomisc><ulink url="http://www.boost.org/libs/bind/bind.html">www.boost.org/libs/bind/bind.html</ulink>
</bibliomisc>
<pubdate>2002</pubdate>
</biblioentry>

<biblioentry id="cit:boost::function">
<abbrev>function</abbrev>
<title>Boost Function Library</title>
<bibliomisc><ulink url="http://www.boost.org/libs/function/">www.boost.org/libs/function/</ulink>
</bibliomisc>
<pubdate>2002</pubdate>
</biblioentry>

<biblioentry id="cit:fc++">
<abbrev>fc++</abbrev>
<title>The FC++ library: Functional Programming in C++</title>
<author>
<surname>Smaragdakis</surname>
<firstname>Yannis</firstname>
</author>
<author>
<firstname>Brian</firstname>
<surname>McNamara</surname>
</author>
<bibliomisc><ulink url="http://yanniss.github.io/fc++/">yanniss.github.io/fc++/ </ulink>
</bibliomisc>
<pubdate>2002</pubdate>
</biblioentry>


</bibliography>


</library>