HSO3.hpp 16.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

/********************************************************************************************/
/*                                                                                          */
/*                                HSO3.hpp header file                                      */
/*                                                                                          */
/* This file is not currently part of the Boost library. It is simply an example of the use */
/* quaternions can be put to. Hopefully it will be useful too.                              */
/*                                                                                          */
/* This file provides tools to convert between quaternions and R^3 rotation matrices.       */
/*                                                                                          */
/********************************************************************************************/

//  (C) Copyright Hubert Holin 2001.
//  Distributed under the Boost Software License, Version 1.0. (See
//  accompanying file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)

#ifndef TEST_HSO3_HPP
#define TEST_HSO3_HPP

#include <algorithm>

#if    defined(__GNUC__) && (__GNUC__ < 3)
#include <boost/limits.hpp>
#else
#include <limits>
#endif

#include <stdexcept>
#include <string>

#include <boost/math/quaternion.hpp>


#if    defined(__GNUC__) && (__GNUC__ < 3)
// gcc 2.x ignores function scope using declarations, put them here instead:
using    namespace ::std;
using    namespace ::boost::math;
#endif

template<typename TYPE_FLOAT>
struct  R3_matrix
{
    TYPE_FLOAT a11, a12, a13;
    TYPE_FLOAT a21, a22, a23;
    TYPE_FLOAT a31, a32, a33;
};


// Note:    the input quaternion need not be of norm 1 for the following function

template<typename TYPE_FLOAT>
R3_matrix<TYPE_FLOAT>    quaternion_to_R3_rotation(::boost::math::quaternion<TYPE_FLOAT> const & q)
{
    using    ::std::numeric_limits;
    
    TYPE_FLOAT    a = q.R_component_1();
    TYPE_FLOAT    b = q.R_component_2();
    TYPE_FLOAT    c = q.R_component_3();
    TYPE_FLOAT    d = q.R_component_4();
    
    TYPE_FLOAT    aa = a*a;
    TYPE_FLOAT    ab = a*b;
    TYPE_FLOAT    ac = a*c;
    TYPE_FLOAT    ad = a*d;
    TYPE_FLOAT    bb = b*b;
    TYPE_FLOAT    bc = b*c;
    TYPE_FLOAT    bd = b*d;
    TYPE_FLOAT    cc = c*c;
    TYPE_FLOAT    cd = c*d;
    TYPE_FLOAT    dd = d*d;
    
    TYPE_FLOAT    norme_carre = aa+bb+cc+dd;
    
    if    (norme_carre <= numeric_limits<TYPE_FLOAT>::epsilon())
    {
        ::std::string            error_reporting("Argument to quaternion_to_R3_rotation is too small!");
        ::std::underflow_error   bad_argument(error_reporting);
        
        throw(bad_argument);
    }
    
    R3_matrix<TYPE_FLOAT>    out_matrix;
    
    out_matrix.a11 = (aa+bb-cc-dd)/norme_carre;
    out_matrix.a12 = 2*(-ad+bc)/norme_carre;
    out_matrix.a13 = 2*(ac+bd)/norme_carre;
    out_matrix.a21 = 2*(ad+bc)/norme_carre;
    out_matrix.a22 = (aa-bb+cc-dd)/norme_carre;
    out_matrix.a23 = 2*(-ab+cd)/norme_carre;
    out_matrix.a31 = 2*(-ac+bd)/norme_carre;
    out_matrix.a32 = 2*(ab+cd)/norme_carre;
    out_matrix.a33 = (aa-bb-cc+dd)/norme_carre;
    
    return(out_matrix);
}


    template<typename TYPE_FLOAT>
    void    find_invariant_vector(  R3_matrix<TYPE_FLOAT> const & rot,
                                    TYPE_FLOAT & x,
                                    TYPE_FLOAT & y,
                                    TYPE_FLOAT & z)
    {
        using    ::std::sqrt;
        
        using    ::std::numeric_limits;
        
        TYPE_FLOAT    b11 = rot.a11 - static_cast<TYPE_FLOAT>(1);
        TYPE_FLOAT    b12 = rot.a12;
        TYPE_FLOAT    b13 = rot.a13;
        TYPE_FLOAT    b21 = rot.a21;
        TYPE_FLOAT    b22 = rot.a22 - static_cast<TYPE_FLOAT>(1);
        TYPE_FLOAT    b23 = rot.a23;
        TYPE_FLOAT    b31 = rot.a31;
        TYPE_FLOAT    b32 = rot.a32;
        TYPE_FLOAT    b33 = rot.a33 - static_cast<TYPE_FLOAT>(1);
        
        TYPE_FLOAT    minors[9] =
        {
            b11*b22-b12*b21,
            b11*b23-b13*b21,
            b12*b23-b13*b22,
            b11*b32-b12*b31,
            b11*b33-b13*b31,
            b12*b33-b13*b32,
            b21*b32-b22*b31,
            b21*b33-b23*b31,
            b22*b33-b23*b32
        };
        
        TYPE_FLOAT *        where = ::std::max_element(minors, minors+9);
        
        TYPE_FLOAT          det = *where;
        
        if    (det <= numeric_limits<TYPE_FLOAT>::epsilon())
        {
            ::std::string            error_reporting("Underflow error in find_invariant_vector!");
            ::std::underflow_error   processing_error(error_reporting);
            
            throw(processing_error);
        }
        
        switch    (where-minors)
        {
            case 0:
                
                z = static_cast<TYPE_FLOAT>(1);
                
                x = (-b13*b22+b12*b23)/det;
                y = (-b11*b23+b13*b21)/det;
                
                break;
                
            case 1:
                
                y = static_cast<TYPE_FLOAT>(1);
                
                x = (-b12*b23+b13*b22)/det;
                z = (-b11*b22+b12*b21)/det;
                
                break;
                
            case 2:
                
                x = static_cast<TYPE_FLOAT>(1);
                
                y = (-b11*b23+b13*b21)/det;
                z = (-b12*b21+b11*b22)/det;
                
                break;
                
            case 3:
                
                z = static_cast<TYPE_FLOAT>(1);
                
                x = (-b13*b32+b12*b33)/det;
                y = (-b11*b33+b13*b31)/det;
                
                break;
                
            case 4:
                
                y = static_cast<TYPE_FLOAT>(1);
                
                x = (-b12*b33+b13*b32)/det;
                z = (-b11*b32+b12*b31)/det;
                
                break;
                
            case 5:
                
                x = static_cast<TYPE_FLOAT>(1);
                
                y = (-b11*b33+b13*b31)/det;
                z = (-b12*b31+b11*b32)/det;
                
                break;
                
            case 6:
                
                z = static_cast<TYPE_FLOAT>(1);
                
                x = (-b23*b32+b22*b33)/det;
                y = (-b21*b33+b23*b31)/det;
                
                break;
                
            case 7:
                
                y = static_cast<TYPE_FLOAT>(1);
                
                x = (-b22*b33+b23*b32)/det;
                z = (-b21*b32+b22*b31)/det;
                
                break;
                
            case 8:
                
                x = static_cast<TYPE_FLOAT>(1);
                
                y = (-b21*b33+b23*b31)/det;
                z = (-b22*b31+b21*b32)/det;
                
                break;
                
            default:
                
                ::std::string        error_reporting("Impossible condition in find_invariant_vector");
                ::std::logic_error   processing_error(error_reporting);
                
                throw(processing_error);
                
                break;
        }
        
        TYPE_FLOAT    vecnorm = sqrt(x*x+y*y+z*z);
        
        if    (vecnorm <= numeric_limits<TYPE_FLOAT>::epsilon())
        {
            ::std::string            error_reporting("Overflow error in find_invariant_vector!");
            ::std::overflow_error    processing_error(error_reporting);
            
            throw(processing_error);
        }
        
        x /= vecnorm;
        y /= vecnorm;
        z /= vecnorm;
    }
    
    
    template<typename TYPE_FLOAT>
    void    find_orthogonal_vector( TYPE_FLOAT x,
                                    TYPE_FLOAT y,
                                    TYPE_FLOAT z,
                                    TYPE_FLOAT & u,
                                    TYPE_FLOAT & v,
                                    TYPE_FLOAT & w)
    {
        using    ::std::abs;
        using    ::std::sqrt;
        
        using    ::std::numeric_limits;
        
        TYPE_FLOAT    vecnormsqr = x*x+y*y+z*z;
        
        if    (vecnormsqr <= numeric_limits<TYPE_FLOAT>::epsilon())
        {
            ::std::string            error_reporting("Underflow error in find_orthogonal_vector!");
            ::std::underflow_error   processing_error(error_reporting);
            
            throw(processing_error);
        }
        
        TYPE_FLOAT        lambda;
        
        TYPE_FLOAT        components[3] =
        {
            abs(x),
            abs(y),
            abs(z)
        };
        
        TYPE_FLOAT *    where = ::std::min_element(components, components+3);
        
        switch    (where-components)
        {
            case 0:
                
                if    (*where <= numeric_limits<TYPE_FLOAT>::epsilon())
                {
                    v =
                    w = static_cast<TYPE_FLOAT>(0);
                    u = static_cast<TYPE_FLOAT>(1);
                }
                else
                {
                    lambda = -x/vecnormsqr;
                    
                    u = static_cast<TYPE_FLOAT>(1) + lambda*x;
                    v = lambda*y;
                    w = lambda*z;
                }
                
                break;
                
            case 1:
                
                if    (*where <= numeric_limits<TYPE_FLOAT>::epsilon())
                {
                    u =
                    w = static_cast<TYPE_FLOAT>(0);
                    v = static_cast<TYPE_FLOAT>(1);
                }
                else
                {
                    lambda = -y/vecnormsqr;
                    
                    u = lambda*x;
                    v = static_cast<TYPE_FLOAT>(1) + lambda*y;
                    w = lambda*z;
                }
                
                break;
                
            case 2:
                
                if    (*where <= numeric_limits<TYPE_FLOAT>::epsilon())
                {
                    u =
                    v = static_cast<TYPE_FLOAT>(0);
                    w = static_cast<TYPE_FLOAT>(1);
                }
                else
                {
                    lambda = -z/vecnormsqr;
                    
                    u = lambda*x;
                    v = lambda*y;
                    w = static_cast<TYPE_FLOAT>(1) + lambda*z;
                }
                
                break;
                
            default:
                
                ::std::string        error_reporting("Impossible condition in find_invariant_vector");
                ::std::logic_error   processing_error(error_reporting);
                
                throw(processing_error);
                
                break;
        }
        
        TYPE_FLOAT    vecnorm = sqrt(u*u+v*v+w*w);
        
        if    (vecnorm <= numeric_limits<TYPE_FLOAT>::epsilon())
        {
            ::std::string            error_reporting("Underflow error in find_orthogonal_vector!");
            ::std::underflow_error   processing_error(error_reporting);
            
            throw(processing_error);
        }
        
        u /= vecnorm;
        v /= vecnorm;
        w /= vecnorm;
    }
    
    
    // Note:    we want [[v, v, w], [r, s, t], [x, y, z]] to be a direct orthogonal basis
    //            of R^3. It might not be orthonormal, however, and we do not check if the
    //            two input vectors are colinear or not.
    
    template<typename TYPE_FLOAT>
    void    find_vector_for_BOD(TYPE_FLOAT x,
                                TYPE_FLOAT y,
                                TYPE_FLOAT z,
                                TYPE_FLOAT u, 
                                TYPE_FLOAT v,
                                TYPE_FLOAT w,
                                TYPE_FLOAT & r,
                                TYPE_FLOAT & s,
                                TYPE_FLOAT & t)
    {
        r = +y*w-z*v;
        s = -x*w+z*u;
        t = +x*v-y*u;
    }



template<typename TYPE_FLOAT>
inline bool                                is_R3_rotation_matrix(R3_matrix<TYPE_FLOAT> const & mat)
{
    using    ::std::abs;
    
    using    ::std::numeric_limits;
    
    return    (
                !(
                    (abs(mat.a11*mat.a11+mat.a21*mat.a21+mat.a31*mat.a31 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
                    (abs(mat.a11*mat.a12+mat.a21*mat.a22+mat.a31*mat.a32 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
                    (abs(mat.a11*mat.a13+mat.a21*mat.a23+mat.a31*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
                    //(abs(mat.a11*mat.a12+mat.a21*mat.a22+mat.a31*mat.a32 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
                    (abs(mat.a12*mat.a12+mat.a22*mat.a22+mat.a32*mat.a32 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
                    (abs(mat.a12*mat.a13+mat.a22*mat.a23+mat.a32*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
                    //(abs(mat.a11*mat.a13+mat.a21*mat.a23+mat.a31*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
                    //(abs(mat.a12*mat.a13+mat.a22*mat.a23+mat.a32*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
                    (abs(mat.a13*mat.a13+mat.a23*mat.a23+mat.a33*mat.a33 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())
                )
            );
}


template<typename TYPE_FLOAT>
::boost::math::quaternion<TYPE_FLOAT>    R3_rotation_to_quaternion(    R3_matrix<TYPE_FLOAT> const & rot,
                                                                    ::boost::math::quaternion<TYPE_FLOAT> const * hint = 0)
{
    using    ::boost::math::abs;
    
    using    ::std::abs;
    using    ::std::sqrt;
    
    using    ::std::numeric_limits;
    
    if    (!is_R3_rotation_matrix(rot))
    {
        ::std::string        error_reporting("Argument to R3_rotation_to_quaternion is not an R^3 rotation matrix!");
        ::std::range_error   bad_argument(error_reporting);
        
        throw(bad_argument);
    }
    
    ::boost::math::quaternion<TYPE_FLOAT>    q;
    
    if    (
            (abs(rot.a11 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())&&
            (abs(rot.a22 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())&&
            (abs(rot.a33 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())
        )
    {
        q = ::boost::math::quaternion<TYPE_FLOAT>(1);
    }
    else
    {
        TYPE_FLOAT    cos_theta = (rot.a11+rot.a22+rot.a33-static_cast<TYPE_FLOAT>(1))/static_cast<TYPE_FLOAT>(2);
        TYPE_FLOAT    stuff = (cos_theta+static_cast<TYPE_FLOAT>(1))/static_cast<TYPE_FLOAT>(2);
        TYPE_FLOAT    cos_theta_sur_2 = sqrt(stuff);
        TYPE_FLOAT    sin_theta_sur_2 = sqrt(1-stuff);
        
        TYPE_FLOAT    x;
        TYPE_FLOAT    y;
        TYPE_FLOAT    z;
        
        find_invariant_vector(rot, x, y, z);
        
        TYPE_FLOAT    u;
        TYPE_FLOAT    v;
        TYPE_FLOAT    w;
        
        find_orthogonal_vector(x, y, z, u, v, w);
        
        TYPE_FLOAT    r;
        TYPE_FLOAT    s;
        TYPE_FLOAT    t;
        
        find_vector_for_BOD(x, y, z, u, v, w, r, s, t);
        
        TYPE_FLOAT    ru = rot.a11*u+rot.a12*v+rot.a13*w;
        TYPE_FLOAT    rv = rot.a21*u+rot.a22*v+rot.a23*w;
        TYPE_FLOAT    rw = rot.a31*u+rot.a32*v+rot.a33*w;
        
        TYPE_FLOAT    angle_sign_determinator = r*ru+s*rv+t*rw;
        
        if        (angle_sign_determinator > +numeric_limits<TYPE_FLOAT>::epsilon())
        {
            q = ::boost::math::quaternion<TYPE_FLOAT>(cos_theta_sur_2, +x*sin_theta_sur_2, +y*sin_theta_sur_2, +z*sin_theta_sur_2);
        }
        else if    (angle_sign_determinator < -numeric_limits<TYPE_FLOAT>::epsilon())
        {
            q = ::boost::math::quaternion<TYPE_FLOAT>(cos_theta_sur_2, -x*sin_theta_sur_2, -y*sin_theta_sur_2, -z*sin_theta_sur_2);
        }
        else
        {
            TYPE_FLOAT    desambiguator = u*ru+v*rv+w*rw;
            
            if    (desambiguator >= static_cast<TYPE_FLOAT>(1))
            {
                q = ::boost::math::quaternion<TYPE_FLOAT>(0, +x, +y, +z);
            }
            else
            {
                q = ::boost::math::quaternion<TYPE_FLOAT>(0, -x, -y, -z);
            }
        }
    }
    
    if    ((hint != 0) && (abs(*hint+q) < abs(*hint-q)))
    {
        return(-q);
    }
    
    return(q);
}

#endif /* TEST_HSO3_HPP */