spsc_queue.hpp 32.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
//  lock-free single-producer/single-consumer ringbuffer
//  this algorithm is implemented in various projects (linux kernel)
//
//  Copyright (C) 2009-2013 Tim Blechmann
//
//  Distributed under the Boost Software License, Version 1.0. (See
//  accompanying file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_LOCKFREE_SPSC_QUEUE_HPP_INCLUDED
#define BOOST_LOCKFREE_SPSC_QUEUE_HPP_INCLUDED

#include <algorithm>
#include <memory>

#include <boost/aligned_storage.hpp>
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/core/allocator_access.hpp>
#include <boost/utility.hpp>
#include <boost/next_prior.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/config.hpp> // for BOOST_LIKELY

#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/type_traits/is_convertible.hpp>

#include <boost/lockfree/detail/atomic.hpp>
#include <boost/lockfree/detail/copy_payload.hpp>
#include <boost/lockfree/detail/parameter.hpp>
#include <boost/lockfree/detail/prefix.hpp>

#include <boost/lockfree/lockfree_forward.hpp>

#ifdef BOOST_HAS_PRAGMA_ONCE
#pragma once
#endif

namespace boost    {
namespace lockfree {
namespace detail   {

typedef parameter::parameters<boost::parameter::optional<tag::capacity>,
                              boost::parameter::optional<tag::allocator>
                             > ringbuffer_signature;

template <typename T>
class ringbuffer_base
{
#ifndef BOOST_DOXYGEN_INVOKED
protected:
    typedef std::size_t size_t;
    static const int padding_size = BOOST_LOCKFREE_CACHELINE_BYTES - sizeof(size_t);
    atomic<size_t> write_index_;
    char padding1[padding_size]; /* force read_index and write_index to different cache lines */
    atomic<size_t> read_index_;

    BOOST_DELETED_FUNCTION(ringbuffer_base(ringbuffer_base const&))
    BOOST_DELETED_FUNCTION(ringbuffer_base& operator= (ringbuffer_base const&))

protected:
    ringbuffer_base(void):
        write_index_(0), read_index_(0)
    {}

    static size_t next_index(size_t arg, size_t max_size)
    {
        size_t ret = arg + 1;
        while (BOOST_UNLIKELY(ret >= max_size))
            ret -= max_size;
        return ret;
    }

    static size_t read_available(size_t write_index, size_t read_index, size_t max_size)
    {
        if (write_index >= read_index)
            return write_index - read_index;

        const size_t ret = write_index + max_size - read_index;
        return ret;
    }

    static size_t write_available(size_t write_index, size_t read_index, size_t max_size)
    {
        size_t ret = read_index - write_index - 1;
        if (write_index >= read_index)
            ret += max_size;
        return ret;
    }

    size_t read_available(size_t max_size) const
    {
        size_t write_index = write_index_.load(memory_order_acquire);
        const size_t read_index  = read_index_.load(memory_order_relaxed);
        return read_available(write_index, read_index, max_size);
    }

    size_t write_available(size_t max_size) const
    {
        size_t write_index = write_index_.load(memory_order_relaxed);
        const size_t read_index  = read_index_.load(memory_order_acquire);
        return write_available(write_index, read_index, max_size);
    }

    bool push(T const & t, T * buffer, size_t max_size)
    {
        const size_t write_index = write_index_.load(memory_order_relaxed);  // only written from push thread
        const size_t next = next_index(write_index, max_size);

        if (next == read_index_.load(memory_order_acquire))
            return false; /* ringbuffer is full */

        new (buffer + write_index) T(t); // copy-construct

        write_index_.store(next, memory_order_release);

        return true;
    }

    size_t push(const T * input_buffer, size_t input_count, T * internal_buffer, size_t max_size)
    {
        return push(input_buffer, input_buffer + input_count, internal_buffer, max_size) - input_buffer;
    }

    template <typename ConstIterator>
    ConstIterator push(ConstIterator begin, ConstIterator end, T * internal_buffer, size_t max_size)
    {
        // FIXME: avoid std::distance

        const size_t write_index = write_index_.load(memory_order_relaxed);  // only written from push thread
        const size_t read_index  = read_index_.load(memory_order_acquire);
        const size_t avail = write_available(write_index, read_index, max_size);

        if (avail == 0)
            return begin;

        size_t input_count = std::distance(begin, end);
        input_count = (std::min)(input_count, avail);

        size_t new_write_index = write_index + input_count;

        const ConstIterator last = boost::next(begin, input_count);

        if (write_index + input_count > max_size) {
            /* copy data in two sections */
            const size_t count0 = max_size - write_index;
            const ConstIterator midpoint = boost::next(begin, count0);

            std::uninitialized_copy(begin, midpoint, internal_buffer + write_index);
            std::uninitialized_copy(midpoint, last, internal_buffer);
            new_write_index -= max_size;
        } else {
            std::uninitialized_copy(begin, last, internal_buffer + write_index);

            if (new_write_index == max_size)
                new_write_index = 0;
        }

        write_index_.store(new_write_index, memory_order_release);
        return last;
    }

    template <typename Functor>
    bool consume_one(Functor & functor, T * buffer, size_t max_size)
    {
        const size_t write_index = write_index_.load(memory_order_acquire);
        const size_t read_index  = read_index_.load(memory_order_relaxed); // only written from pop thread
        if ( empty(write_index, read_index) )
            return false;

        T & object_to_consume = buffer[read_index];
        functor( object_to_consume );
        object_to_consume.~T();

        size_t next = next_index(read_index, max_size);
        read_index_.store(next, memory_order_release);
        return true;
    }

    template <typename Functor>
    bool consume_one(Functor const & functor, T * buffer, size_t max_size)
    {
        const size_t write_index = write_index_.load(memory_order_acquire);
        const size_t read_index  = read_index_.load(memory_order_relaxed); // only written from pop thread
        if ( empty(write_index, read_index) )
            return false;

        T & object_to_consume = buffer[read_index];
        functor( object_to_consume );
        object_to_consume.~T();

        size_t next = next_index(read_index, max_size);
        read_index_.store(next, memory_order_release);
        return true;
    }

    template <typename Functor>
    size_t consume_all (Functor const & functor, T * internal_buffer, size_t max_size)
    {
        const size_t write_index = write_index_.load(memory_order_acquire);
        const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread

        const size_t avail = read_available(write_index, read_index, max_size);

        if (avail == 0)
            return 0;

        const size_t output_count = avail;

        size_t new_read_index = read_index + output_count;

        if (read_index + output_count > max_size) {
            /* copy data in two sections */
            const size_t count0 = max_size - read_index;
            const size_t count1 = output_count - count0;

            run_functor_and_delete(internal_buffer + read_index, internal_buffer + max_size, functor);
            run_functor_and_delete(internal_buffer, internal_buffer + count1, functor);

            new_read_index -= max_size;
        } else {
            run_functor_and_delete(internal_buffer + read_index, internal_buffer + read_index + output_count, functor);

            if (new_read_index == max_size)
                new_read_index = 0;
        }

        read_index_.store(new_read_index, memory_order_release);
        return output_count;
    }

    template <typename Functor>
    size_t consume_all (Functor & functor, T * internal_buffer, size_t max_size)
    {
        const size_t write_index = write_index_.load(memory_order_acquire);
        const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread

        const size_t avail = read_available(write_index, read_index, max_size);

        if (avail == 0)
            return 0;

        const size_t output_count = avail;

        size_t new_read_index = read_index + output_count;

        if (read_index + output_count > max_size) {
            /* copy data in two sections */
            const size_t count0 = max_size - read_index;
            const size_t count1 = output_count - count0;

            run_functor_and_delete(internal_buffer + read_index, internal_buffer + max_size, functor);
            run_functor_and_delete(internal_buffer, internal_buffer + count1, functor);

            new_read_index -= max_size;
        } else {
            run_functor_and_delete(internal_buffer + read_index, internal_buffer + read_index + output_count, functor);

            if (new_read_index == max_size)
                new_read_index = 0;
        }

        read_index_.store(new_read_index, memory_order_release);
        return output_count;
    }

    size_t pop (T * output_buffer, size_t output_count, T * internal_buffer, size_t max_size)
    {
        const size_t write_index = write_index_.load(memory_order_acquire);
        const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread

        const size_t avail = read_available(write_index, read_index, max_size);

        if (avail == 0)
            return 0;

        output_count = (std::min)(output_count, avail);

        size_t new_read_index = read_index + output_count;

        if (read_index + output_count > max_size) {
            /* copy data in two sections */
            const size_t count0 = max_size - read_index;
            const size_t count1 = output_count - count0;

            copy_and_delete(internal_buffer + read_index, internal_buffer + max_size, output_buffer);
            copy_and_delete(internal_buffer, internal_buffer + count1, output_buffer + count0);

            new_read_index -= max_size;
        } else {
            copy_and_delete(internal_buffer + read_index, internal_buffer + read_index + output_count, output_buffer);
            if (new_read_index == max_size)
                new_read_index = 0;
        }

        read_index_.store(new_read_index, memory_order_release);
        return output_count;
    }

    template <typename OutputIterator>
    size_t pop_to_output_iterator (OutputIterator it, T * internal_buffer, size_t max_size)
    {
        const size_t write_index = write_index_.load(memory_order_acquire);
        const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread

        const size_t avail = read_available(write_index, read_index, max_size);
        if (avail == 0)
            return 0;

        size_t new_read_index = read_index + avail;

        if (read_index + avail > max_size) {
            /* copy data in two sections */
            const size_t count0 = max_size - read_index;
            const size_t count1 = avail - count0;

            it = copy_and_delete(internal_buffer + read_index, internal_buffer + max_size, it);
            copy_and_delete(internal_buffer, internal_buffer + count1, it);

            new_read_index -= max_size;
        } else {
            copy_and_delete(internal_buffer + read_index, internal_buffer + read_index + avail, it);
            if (new_read_index == max_size)
                new_read_index = 0;
        }

        read_index_.store(new_read_index, memory_order_release);
        return avail;
    }

    const T& front(const T * internal_buffer) const
    {
        const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread
        return *(internal_buffer + read_index);
    }

    T& front(T * internal_buffer)
    {
        const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread
        return *(internal_buffer + read_index);
    }
#endif


public:
    /** reset the ringbuffer
     *
     * \note Not thread-safe
     * */
    void reset(void)
    {
        if ( !boost::has_trivial_destructor<T>::value ) {
            // make sure to call all destructors!

            detail::consume_noop consume_functor;
            (void)consume_all( consume_functor );
        } else {
            write_index_.store(0, memory_order_relaxed);
            read_index_.store(0, memory_order_release);
        }
    }

    /** Check if the ringbuffer is empty
     *
     * \return true, if the ringbuffer is empty, false otherwise
     * \note Due to the concurrent nature of the ringbuffer the result may be inaccurate.
     * */
    bool empty(void)
    {
        return empty(write_index_.load(memory_order_relaxed), read_index_.load(memory_order_relaxed));
    }

    /**
     * \return true, if implementation is lock-free.
     *
     * */
    bool is_lock_free(void) const
    {
        return write_index_.is_lock_free() && read_index_.is_lock_free();
    }

private:
    bool empty(size_t write_index, size_t read_index)
    {
        return write_index == read_index;
    }

    template< class OutputIterator >
    OutputIterator copy_and_delete( T * first, T * last, OutputIterator out )
    {
        if (boost::has_trivial_destructor<T>::value) {
            return std::copy(first, last, out); // will use memcpy if possible
        } else {
            for (; first != last; ++first, ++out) {
                *out = *first;
                first->~T();
            }
            return out;
        }
    }

    template< class Functor >
    void run_functor_and_delete( T * first, T * last, Functor & functor )
    {
        for (; first != last; ++first) {
            functor(*first);
            first->~T();
        }
    }

    template< class Functor >
    void run_functor_and_delete( T * first, T * last, Functor const & functor )
    {
        for (; first != last; ++first) {
            functor(*first);
            first->~T();
        }
    }
};

template <typename T, std::size_t MaxSize>
class compile_time_sized_ringbuffer:
    public ringbuffer_base<T>
{
    typedef std::size_t size_type;
    static const std::size_t max_size = MaxSize + 1;

    typedef typename boost::aligned_storage<max_size * sizeof(T),
                                            boost::alignment_of<T>::value
                                           >::type storage_type;

    storage_type storage_;

    T * data()
    {
        return static_cast<T*>(storage_.address());
    }

    const T * data() const
    {
        return static_cast<const T*>(storage_.address());
    }

protected:
    size_type max_number_of_elements() const
    {
        return max_size;
    }

    ~compile_time_sized_ringbuffer(void)
    {
        // destroy all remaining items
        detail::consume_noop consume_functor;
        (void)consume_all(consume_functor);
    }

public:
    bool push(T const & t)
    {
        return ringbuffer_base<T>::push(t, data(), max_size);
    }

    template <typename Functor>
    bool consume_one(Functor & f)
    {
        return ringbuffer_base<T>::consume_one(f, data(), max_size);
    }

    template <typename Functor>
    bool consume_one(Functor const & f)
    {
        return ringbuffer_base<T>::consume_one(f, data(), max_size);
    }

    template <typename Functor>
    size_type consume_all(Functor & f)
    {
        return ringbuffer_base<T>::consume_all(f, data(), max_size);
    }

    template <typename Functor>
    size_type consume_all(Functor const & f)
    {
        return ringbuffer_base<T>::consume_all(f, data(), max_size);
    }

    size_type push(T const * t, size_type size)
    {
        return ringbuffer_base<T>::push(t, size, data(), max_size);
    }

    template <size_type size>
    size_type push(T const (&t)[size])
    {
        return push(t, size);
    }

    template <typename ConstIterator>
    ConstIterator push(ConstIterator begin, ConstIterator end)
    {
        return ringbuffer_base<T>::push(begin, end, data(), max_size);
    }

    size_type pop(T * ret, size_type size)
    {
        return ringbuffer_base<T>::pop(ret, size, data(), max_size);
    }

    template <typename OutputIterator>
    size_type pop_to_output_iterator(OutputIterator it)
    {
        return ringbuffer_base<T>::pop_to_output_iterator(it, data(), max_size);
    }

    const T& front(void) const
    {
        return ringbuffer_base<T>::front(data());
    }

    T& front(void)
    {
        return ringbuffer_base<T>::front(data());
    }
};

template <typename T, typename Alloc>
class runtime_sized_ringbuffer:
    public ringbuffer_base<T>,
    private Alloc
{
    typedef std::size_t size_type;
    size_type max_elements_;
#ifdef BOOST_NO_CXX11_ALLOCATOR
    typedef typename Alloc::pointer pointer;
#else
    typedef std::allocator_traits<Alloc> allocator_traits;
    typedef typename allocator_traits::pointer pointer;
#endif
    pointer array_;

protected:
    size_type max_number_of_elements() const
    {
        return max_elements_;
    }

public:
    explicit runtime_sized_ringbuffer(size_type max_elements):
        max_elements_(max_elements + 1)
    {
#ifdef BOOST_NO_CXX11_ALLOCATOR
        array_ = Alloc::allocate(max_elements_);
#else
        Alloc& alloc = *this;
        array_ = allocator_traits::allocate(alloc, max_elements_);
#endif
    }

    template <typename U>
    runtime_sized_ringbuffer(typename boost::allocator_rebind<Alloc, U>::type const & alloc, size_type max_elements):
        Alloc(alloc), max_elements_(max_elements + 1)
    {
#ifdef BOOST_NO_CXX11_ALLOCATOR
        array_ = Alloc::allocate(max_elements_);
#else
        Alloc& allocator = *this;
        array_ = allocator_traits::allocate(allocator, max_elements_);
#endif
    }

    runtime_sized_ringbuffer(Alloc const & alloc, size_type max_elements):
        Alloc(alloc), max_elements_(max_elements + 1)
    {
#ifdef BOOST_NO_CXX11_ALLOCATOR
        array_ = Alloc::allocate(max_elements_);
#else
        Alloc& allocator = *this;
        array_ = allocator_traits::allocate(allocator, max_elements_);
#endif
    }

    ~runtime_sized_ringbuffer(void)
    {
        // destroy all remaining items
        detail::consume_noop consume_functor;
        (void)consume_all(consume_functor);

#ifdef BOOST_NO_CXX11_ALLOCATOR
        Alloc::deallocate(array_, max_elements_);
#else
        Alloc& allocator = *this;
        allocator_traits::deallocate(allocator, array_, max_elements_);
#endif
    }

    bool push(T const & t)
    {
        return ringbuffer_base<T>::push(t, &*array_, max_elements_);
    }

    template <typename Functor>
    bool consume_one(Functor & f)
    {
        return ringbuffer_base<T>::consume_one(f, &*array_, max_elements_);
    }

    template <typename Functor>
    bool consume_one(Functor const & f)
    {
        return ringbuffer_base<T>::consume_one(f, &*array_, max_elements_);
    }

    template <typename Functor>
    size_type consume_all(Functor & f)
    {
        return ringbuffer_base<T>::consume_all(f, &*array_, max_elements_);
    }

    template <typename Functor>
    size_type consume_all(Functor const & f)
    {
        return ringbuffer_base<T>::consume_all(f, &*array_, max_elements_);
    }

    size_type push(T const * t, size_type size)
    {
        return ringbuffer_base<T>::push(t, size, &*array_, max_elements_);
    }

    template <size_type size>
    size_type push(T const (&t)[size])
    {
        return push(t, size);
    }

    template <typename ConstIterator>
    ConstIterator push(ConstIterator begin, ConstIterator end)
    {
        return ringbuffer_base<T>::push(begin, end, &*array_, max_elements_);
    }

    size_type pop(T * ret, size_type size)
    {
        return ringbuffer_base<T>::pop(ret, size, &*array_, max_elements_);
    }

    template <typename OutputIterator>
    size_type pop_to_output_iterator(OutputIterator it)
    {
        return ringbuffer_base<T>::pop_to_output_iterator(it, &*array_, max_elements_);
    }

    const T& front(void) const
    {
        return ringbuffer_base<T>::front(&*array_);
    }

    T& front(void)
    {
        return ringbuffer_base<T>::front(&*array_);
    }
};

#ifdef BOOST_NO_CXX11_VARIADIC_TEMPLATES
template <typename T, typename A0, typename A1>
#else
template <typename T, typename ...Options>
#endif
struct make_ringbuffer
{
#ifdef BOOST_NO_CXX11_VARIADIC_TEMPLATES
    typedef typename ringbuffer_signature::bind<A0, A1>::type bound_args;
#else
    typedef typename ringbuffer_signature::bind<Options...>::type bound_args;
#endif

    typedef extract_capacity<bound_args> extract_capacity_t;

    static const bool runtime_sized = !extract_capacity_t::has_capacity;
    static const size_t capacity    =  extract_capacity_t::capacity;

    typedef extract_allocator<bound_args, T> extract_allocator_t;
    typedef typename extract_allocator_t::type allocator;

    // allocator argument is only sane, for run-time sized ringbuffers
    BOOST_STATIC_ASSERT((mpl::if_<mpl::bool_<!runtime_sized>,
                                  mpl::bool_<!extract_allocator_t::has_allocator>,
                                  mpl::true_
                                 >::type::value));

    typedef typename mpl::if_c<runtime_sized,
                               runtime_sized_ringbuffer<T, allocator>,
                               compile_time_sized_ringbuffer<T, capacity>
                              >::type ringbuffer_type;
};


} /* namespace detail */


/** The spsc_queue class provides a single-writer/single-reader fifo queue, pushing and popping is wait-free.
 *
 *  \b Policies:
 *  - \c boost::lockfree::capacity<>, optional <br>
 *    If this template argument is passed to the options, the size of the ringbuffer is set at compile-time.
 *
 *  - \c boost::lockfree::allocator<>, defaults to \c boost::lockfree::allocator<std::allocator<T>> <br>
 *    Specifies the allocator that is used to allocate the ringbuffer. This option is only valid, if the ringbuffer is configured
 *    to be sized at run-time
 *
 *  \b Requirements:
 *  - T must have a default constructor
 *  - T must be copyable
 * */
#ifdef BOOST_NO_CXX11_VARIADIC_TEMPLATES
template <typename T, class A0, class A1>
#else
template <typename T, typename ...Options>
#endif
class spsc_queue:
#ifdef BOOST_NO_CXX11_VARIADIC_TEMPLATES
    public detail::make_ringbuffer<T, A0, A1>::ringbuffer_type
#else
    public detail::make_ringbuffer<T, Options...>::ringbuffer_type
#endif
{
private:

#ifndef BOOST_DOXYGEN_INVOKED

#ifdef BOOST_NO_CXX11_VARIADIC_TEMPLATES
    typedef typename detail::make_ringbuffer<T, A0, A1>::ringbuffer_type base_type;
    static const bool runtime_sized = detail::make_ringbuffer<T, A0, A1>::runtime_sized;
    typedef typename detail::make_ringbuffer<T, A0, A1>::allocator allocator_arg;
#else
    typedef typename detail::make_ringbuffer<T, Options...>::ringbuffer_type base_type;
    static const bool runtime_sized = detail::make_ringbuffer<T, Options...>::runtime_sized;
    typedef typename detail::make_ringbuffer<T, Options...>::allocator allocator_arg;
#endif


    struct implementation_defined
    {
        typedef allocator_arg allocator;
        typedef std::size_t size_type;
    };
#endif

public:
    typedef T value_type;
    typedef typename implementation_defined::allocator allocator;
    typedef typename implementation_defined::size_type size_type;

    /** Constructs a spsc_queue
     *
     *  \pre spsc_queue must be configured to be sized at compile-time
     */
    spsc_queue(void)
    {
        // Don't use BOOST_STATIC_ASSERT() here since it will be evaluated when compiling
        // this function and this function may be compiled even when it isn't being used.
        BOOST_ASSERT(!runtime_sized);
    }

    /** Constructs a spsc_queue with a custom allocator
     *
     *  \pre spsc_queue must be configured to be sized at compile-time
     *
     *  \note This is just for API compatibility: an allocator isn't actually needed
     */
    template <typename U>
    explicit spsc_queue(typename boost::allocator_rebind<allocator, U>::type const &)
    {
        BOOST_STATIC_ASSERT(!runtime_sized);
    }

    /** Constructs a spsc_queue with a custom allocator
     *
     *  \pre spsc_queue must be configured to be sized at compile-time
     *
     *  \note This is just for API compatibility: an allocator isn't actually needed
     */
    explicit spsc_queue(allocator const &)
    {
        // Don't use BOOST_STATIC_ASSERT() here since it will be evaluated when compiling
        // this function and this function may be compiled even when it isn't being used.
        BOOST_ASSERT(!runtime_sized);
    }

    /** Constructs a spsc_queue for element_count elements
     *
     *  \pre spsc_queue must be configured to be sized at run-time
     */
    explicit spsc_queue(size_type element_count):
        base_type(element_count)
    {
        // Don't use BOOST_STATIC_ASSERT() here since it will be evaluated when compiling
        // this function and this function may be compiled even when it isn't being used.
        BOOST_ASSERT(runtime_sized);
    }

    /** Constructs a spsc_queue for element_count elements with a custom allocator
     *
     *  \pre spsc_queue must be configured to be sized at run-time
     */
    template <typename U>
    spsc_queue(size_type element_count, typename boost::allocator_rebind<allocator, U>::type const & alloc):
        base_type(alloc, element_count)
    {
        BOOST_STATIC_ASSERT(runtime_sized);
    }

    /** Constructs a spsc_queue for element_count elements with a custom allocator
     *
     *  \pre spsc_queue must be configured to be sized at run-time
     */
    spsc_queue(size_type element_count, allocator_arg const & alloc):
        base_type(alloc, element_count)
    {
        // Don't use BOOST_STATIC_ASSERT() here since it will be evaluated when compiling
        // this function and this function may be compiled even when it isn't being used.
        BOOST_ASSERT(runtime_sized);
    }

    /** Pushes object t to the ringbuffer.
     *
     * \pre only one thread is allowed to push data to the spsc_queue
     * \post object will be pushed to the spsc_queue, unless it is full.
     * \return true, if the push operation is successful.
     *
     * \note Thread-safe and wait-free
     * */
    bool push(T const & t)
    {
        return base_type::push(t);
    }

    /** Pops one object from ringbuffer.
     *
     * \pre only one thread is allowed to pop data to the spsc_queue
     * \post if ringbuffer is not empty, object will be discarded.
     * \return true, if the pop operation is successful, false if ringbuffer was empty.
     *
     * \note Thread-safe and wait-free
     */
    bool pop ()
    {
        detail::consume_noop consume_functor;
        return consume_one( consume_functor );
    }

    /** Pops one object from ringbuffer.
     *
     * \pre only one thread is allowed to pop data to the spsc_queue
     * \post if ringbuffer is not empty, object will be copied to ret.
     * \return true, if the pop operation is successful, false if ringbuffer was empty.
     *
     * \note Thread-safe and wait-free
     */
    template <typename U>
    typename boost::enable_if<typename is_convertible<T, U>::type, bool>::type
    pop (U & ret)
    {
        detail::consume_via_copy<U> consume_functor(ret);
        return consume_one( consume_functor );
    }

    /** Pushes as many objects from the array t as there is space.
     *
     * \pre only one thread is allowed to push data to the spsc_queue
     * \return number of pushed items
     *
     * \note Thread-safe and wait-free
     */
    size_type push(T const * t, size_type size)
    {
        return base_type::push(t, size);
    }

    /** Pushes as many objects from the array t as there is space available.
     *
     * \pre only one thread is allowed to push data to the spsc_queue
     * \return number of pushed items
     *
     * \note Thread-safe and wait-free
     */
    template <size_type size>
    size_type push(T const (&t)[size])
    {
        return push(t, size);
    }

    /** Pushes as many objects from the range [begin, end) as there is space .
     *
     * \pre only one thread is allowed to push data to the spsc_queue
     * \return iterator to the first element, which has not been pushed
     *
     * \note Thread-safe and wait-free
     */
    template <typename ConstIterator>
    ConstIterator push(ConstIterator begin, ConstIterator end)
    {
        return base_type::push(begin, end);
    }

    /** Pops a maximum of size objects from ringbuffer.
     *
     * \pre only one thread is allowed to pop data to the spsc_queue
     * \return number of popped items
     *
     * \note Thread-safe and wait-free
     * */
    size_type pop(T * ret, size_type size)
    {
        return base_type::pop(ret, size);
    }

    /** Pops a maximum of size objects from spsc_queue.
     *
     * \pre only one thread is allowed to pop data to the spsc_queue
     * \return number of popped items
     *
     * \note Thread-safe and wait-free
     * */
    template <size_type size>
    size_type pop(T (&ret)[size])
    {
        return pop(ret, size);
    }

    /** Pops objects to the output iterator it
     *
     * \pre only one thread is allowed to pop data to the spsc_queue
     * \return number of popped items
     *
     * \note Thread-safe and wait-free
     * */
    template <typename OutputIterator>
    typename boost::disable_if<typename is_convertible<T, OutputIterator>::type, size_type>::type
    pop(OutputIterator it)
    {
        return base_type::pop_to_output_iterator(it);
    }

    /** consumes one element via a functor
     *
     *  pops one element from the queue and applies the functor on this object
     *
     * \returns true, if one element was consumed
     *
     * \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
     * */
    template <typename Functor>
    bool consume_one(Functor & f)
    {
        return base_type::consume_one(f);
    }

    /// \copydoc boost::lockfree::spsc_queue::consume_one(Functor & rhs)
    template <typename Functor>
    bool consume_one(Functor const & f)
    {
        return base_type::consume_one(f);
    }

    /** consumes all elements via a functor
     *
     * sequentially pops all elements from the queue and applies the functor on each object
     *
     * \returns number of elements that are consumed
     *
     * \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
     * */
    template <typename Functor>
    size_type consume_all(Functor & f)
    {
        return base_type::consume_all(f);
    }

    /// \copydoc boost::lockfree::spsc_queue::consume_all(Functor & rhs)
    template <typename Functor>
    size_type consume_all(Functor const & f)
    {
        return base_type::consume_all(f);
    }

    /** get number of elements that are available for read
     *
     * \return number of available elements that can be popped from the spsc_queue
     *
     * \note Thread-safe and wait-free, should only be called from the consumer thread
     * */
    size_type read_available() const
    {
        return base_type::read_available(base_type::max_number_of_elements());
    }

    /** get write space to write elements
     *
     * \return number of elements that can be pushed to the spsc_queue
     *
     * \note Thread-safe and wait-free, should only be called from the producer thread
     * */
    size_type write_available() const
    {
        return base_type::write_available(base_type::max_number_of_elements());
    }

    /** get reference to element in the front of the queue
     *
     * Availability of front element can be checked using read_available().
     *
     * \pre only a consuming thread is allowed to check front element
     * \pre read_available() > 0. If ringbuffer is empty, it's undefined behaviour to invoke this method.
     * \return reference to the first element in the queue
     *
     * \note Thread-safe and wait-free
     */
    const T& front() const
    {
        BOOST_ASSERT(read_available() > 0);
        return base_type::front();
    }

    /// \copydoc boost::lockfree::spsc_queue::front() const
    T& front()
    {
        BOOST_ASSERT(read_available() > 0);
        return base_type::front();
    }

    /** reset the ringbuffer
     *
     * \note Not thread-safe
     * */
    void reset(void)
    {
        if ( !boost::has_trivial_destructor<T>::value ) {
            // make sure to call all destructors!

            detail::consume_noop consume_functor;
            (void)consume_all(consume_functor);
        } else {
            base_type::write_index_.store(0, memory_order_relaxed);
            base_type::read_index_.store(0, memory_order_release);
        }
   }
};

} /* namespace lockfree */
} /* namespace boost */


#endif /* BOOST_LOCKFREE_SPSC_QUEUE_HPP_INCLUDED */