hyperexponential.hpp 21.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
//  Copyright 2014 Marco Guazzone (marco.guazzone@gmail.com)
//
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This module implements the Hyper-Exponential distribution.
//
// References:
// - "Queueing Theory in Manufacturing Systems Analysis and Design" by H.T. Papadopolous, C. Heavey and J. Browne (Chapman & Hall/CRC, 1993)
// - http://reference.wolfram.com/language/ref/HyperexponentialDistribution.html
// - http://en.wikipedia.org/wiki/Hyperexponential_distribution
//

#ifndef BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
#define BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP

#include <boost/math/tools/cxx03_warn.hpp>
#include <boost/math/distributions/complement.hpp>
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/math/distributions/exponential.hpp>
#include <boost/math/policies/policy.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/math/tools/precision.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/math/tools/is_detected.hpp>
#include <cstddef>
#include <iterator>
#include <limits>
#include <numeric>
#include <utility>
#include <vector>
#include <type_traits>
#include <initializer_list>


#ifdef _MSC_VER
# pragma warning (push)
# pragma warning(disable:4127) // conditional expression is constant
# pragma warning(disable:4389) // '==' : signed/unsigned mismatch in test_tools
#endif // _MSC_VER

namespace boost { namespace math {

namespace detail {

template <typename Dist>
typename Dist::value_type generic_quantile(const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, bool comp, const char* function);

} // Namespace detail


template <typename RealT, typename PolicyT>
class hyperexponential_distribution;


namespace /*<unnamed>*/ { namespace hyperexp_detail {

template <typename T>
void normalize(std::vector<T>& v)
{
   if(!v.size())
      return;  // Our error handlers will get this later
    const T sum = std::accumulate(v.begin(), v.end(), static_cast<T>(0));
    T final_sum = 0;
    const typename std::vector<T>::iterator end = --v.end();
    for (typename std::vector<T>::iterator it = v.begin();
         it != end;
         ++it)
    {
        *it /= sum;
        final_sum += *it;
    }
    *end = 1 - final_sum;  // avoids round off errors, ensures the probs really do sum to 1.
}

template <typename RealT, typename PolicyT>
bool check_probabilities(char const* function, std::vector<RealT> const& probabilities, RealT* presult, PolicyT const& pol)
{
    BOOST_MATH_STD_USING
    const std::size_t n = probabilities.size();
    RealT sum = 0;
    for (std::size_t i = 0; i < n; ++i)
    {
        if (probabilities[i] < 0
            || probabilities[i] > 1
            || !(boost::math::isfinite)(probabilities[i]))
        {
            *presult = policies::raise_domain_error<RealT>(function,
                                                           "The elements of parameter \"probabilities\" must be >= 0 and <= 1, but at least one of them was: %1%.",
                                                           probabilities[i],
                                                           pol);
            return false;
        }
        sum += probabilities[i];
    }

    //
    // We try to keep phase probabilities correctly normalized in the distribution constructors,
    // however in practice we have to allow for a very slight divergence from a sum of exactly 1:
    //
    if (fabs(sum - 1) > tools::epsilon<RealT>() * 2)
    {
        *presult = policies::raise_domain_error<RealT>(function,
                                                       "The elements of parameter \"probabilities\" must sum to 1, but their sum is: %1%.",
                                                       sum,
                                                       pol);
        return false;
    }

    return true;
}

template <typename RealT, typename PolicyT>
bool check_rates(char const* function, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
{
    const std::size_t n = rates.size();
    for (std::size_t i = 0; i < n; ++i)
    {
        if (rates[i] <= 0
            || !(boost::math::isfinite)(rates[i]))
        {
            *presult = policies::raise_domain_error<RealT>(function,
                                                           "The elements of parameter \"rates\" must be > 0, but at least one of them is: %1%.",
                                                           rates[i],
                                                           pol);
            return false;
        }
    }
    return true;
}

template <typename RealT, typename PolicyT>
bool check_dist(char const* function, std::vector<RealT> const& probabilities, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
{
    BOOST_MATH_STD_USING
    if (probabilities.size() != rates.size())
    {
        *presult = policies::raise_domain_error<RealT>(function,
                                                       R"(The parameters "probabilities" and "rates" must have the same length, but their size differ by: %1%.)",
                                                       fabs(static_cast<RealT>(probabilities.size())-static_cast<RealT>(rates.size())),
                                                       pol);
        return false;
    }

    return check_probabilities(function, probabilities, presult, pol)
           && check_rates(function, rates, presult, pol);
}

template <typename RealT, typename PolicyT>
bool check_x(char const* function, RealT x, RealT* presult, PolicyT const& pol)
{
    if (x < 0 || (boost::math::isnan)(x))
    {
        *presult = policies::raise_domain_error<RealT>(function, "The random variable must be >= 0, but is: %1%.", x, pol);
        return false;
    }
    return true;
}

template <typename RealT, typename PolicyT>
bool check_probability(char const* function, RealT p, RealT* presult, PolicyT const& pol)
{
    if (p < 0 || p > 1 || (boost::math::isnan)(p))
    {
        *presult = policies::raise_domain_error<RealT>(function, "The probability be >= 0 and <= 1, but is: %1%.", p, pol);
        return false;
    }
    return true;
}

template <typename RealT, typename PolicyT>
RealT quantile_impl(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p, bool comp)
{
    // Don't have a closed form so try to numerically solve the inverse CDF...

    typedef typename policies::evaluation<RealT, PolicyT>::type value_type;
    typedef typename policies::normalise<PolicyT,
                                         policies::promote_float<false>,
                                         policies::promote_double<false>,
                                         policies::discrete_quantile<>,
                                         policies::assert_undefined<> >::type forwarding_policy;

    static const char* function = comp ? "boost::math::quantile(const boost::math::complemented2_type<boost::math::hyperexponential_distribution<%1%>, %1%>&)"
                                       : "boost::math::quantile(const boost::math::hyperexponential_distribution<%1%>&, %1%)";

    RealT result = 0;

    if (!check_probability(function, p, &result, PolicyT()))
    {
        return result;
    }

    const std::size_t n = dist.num_phases();
    const std::vector<RealT> probs = dist.probabilities();
    const std::vector<RealT> rates = dist.rates();

    // A possible (but inaccurate) approximation is given below, where the
    // quantile is given by the weighted sum of exponential quantiles:
    RealT guess = 0;
    if (comp)
    {
        for (std::size_t i = 0; i < n; ++i)
        {
            const exponential_distribution<RealT,PolicyT> exp(rates[i]);

            guess += probs[i]*quantile(complement(exp, p));
        }
    }
    else
    {
        for (std::size_t i = 0; i < n; ++i)
        {
            const exponential_distribution<RealT,PolicyT> exp(rates[i]);

            guess += probs[i]*quantile(exp, p);
        }
    }

    // Fast return in case the Hyper-Exponential is essentially an Exponential
    if (n == 1)
    {
        return guess;
    }

    value_type q;
    q = detail::generic_quantile(hyperexponential_distribution<RealT,forwarding_policy>(probs, rates),
                                 p,
                                 guess,
                                 comp,
                                 function);

    result = policies::checked_narrowing_cast<RealT,forwarding_policy>(q, function);

    return result;
}

}} // Namespace <unnamed>::hyperexp_detail


template <typename RealT = double, typename PolicyT = policies::policy<> >
class hyperexponential_distribution
{
    public: typedef RealT value_type;
    public: typedef PolicyT policy_type;


    public: hyperexponential_distribution()
    : probs_(1, 1),
      rates_(1, 1)
    {
        RealT err;
        hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
                                    probs_,
                                    rates_,
                                    &err,
                                    PolicyT());
    }

    // Four arg constructor: no ambiguity here, the arguments must be two pairs of iterators:
    public: template <typename ProbIterT, typename RateIterT>
            hyperexponential_distribution(ProbIterT prob_first, ProbIterT prob_last,
                                          RateIterT rate_first, RateIterT rate_last)
    : probs_(prob_first, prob_last),
      rates_(rate_first, rate_last)
    {
        hyperexp_detail::normalize(probs_);
        RealT err;
        hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
                                    probs_,
                                    rates_,
                                    &err,
                                    PolicyT());
    }
    private: template <typename T, typename = void>
             struct is_iterator
             {
                 static constexpr bool value = false;
             };

             template <typename T>
             struct is_iterator<T, boost::math::tools::void_t<typename std::iterator_traits<T>::difference_type>>
             {
                 // std::iterator_traits<T>::difference_type returns void for invalid types
                 static constexpr bool value = !std::is_same<typename std::iterator_traits<T>::difference_type, void>::value;
             };

    // Two arg constructor from 2 ranges, we SFINAE this out of existence if
    // either argument type is incrementable as in that case the type is
    // probably an iterator:
    public: template <typename ProbRangeT, typename RateRangeT, 
                      typename std::enable_if<!is_iterator<ProbRangeT>::value && 
                                              !is_iterator<RateRangeT>::value, bool>::type = true>
            hyperexponential_distribution(ProbRangeT const& prob_range,
                                          RateRangeT const& rate_range)
    : probs_(std::begin(prob_range), std::end(prob_range)),
      rates_(std::begin(rate_range), std::end(rate_range))
    {
        hyperexp_detail::normalize(probs_);

        RealT err;
        hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
                                    probs_,
                                    rates_,
                                    &err,
                                    PolicyT());
    }

    // Two arg constructor for a pair of iterators: we SFINAE this out of
    // existence if neither argument types are incrementable.
    // Note that we allow different argument types here to allow for
    // construction from an array plus a pointer into that array.
    public: template <typename RateIterT, typename RateIterT2, 
                      typename std::enable_if<is_iterator<RateIterT>::value || 
                                              is_iterator<RateIterT2>::value, bool>::type = true>
            hyperexponential_distribution(RateIterT const& rate_first, 
                                          RateIterT2 const& rate_last)
    : probs_(std::distance(rate_first, rate_last), 1), // will be normalized below
      rates_(rate_first, rate_last)
    {
        hyperexp_detail::normalize(probs_);

        RealT err;
        hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
                                    probs_,
                                    rates_,
                                    &err,
                                    PolicyT());
    }

      // Initializer list constructor: allows for construction from array literals:
public: hyperexponential_distribution(std::initializer_list<RealT> l1, std::initializer_list<RealT> l2)
      : probs_(l1.begin(), l1.end()),
        rates_(l2.begin(), l2.end())
      {
         hyperexp_detail::normalize(probs_);

         RealT err;
         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
            probs_,
            rates_,
            &err,
            PolicyT());
      }

public: hyperexponential_distribution(std::initializer_list<RealT> l1)
      : probs_(l1.size(), 1),
        rates_(l1.begin(), l1.end())
      {
         hyperexp_detail::normalize(probs_);

         RealT err;
         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
            probs_,
            rates_,
            &err,
            PolicyT());
      }

    // Single argument constructor: argument must be a range.
    public: template <typename RateRangeT>
    hyperexponential_distribution(RateRangeT const& rate_range)
    : probs_(std::distance(std::begin(rate_range), std::end(rate_range)), 1), // will be normalized below
      rates_(std::begin(rate_range), std::end(rate_range))
    {
        hyperexp_detail::normalize(probs_);

        RealT err;
        hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
                                    probs_,
                                    rates_,
                                    &err,
                                    PolicyT());
    }

    public: std::vector<RealT> probabilities() const
    {
        return probs_;
    }

    public: std::vector<RealT> rates() const
    {
        return rates_;
    }

    public: std::size_t num_phases() const
    {
        return rates_.size();
    }


    private: std::vector<RealT> probs_;
    private: std::vector<RealT> rates_;
}; // class hyperexponential_distribution


// Convenient type synonym for double.
typedef hyperexponential_distribution<double> hyperexponential;


// Range of permissible values for random variable x
template <typename RealT, typename PolicyT>
std::pair<RealT,RealT> range(hyperexponential_distribution<RealT,PolicyT> const&)
{
    if (std::numeric_limits<RealT>::has_infinity)
    {
        return std::make_pair(static_cast<RealT>(0), std::numeric_limits<RealT>::infinity()); // 0 to +inf.
    }

    return std::make_pair(static_cast<RealT>(0), tools::max_value<RealT>()); // 0 to +<max value>
}

// Range of supported values for random variable x.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
template <typename RealT, typename PolicyT>
std::pair<RealT,RealT> support(hyperexponential_distribution<RealT,PolicyT> const&)
{
    return std::make_pair(tools::min_value<RealT>(), tools::max_value<RealT>()); // <min value> to +<max value>.
}

template <typename RealT, typename PolicyT>
RealT pdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
{
    BOOST_MATH_STD_USING
    RealT result = 0;

    if (!hyperexp_detail::check_x("boost::math::pdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
    {
        return result;
    }

    const std::size_t n = dist.num_phases();
    const std::vector<RealT> probs = dist.probabilities();
    const std::vector<RealT> rates = dist.rates();

    for (std::size_t i = 0; i < n; ++i)
    {
        const exponential_distribution<RealT,PolicyT> exp(rates[i]);

        result += probs[i]*pdf(exp, x);
        //result += probs[i]*rates[i]*exp(-rates[i]*x);
    }

    return result;
}

template <typename RealT, typename PolicyT>
RealT cdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
{
    RealT result = 0;

    if (!hyperexp_detail::check_x("boost::math::cdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
    {
        return result;
    }

    const std::size_t n = dist.num_phases();
    const std::vector<RealT> probs = dist.probabilities();
    const std::vector<RealT> rates = dist.rates();

    for (std::size_t i = 0; i < n; ++i)
    {
        const exponential_distribution<RealT,PolicyT> exp(rates[i]);

        result += probs[i]*cdf(exp, x);
    }

    return result;
}

template <typename RealT, typename PolicyT>
RealT quantile(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p)
{
    return hyperexp_detail::quantile_impl(dist, p , false);
}

template <typename RealT, typename PolicyT>
RealT cdf(complemented2_type<hyperexponential_distribution<RealT,PolicyT>, RealT> const& c)
{
    RealT const& x = c.param;
    hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;

    RealT result = 0;

    if (!hyperexp_detail::check_x("boost::math::cdf(boost::math::complemented2_type<const boost::math::hyperexponential_distribution<%1%>&, %1%>)", x, &result, PolicyT()))
    {
        return result;
    }

    const std::size_t n = dist.num_phases();
    const std::vector<RealT> probs = dist.probabilities();
    const std::vector<RealT> rates = dist.rates();

    for (std::size_t i = 0; i < n; ++i)
    {
        const exponential_distribution<RealT,PolicyT> exp(rates[i]);

        result += probs[i]*cdf(complement(exp, x));
    }

    return result;
}


template <typename RealT, typename PolicyT>
RealT quantile(complemented2_type<hyperexponential_distribution<RealT, PolicyT>, RealT> const& c)
{
    RealT const& p = c.param;
    hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;

    return hyperexp_detail::quantile_impl(dist, p , true);
}

template <typename RealT, typename PolicyT>
RealT mean(hyperexponential_distribution<RealT, PolicyT> const& dist)
{
    RealT result = 0;

    const std::size_t n = dist.num_phases();
    const std::vector<RealT> probs = dist.probabilities();
    const std::vector<RealT> rates = dist.rates();

    for (std::size_t i = 0; i < n; ++i)
    {
        const exponential_distribution<RealT,PolicyT> exp(rates[i]);

        result += probs[i]*mean(exp);
    }

    return result;
}

template <typename RealT, typename PolicyT>
RealT variance(hyperexponential_distribution<RealT, PolicyT> const& dist)
{
    RealT result = 0;

    const std::size_t n = dist.num_phases();
    const std::vector<RealT> probs = dist.probabilities();
    const std::vector<RealT> rates = dist.rates();

    for (std::size_t i = 0; i < n; ++i)
    {
        result += probs[i]/(rates[i]*rates[i]);
    }

    const RealT mean = boost::math::mean(dist);

    result = 2*result-mean*mean;

    return result;
}

template <typename RealT, typename PolicyT>
RealT skewness(hyperexponential_distribution<RealT,PolicyT> const& dist)
{
    BOOST_MATH_STD_USING
    const std::size_t n = dist.num_phases();
    const std::vector<RealT> probs = dist.probabilities();
    const std::vector<RealT> rates = dist.rates();

    RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
    RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
    RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
    for (std::size_t i = 0; i < n; ++i)
    {
        const RealT p = probs[i];
        const RealT r = rates[i];
        const RealT r2 = r*r;
        const RealT r3 = r2*r;

        s1 += p/r;
        s2 += p/r2;
        s3 += p/r3;
    }

    const RealT s1s1 = s1*s1;

    const RealT num = (6*s3 - (3*(2*s2 - s1s1) + s1s1)*s1);
    const RealT den = (2*s2 - s1s1);

    return num / pow(den, static_cast<RealT>(1.5));
}

template <typename RealT, typename PolicyT>
RealT kurtosis(hyperexponential_distribution<RealT,PolicyT> const& dist)
{
    const std::size_t n = dist.num_phases();
    const std::vector<RealT> probs = dist.probabilities();
    const std::vector<RealT> rates = dist.rates();

    RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
    RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
    RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
    RealT s4 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^4}
    for (std::size_t i = 0; i < n; ++i)
    {
        const RealT p = probs[i];
        const RealT r = rates[i];
        const RealT r2 = r*r;
        const RealT r3 = r2*r;
        const RealT r4 = r3*r;

        s1 += p/r;
        s2 += p/r2;
        s3 += p/r3;
        s4 += p/r4;
    }

    const RealT s1s1 = s1*s1;

    const RealT num = (24*s4 - 24*s3*s1 + 3*(2*(2*s2 - s1s1) + s1s1)*s1s1);
    const RealT den = (2*s2 - s1s1);

    return num/(den*den);
}

template <typename RealT, typename PolicyT>
RealT kurtosis_excess(hyperexponential_distribution<RealT,PolicyT> const& dist)
{
    return kurtosis(dist) - 3;
}

template <typename RealT, typename PolicyT>
RealT mode(hyperexponential_distribution<RealT,PolicyT> const& /*dist*/)
{
    return 0;
}

}} // namespace boost::math

#ifdef _MSC_VER
#pragma warning (pop)
#endif
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#include <boost/math/distributions/detail/generic_quantile.hpp>

#endif // BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL