BidirectionalGraph.html
4.79 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
<HTML>
<!--
Copyright (c) Jeremy Siek 2000
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
-->
<Head>
<Title>Bidirectional</Title>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../../boost.png"
ALT="C++ Boost" width="277" height="86">
<BR Clear>
<H2>
<A NAME="concept:BidirectionalGraph"></A>
BidirectionalGraph
</H2>
<P>
The BidirectionalGraph concept refines <a
href="./IncidenceGraph.html">IncidenceGraph</a> and adds the
requirement for efficient access to the in-edges of each vertex. This
concept is separated from <a
href="./IncidenceGraph.html">IncidenceGraph</a> because for directed
graphs efficient access to in-edges typically requires more storage
space, and many algorithms do not require access to in-edges. For
undirected graphs this is not an issue, since the <TT>in_edges()</TT>
and <TT>out_edges()</TT> functions are the same, they both return the
edges incident to the vertex.
<H3>Refinement of</H3>
<a href="./IncidenceGraph.html">IncidenceGraph</a>
<h3>Notation</h3>
<Table>
<TR>
<TD><tt>G</tt></TD>
<TD>A type that is a model of Graph.</TD>
</TR>
<TR>
<TD><tt>g</tt></TD>
<TD>An object of type <tt>G</tt>.</TD>
</TR>
<TR>
<TD><tt>v</tt></TD>
<TD>An object of type <tt>boost::graph_traits<G>::vertex_descriptor</tt>.</TD>
</TR>
</table>
<H3>Associated Types</H3>
<Table border>
<tr>
<td><tt>boost::graph_traits<G>::traversal_category</tt><br><br>
This tag type must be convertible to <tt>bidirectional_graph_tag</tt>.
</td>
</tr>
<TR>
<TD><pre>boost::graph_traits<G>::in_edge_iterator</pre>
An in-edge iterator for a vertex <i>v</i> provides access to the
in-edges of <i>v</i>. As such, the value type of an in-edge iterator
is the edge descriptor type of its graph. An in-edge iterator must
meet the requirements of <a href="../../utility/MultiPassInputIterator.html">MultiPassInputIterator</a>.
</TD>
</TR>
</Table>
<h3>Valid Expressions</h3>
<Table border>
<tr>
<td><a name="sec:in-edges"><TT>in_edges(v, g)</TT></a></TD>
<TD>
Returns an iterator-range providing access to the
in-edges (for directed graphs) or incident edges (for
undirected graphs) of vertex <TT>v</TT> in graph <TT>g</TT>.
For both directed and undirected graphs, the target of
an out-edge is required to be vertex <tt>v</tt> and the
source is required to be a vertex that is adjacent to <tt>v</tt>.
<br>
Return type: <TT>std::pair<in_edge_iterator, in_edge_iterator></TT>
</TD>
</TR>
<tr>
<TD><TT>in_degree(v, g)</TT></TD>
<TD>
Returns the number of in-edges (for directed graphs) or the
number of incident edges (for undirected graphs) of vertex <TT>v</TT>
in graph <TT>g</TT>.<br>
Return type: <TT>degree_size_type</TT>
</TD>
</TR>
<tr>
<TD><TT>degree(v, g)</TT></TD>
<TD>Returns the number of in-edges plus out-edges (for directed graphs) or the
number of incident edges (for undirected graphs) of vertex <TT>v</TT>
in graph <TT>g</TT>.<br>
Return type: <TT>degree_size_type</TT>
</TD>
</TR>
</Table>
<H3>Models</H3>
<ul>
<li><a href="./adjacency_list.html"><tt>adjacency_list</tt></a> with <tt>Directed=bidirectionalS</tt></li>
<li><a href="./adjacency_list.html"><tt>adjacency_list</tt></a> with <tt>Directed=undirectedS</tt></li>
</ul>
<H3>Complexity guarantees</H3>
The <TT>in_edges()</TT> function is required to be constant time. The
<tt>in_degree()</tt> and <tt>degree()</tt> functions must be linear in
the number of in-edges (for directed graphs) or incident edges (for
undirected graphs).
<H3>See Also</H3>
<a href="./graph_concepts.html">Graph concepts</a>
<H3>Concept Checking Class</H3>
<PRE>
template <class G>
struct BidirectionalGraphConcept
{
typedef typename boost::graph_traits<G>::in_edge_iterator
in_edge_iterator;
void constraints() {
BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<G> ));
BOOST_CONCEPT_ASSERT(( MultiPassInputIteratorConcept<in_edge_iterator> ));
p = in_edges(v, g);
n = in_degree(v, g);
n = degree(v, g);
e = *p.first;
const_constraints(g);
}
void const_constraints(const G& g) {
p = in_edges(v, g);
n = in_degree(v, g);
n = degree(v, g);
e = *p.first;
}
std::pair<in_edge_iterator, in_edge_iterator> p;
typename boost::graph_traits<G>::vertex_descriptor v;
typename boost::graph_traits<G>::edge_descriptor e;
typename boost::graph_traits<G>::degree_size_type n;
G g;
};
</PRE>
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright © 2000-2001</TD><TD>
<A HREF="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</A>, Indiana University (<A HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>)
</TD></TR></TABLE>
</BODY>
</HTML>