units.qbk
61.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
[library Boost.Units
[quickbook 1.5]
[version 1.1.0]
[authors [Schabel, Matthias C.]]
[authors [Watanabe, Steven]]
[copyright 2003-2008 Matthias Christian Schabel, 2007-2010 Steven Watanabe]
[license
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
[@http://www.boost.org/LICENSE_1_0.txt])
]
[purpose zero-overhead compile-time dimensional analysis and unit computations]
]
[/ Some links to external sources.]
[def __boost [@http://www.boost.org/ Boost]]
[def __boostroot [@boost: Boost root]]
[def __boostlicense [@http://www.boost.org/LICENSE_1_0.txt Boost License]]
[def __boost_mpl [@http://www.boost.org/libs/mpl/doc/index.html Boost Metaprogramming Library]]
[def __mpl_forward_sequence [@http://www.boost.org/libs/mpl/doc/refmanual/forward-sequence.html MPL Forward Sequence]]
[/Links within this document.]
[def __ordinal [classref boost::units::ordinal ordinal]]
[def __dim [classref boost::units::dim dim]]
[def __static_rational [classref boost::units::static_rational static_rational]]
[def __make_dimension_list [classref boost::units::make_dimension_list make_dimension_list]]
[def __unit [classref boost::units::unit unit]]
[def __base_unit_info [classref boost::units::base_unit_info base_unit_info]]
[def __quantity [classref boost::units::quantity quantity]]
[def __conversion_helper [classref boost::units::conversion_helper conversion_helper]]
[def __absolute [classref boost::units::absolute absolute]]
[def __base_unit [classref boost::units::base_unit base_unit]]
[def __base_dimension [classref boost::units::base_dimension base_dimension]]
[def __scaled_base_unit [classref boost::units::scaled_base_unit base_unit]]
[def __make_scaled_unit [classref boost::units::make_scaled_unit make_scaled_unit]]
[def __unary_plus_typeof_helper [classref boost::units::unary_plus_typeof_helper unary_plus_typeof_helper]]
[def __unary_minus_typeof_helper [classref boost::units::unary_minus_typeof_helper unary_minus_typeof_helper]]
[def __add_typeof_helper [classref boost::units::add_typeof_helper add_typeof_helper]]
[def __subtract_typeof_helper [classref boost::units::subtract_typeof_helper subtract_typeof_helper]]
[def __multiply_typeof_helper [classref boost::units::multiply_typeof_helper multiply_typeof_helper]]
[def __divide_typeof_helper [classref boost::units::divide_typeof_helper divide_typeof_helper]]
[def __power_typeof_helper [classref boost::units::power_typeof_helper power_typeof_helper]]
[def __root_typeof_helper [classref boost::units::root_typeof_helper root_typeof_helper]]
[def __static_negate [classref boost::units::static_negate static_negate]]
[def __static_add [classref boost::units::static_add static_add]]
[def __static_subtract [classref boost::units::static_subtract static_subtract]]
[def __static_multiply [classref boost::units::static_multiply static_multiply]]
[def __static_divide [classref boost::units::static_divide static_divide]]
[def __static_power [classref boost::units::static_power static_power]]
[def __static_root [classref boost::units::static_root static_root]]
[def __get_dimension [classref boost::units::get_dimension get_dimension]]
[def __get_system [classref boost::units::get_system get_system]]
[def __pow [funcref boost::units::pow pow]]
[def __root [funcref boost::units::root root]]
[def __quantity_cast [funcref boost::units::quantity_cast quantity_cast]]
[def __from_value [memberref boost::units::quantity::from_value from_value]]
[def __value [memberref boost::units::quantity::value value]]
[def __reduce_unit [classref boost::units::reduce_unit reduce_unit]]
[def __unscale [classref boost::units::unscale unscale]]
[def __BOOST_UNITS_STATIC_CONSTANT [macroref BOOST_UNITS_STATIC_CONSTANT]]
[def __BOOST_UNITS_DEFINE_CONVERSION_FACTOR [macroref BOOST_UNITS_DEFINE_CONVERSION_FACTOR]]
[def __BOOST_UNITS_DEFINE_CONVERSION_FACTOR_TEMPLATE [macroref BOOST_UNITS_DEFINE_CONVERSION_FACTOR_TEMPLATE]]
[def __BOOST_UNITS_DEFAULT_CONVERSION [macroref BOOST_UNITS_DEFAULT_CONVERSION]]
[section:Introduction Introduction]
The Boost.Units library is a C++ implementation of dimensional analysis in a general
and extensible manner, treating it as a generic compile-time metaprogramming problem. With appropriate
compiler optimization, no runtime execution cost is introduced, facilitating the use of this library to
provide dimension checking in performance-critical code. Support for units
and quantities (defined as a unit and associated value) for arbitrary unit system models and arbitrary
value types is provided, as is a fine-grained general facility for unit conversions. Complete SI and CGS unit
systems are provided, along with systems for
angles measured in degrees, radians, gradians, and revolutions and
systems for temperatures measured in Kelvin, degrees Celsius and degrees Fahrenheit.
The library architecture has been designed with flexibility and extensibility in mind; demonstrations of the ease
of adding new units and unit conversions are provided in the examples.
In order to enable complex compile-time dimensional analysis calculations with no runtime overhead,
Boost.Units relies heavily on the [___boost_mpl] (MPL) and on template metaprogramming techniques, and is, as a consequence,
fairly demanding of compiler compliance to ISO standards. At present, it has been successfully
compiled and tested on the following compilers/platforms :
# g++ 4.0.1 on Mac OSX 10.4
# Intel CC 9.1, 10.0, and 10.1 on Mac OSX 10.4
# g++ 3.4.4, 4.2.3, and 4.3.0 on Windows XP
# Microsoft Visual C++ 7.1, 8.0, and 9.0 on Windows XP
# Comeau 4.3.10.1 beta2 on Windows XP
# Metrowerks CodeWarrior 9.2 on Windows XP.
# Sun CC 5.9 on Solaris and Linux
The following compilers/platforms are known *not* to work :
# g++ 3.3.x
# Microsoft Visual C++ 6.0 on Windows XP
# Microsoft Visual C++ 7.0 on Windows XP
# Metrowerks CodeWarrior 8.0 on Windows XP.
# All versions of Borland.
[endsect]
[section:Quick_Start Quick Start]
Before discussing the basics of the library, we first define a few terms that will be used frequently
in the following :
* *Base dimension* : A base dimension is loosely defined as a measurable entity of interest; in conventional
dimensional analysis, base dimensions include length (\[L\]), mass (\[M\]), time (\[T\]), etc... but there is
no specific restriction on what base dimensions can be used. Base dimensions are essentially a tag type and
provide no dimensional analysis functionality themselves.
* *Dimension* : A collection of zero or more base dimensions, each
potentially raised to a different rational power.
For example, length = \[L\]^1, area = \[L\]^2, velocity = \[L\]^1/\[T\]^1, and
energy = \[M\]^1 \[L\]^2/\[T\]^2 are all dimensions.
* *Base unit* : A base unit represents a specific measure of a dimension. For example, while length is an abstract measure of
distance, the meter is a concrete base unit of distance. Conversions are defined using base units.
Much like base dimensions, base units are a tag type used solely to define units and do not support dimensional
analysis algebra.
* *Unit* : A set of base units raised to rational exponents, e.g. m^1, kg^1, m^1/s^2.
* *System* : A unit system is a collection of base units representing all the measurable entities of interest for a
specific problem. For example, the SI unit system defines seven base units : length (\[L\]) in meters,
mass (\[M\]) in kilograms, time (\[T\]) in seconds, current (\[I\]) in amperes, temperature (\[theta\]) in kelvin,
amount (\[N\]) in moles, and luminous intensity (\[J\]) in candelas. All measurable entities within the SI system can
be represented as products of various integer or rational powers of these seven base units.
* *Quantity* : A quantity represents a concrete amount of a unit. Thus, while the meter is the base
unit of length in the SI system, 5.5 meters is a quantity of length in that system.
To begin, we present two short tutorials. [@../../libs/units/tutorial/tutorial_1.cpp Tutorial1] demonstrates the use of
[@http://en.wikipedia.org/wiki/SI_units SI] units. After including the appropriate system headers
and the headers for the various SI units we will need (all SI units can be included with
[headerref boost/units/systems/si.hpp]) and for quantity I/O ([headerref boost/units/io.hpp]), we define
a function that computes the work, in joules, done by exerting a force in newtons over a specified distance in meters
and outputs the result to `std::cout`. The [___quantity] class accepts a second template parameter as its value type;
this parameter defaults to
`double` if not otherwise specified. To demonstrate the ease of using user-defined types in dimensional
calculations, we also present code for computing the complex impedance using `std::complex<double>`
as the value type :
[import ../example/tutorial.cpp]
[tutorial_code]
The intent and function of the above code should be obvious; the output produced is :
[tutorial_output]
While this library attempts to make simple dimensional computations easy to code, it is in no way
tied to any particular unit system (SI or otherwise). Instead, it provides a highly flexible compile-time
system for dimensional analysis, supporting arbitrary collections of base dimensions, rational
powers of units, and explicit quantity conversions. It accomplishes all of this via template metaprogramming techniques.
With modern optimizing compilers, this results in zero runtime overhead for quantity computations relative to the
same code without unit checking.
[endsect]
[section:Dimensional_Analysis Dimensional Analysis]
The concept of
[@http://en.wikipedia.org/wiki/Dimensional_analysis dimensional analysis]
is normally presented early on in introductory physics and engineering classes as a means of determining the
correctness of an equation or computation by propagating the physical measurement
[@http://en.wikipedia.org/wiki/Units_of_measurement units]
of various quantities through the equation along with their numerical values. There are a number of standard
unit systems in common use, the most prominent of which is the
[@http://en.wikipedia.org/wiki/SI_units Systeme International]
(also known as SI or MKS (meter-kilogram-second), which was a metric predecessor to the SI system named
for three of the base units on which the system is based). The SI
is the only official international standard unit system and is widely utilized in science and engineering.
Other common systems include the [@http://en.wikipedia.org/wiki/Cgs_units CGS]
(centimeter-gram-second) system and the
[@http://en.wikipedia.org/wiki/English_units English]
system still in use in some problem domains in the United States and elsewhere. In physics,
there also exist a number of other systems that are in common use in specialized subdisciplines. These are
collectively referred to as [@http://en.wikipedia.org/wiki/Natural_units natural units]. When
quantities representing different measurables are combined, dimensional analysis provides the means of
assessing the consistency of the resulting calculation. For example, the sum of two lengths is also a length,
while the product of two lengths is an area, and the sum of a length and an area is undefined. The fact that the
arguments to many functions (such as exp, log, etc...) must be dimensionless quantities can be easily demonstrated by
examining their series expansions in the context of dimensional analysis. This library facilitates the enforcement
of this type of restriction in code involving dimensioned quantities where appropriate.
In the following discussion we view dimensional analysis as an abstraction in which an arbitrary set of
[@http://en.wikipedia.org/wiki/Fundamental_units units] obey the rules of a specific algebra.
We will refer to a pair of a base dimension and a rational exponent as a *fundamental dimension*,
and a list composed of an arbitrary number of fundamental dimensions as a *composite dimension* or, simply,
*dimension*. In particular, given a set of [$../../libs/units/images/form_0.png] fundamental dimensions
denoted by [$../../libs/units/images/form_1.png] and a set of [$../../libs/units/images/form_0.png]
rational exponents [$../../libs/units/images/form_2.png], any possible (composite) dimension can be written
as [$../../libs/units/images/form_3.png].
Composite dimensions obey the algebraic rules for dimensional analysis. In particular, for any scalar value,
[$../../libs/units/images/form_4.png],
and composite dimensions [$../../libs/units/images/form_5.png]
and [$../../libs/units/images/form_6.png], where
[$../../libs/units/images/form_7.png], we have:
[$../../libs/units/images/form_8.png]
Users of a dimensional analysis library should be able to specify an arbitrary list of base dimensions to
produce a composite dimension. This potentially includes repeated tags. For example,
it should be possible to express energy as [$../../libs/units/images/form_9.png], [$../../libs/units/images/form_10.png],
[$../../libs/units/images/form_11.png], or any other permutation of mass, length, and time having aggregate exponents of
1, 2, and -2, respectively.
In order to be able to perform computations on arbitrary sets of dimensions,
all composite dimensions must be reducible to an unambiguous final composite dimension, which we will refer to as a
*reduced dimension*, for which
# fundamental dimensions are consistently ordered
# dimensions with zero exponent are elided. Note that reduced dimensions never have more than
[$../../libs/units/images/form_0.png] base dimensions, one for each distinct fundamental dimension, but may have fewer.
In our implementation, base dimensions are associated with tag types. As we will ultimately
represent composite dimensions as typelists, we must provide some mechanism for sorting
base dimension tags in order to make it possible to convert an arbitrary composite dimension
into a reduced dimension. For this purpose, we assign a unique integer to each base dimension.
The [___base_dimension] class (found in [headerref boost/units/base_dimension.hpp]) uses the
curiously recurring template pattern (CRTP) technique to ensure that ordinals specified for
base dimensions are unique:
template<class Derived, long N> struct base_dimension { ... };
With this, we can define the base dimensions for length, mass, and time as:
[import ../example/test_system.hpp]
[test_system_snippet_1]
It is important to note that the choice of order is completely arbitrary as long as each tag has a unique enumerable
value; non-unique ordinals are flagged as errors at compile-time. Negative ordinals are reserved for use by the library.
To define composite dimensions corresponding to the base dimensions, we
simply create MPL-conformant typelists of fundamental dimensions by using the [___dim] class to encapsulate pairs of base dimensions
and [___static_rational] exponents. The [___make_dimension_list] class acts as a wrapper to ensure
that the resulting type is in the form of a reduced dimension:
[test_system_snippet_2]
This can also be easily accomplished using a convenience typedef provided by [___base_dimension]:
[test_system_snippet_3]
so that the above code is identical to the full typelist definition. Composite dimensions are similarly defined via a typelist:
[test_system_snippet_4]
A convenience class for composite dimensions with integer powers is also provided:
[test_system_snippet_5]
[endsect]
[section:Units Units]
We define a *unit* as a set of base units each of which can be raised to an arbitrary rational
exponent. Thus, the SI unit corresponding to the dimension of force is kg m s^-2, where kg, m,
and s are base units. We use the notion of a *unit system* such as SI to specify the mapping
from a dimension to a particular unit so that instead of specifying the base units explicitly,
we can just ask for the representation of a dimension in a particular system.
Units are, like dimensions, purely compile-time variables with no associated value.
Units obey the same algebra as dimensions do; the presence of the unit system serves to ensure that units having identical
reduced dimension in different systems (like feet and meters) cannot be inadvertently mixed in computations.
There are two distinct types of systems that can be envisioned:
* *Homogeneous systems* : Systems which hold a linearly independent set of base units which
can be used to represent many different dimensions. For example, the SI system has seven
base dimensions and seven base units corresponding to them. It can represent any unit which
uses only those seven base dimensions. Thus it is a homogeneous_system.
* *Heterogeneous systems* : Systems which store the exponents of every base unit involved
are termed heterogeneous. Some units can only be represented in this way. For example,
area in m ft is intrinsically heterogeneous, because the base units of meters and feet
have identical dimensions. As a result, simply storing a dimension and a set of base
units does not yield a unique solution. A practical example of the need for heterogeneous
units, is an empirical equation used in aviation: H = (r/C)^2 where H is the radar beam
height in feet and r is the radar range in nautical miles. In order to enforce dimensional
correctness of this equation, the constant, C, must be expressed in nautical miles per foot^(1/2),
mixing two distinct base units of length.
Units are implemented by the [___unit] template class defined in [headerref boost/units/unit.hpp] :
template<class Dim,class System> class unit;
In addition to supporting the compile-time dimensional analysis operations, the +, -, *, and / runtime operators are provided
for [___unit] variables. Because the dimension associated with powers and roots must be computed at compile-time, it is not
possible to provide overloads for `std::pow` that function correctly for [___unit]s. These operations are supported through
free functions [___pow] and [___root] that are templated on integer and [___static_rational] values and can take as an argument
any type for which the utility classes [___power_typeof_helper] and [___root_typeof_helper] have been defined.
[section Base Units]
Base units are defined much like base dimensions.
template<class Derived, class Dimensions, long N> struct base_unit { ... };
Again negative ordinals are reserved.
As an example, in the following we will implement a subset of the SI unit system based on the fundamental dimensions
given above, demonstrating all steps necessary for a completely functional system. First, we simply define a unit system
that includes type definitions for commonly used units:
[test_system_snippet_6]
The macro [___BOOST_UNITS_STATIC_CONSTANT] is provided in [headerref boost/units/static_constant.hpp]
to facilitate ODR- and thread-safe constant definition in header files. We then define some constants for the supported units
to simplify variable definitions:
[test_system_snippet_7]
If support for textual output of units is desired, we can also specialize the [___base_unit_info] class for each fundamental
dimension tag:
[test_system_snippet_8]
and similarly for `kilogram_base_unit` and `second_base_unit`. A future version of the library will provide a more flexible system
allowing for internationalization through a facet/locale-type mechanism.
The `name()` and `symbol()` methods of [___base_unit_info] provide full and short names for the base unit. With these definitions,
we have the rudimentary beginnings of our unit system, which can be used to determine reduced dimensions for arbitrary
unit calculations.
[endsect] [/section Base Units]
[section Scaled Base Units]
Now, it is also possible to define a base unit as being a multiple of
another base unit. For example, the way that `kilogram_base_unit` is
actually defined by the library is along the following lines
struct gram_base_unit : boost::units::base_unit<gram_base_unit, mass_dimension, 1> {};
typedef scaled_base_unit<gram_base_unit, scale<10, static_rational<3> > > kilogram_base_unit;
This basically defines a kilogram as being 10^3 times a gram.
There are several advantages to this approach.
* It reflects the real meaning of these units better than treating them as independent units.
* If a conversion is defined between grams or kilograms and some other units,
it will automatically work for both kilograms and grams, with only one specialization.
* Similarly, if the symbol for grams is defined as "g", then the symbol for kilograms
will be "kg" without any extra effort.
[endsect] [/section Scaled Base Units]
[section Scaled Units]
We can also scale a [___unit] as a whole, rather than scaling the individual
base units which comprise it. For this purpose, we use the metafunction
[___make_scaled_unit]. The main motivation for this feature is the metric
prefixes defined in [headerref boost/units/systems/si/prefixes.hpp].
A simple example of its usage would be.
typedef make_scaled_unit<si::time, scale<10, static_rational<-9> > >::type nanosecond;
nanosecond is a specialization of [___unit], and can be used in a quantity normally.
quantity<nanosecond> t(1.0 * si::seconds);
std::cout << t << std::endl; // prints 1e9 ns
[endsect] [/section Scaled Units]
[endsect] [/section:Units Units]
[section:Quantities Quantities]
A *quantity* is defined as a value of an arbitrary value type that is associated with a specific unit. For example,
while meter is a unit, 3.0 meters is a quantity. Quantities obey two separate algebras: the native algebra for their
value type, and the dimensional analysis algebra for the associated unit. In addition, algebraic operations are defined
between units and quantities to simplify the definition of quantities; it is effectively equivalent to algebra with
a unit-valued quantity.
Quantities are implemented by the [___quantity] template class defined in [headerref boost/units/quantity.hpp] :
template<class Unit,class Y = double> class quantity;
This class is templated on both unit type (`Unit`) and value type (`Y`), with the latter defaulting to double-precision
floating point if not otherwise specified. The value type must have a normal copy constructor and copy
assignment operator. Operators +, -, *, and / are provided for algebraic operations between
scalars and units, scalars and quantities, units and quantities, and between quantities. In addition, integral and
rational powers and roots can be computed using the [___pow]<R> and [___root]<R> functions. Finally,
the standard set of boolean comparison operators ( `==, !=, <, <=, >, and >=` ) are provided to allow
comparison of quantities from the same unit system. All operators simply delegate to the
corresponding operator of the value type if the units permit.
[section:Heterogeneous_Operators Heterogeneous Operators]
For most common value types, the result type of arithmetic operators is the same as the value type itself. For example,
the sum of two double precision floating point numbers is another double precision floating point number. However, there
are instances where this is not the case. A simple example is given by the [@http://en.wikipedia.org/wiki/Natural_number
natural numbers] where the operator arithmetic obeys the following rules (using the standard notation for
[@http://en.wikipedia.org/wiki/Number number systems]):
* [$../../libs/units/images/form_12.png]
* [$../../libs/units/images/form_13.png]
* [$../../libs/units/images/form_14.png]
* [$../../libs/units/images/form_15.png]
This library is designed to support arbitrary value type algebra for addition, subtraction, multiplication, division, and
rational powers and roots. It uses Boost.Typeof to deduce the result of these operators. For compilers that
support `typeof`, the appropriate value type will be automatically deduced. For compilers that do not provide
language support for `typeof` it is necessary to register all the types used. For the case of natural numbers,
this would amount to something like the following:
BOOST_TYPEOF_REGISTER_TYPE(natural);
BOOST_TYPEOF_REGISTER_TYPE(integer);
BOOST_TYPEOF_REGISTER_TYPE(rational);
[endsect]
[section:Conversions Conversions]
Conversion is only meaningful for quantities as it implies the presence of at
least a multiplicative scale factor and, possibly, and affine linear offset.
Macros for simplifying the definition of conversions between units can be found in
[headerref boost/units/conversion.hpp] and [headerref boost/units/absolute.hpp]
(for affine conversions with offsets).
The macro [___BOOST_UNITS_DEFINE_CONVERSION_FACTOR] specifies a scale
factor for conversion from the first unit type to the second. The
first argument must be a [___base_unit]. The second argument
can be either a [___base_unit] or a [___unit].
Let's declare a simple base unit:
struct foot_base_unit : base_unit<foot_base_unit, length_dimension, 10> { };
Now, we want to be able to convert feet to meters and vice versa. The foot
is defined as exactly 0.3048 meters, so we can write the following
BOOST_UNITS_DEFINE_CONVERSION_FACTOR(foot_base_unit, meter_base_unit, double, 0.3048);
Alternately, we could use the SI length `typedef`:
BOOST_UNITS_DEFINE_CONVERSION_FACTOR(foot_base_unit, SI::length, double, 0.3048);
Since the SI unit of length is the meter, these two definitions are equivalent.
If these conversions have been defined, then converting between
scaled forms of these units will also automatically work.
The macro [___BOOST_UNITS_DEFAULT_CONVERSION] specifies a conversion
that will be applied to a base unit when no direct conversion is
possible. This can be used to make arbitrary conversions work
with a single specialization:
struct my_unit_tag : boost::units::base_unit<my_unit_tag, boost::units::force_type, 1> {};
// define the conversion factor
BOOST_UNITS_DEFINE_CONVERSION_FACTOR(my_unit_tag, SI::force, double, 3.14159265358979323846);
// make conversion to SI the default.
BOOST_UNITS_DEFAULT_CONVERSION(my_unit_tag, SI::force);
[endsect]
[section:Quantity_Construction_and_Conversion Construction and Conversion of Quantities]
This library is designed to emphasize safety above convenience when performing operations with dimensioned quantities.
Specifically, construction of quantities is required to fully specify both value and unit. Direct construction from a scalar value
is prohibited (though the static member function [___from_value] is provided to enable
this functionality where it is necessary. In addition, a [___quantity_cast] to a reference allows direct access to the
underlying value of a [___quantity] variable. An explicit constructor is provided to enable conversion between
dimensionally compatible quantities in different unit systems. Implicit conversions between unit systems are
allowed only when the reduced units are identical, allowing, for example, trivial conversions between
equivalent units in different systems (such as SI seconds and CGS seconds) while simultaneously enabling
unintentional unit system mismatches to be caught at compile time and preventing potential loss of precision and
performance overhead from unintended conversions. Assignment follows the same rules.
An exception is made for quantities for which the unit reduces to dimensionless; in this case, implicit conversion
to the underlying value type is allowed via class template specialization. Quantities of different value types are implicitly
convertible only if the value types are themselves implicitly convertible. The [___quantity] class also defines
a `value()` member for directly accessing the underlying value.
To summarize, conversions are allowed under the following conditions :
* implicit conversion of `quantity<Unit,Y>` to `quantity<Unit,Z>` is allowed if `Y` and `Z` are implicitly convertible.
* assignment between `quantity<Unit,Y>` and `quantity<Unit,Z>` is allowed if `Y` and `Z` are implicitly convertible.
* explicit conversion between `quantity<Unit1,Y>` and `quantity<Unit2,Z>` is allowed if `Unit1` and `Unit2` have the same dimensions
and if `Y` and `Z` are implicitly convertible.
* implicit conversion between `quantity<Unit1,Y>` and `quantity<Unit2,Z>` is allowed if `Unit1`
reduces to exactly the same combination of base units as `Unit2` and if `Y` and `Z` are convertible.
* assignment between `quantity<Unit1,Y>` and `quantity<Unit2,Z>` is allowed under the same
conditions as implicit conversion.
* `quantity<Unit,Y>` can be directly constructed from a value of type `Y` using the static member function [___from_value]. Doing so,
naturally, bypasses any type-checking of the newly assigned value, so this method should be used only when absolutely necessary.
Of course, any time implicit conversion is allowed, an explicit conversion is
also legal.
Because dimensionless quantities have no associated units, they behave as normal scalars, and allow implicit conversion to and from
the underlying value type or types that are convertible to/from that value type.
[endsect]
[endsect]
[section:Examples Examples]
[section:DimensionExample Dimension Example]
([@../../libs/units/example/dimension.cpp dimension.cpp])
By using MPL metafunctions and the template specializations for operations on composite dimensions
(defined in [headerref boost/units/dimension.hpp]) it is possible to perform compile time arithmetic
according to the dimensional analysis rules described [link boost_units.Dimensional_Analysis above]
to produce new composite dimensions :
[import ../example/dimension.cpp]
[dimension_snippet_1]
outputting (with symbol demangling, implemented in
[@boost:/boost/units/detail/utility.hpp utility.hpp])
[dimension_output]
[endsect]
[section:UnitExample Unit Example]
([@../../libs/units/example/unit.cpp unit.cpp])
This example demonstrates the use of the simple but functional unit system implemented in
[@boost:/libs/units/example/test_system.hpp test_system.hpp]
[import ../example/unit.cpp]
[unit_snippet_1]
We can perform various algebraic operations on these units, resulting in the following output:
[unit_output]
[endsect]
[section:QuantityExample Quantity Example]
([@../../libs/units/example/quantity.cpp quantity.cpp])
This example demonstrates how to use quantities of our toy unit system :
[import ../example/quantity.cpp]
[quantity_snippet_1]
giving us the basic quantity functionality :
[quantity_output_double]
As a further demonstration of the flexibility of the system, we replace the `double` value type
with a `std::complex<double>` value type (ignoring the question of the meaningfulness of
complex lengths and energies) :
[quantity_snippet_2]
and find that the code functions exactly as expected with no additional work, delegating operations
to `std::complex<double>` and performing the appropriate dimensional analysis :
[quantity_output_complex]
[endsect]
[section:KitchenSinkExample Kitchen Sink Example using SI units]
([@../../libs/units/example/kitchen_sink.cpp kitchen_sink.cpp])
This example provides a fairly extensive set of tests covering most of the [___quantity] functionality.
It uses the SI unit system defined in [headerref boost/units/systems/si.hpp].
If we define a few units and associated quantities,
[import ../example/kitchen_sink.cpp]
[kitchen_sink_snippet_1]
the various algebraic operations between scalars, units, and quantities give
[kitchen_sink_output_1]
Scalar/unit operations :
[kitchen_sink_output_2]
Unit/unit operations and integral/rational powers of units :
[kitchen_sink_output_3]
Scalar/quantity operations :
[kitchen_sink_output_4]
Unit/quantity operations :
[kitchen_sink_output_5]
Quantity/quantity operations and integral/rational powers of quantities :
[kitchen_sink_output_6]
Logical comparison operators are also defined between quantities :
[kitchen_sink_snippet_2]
giving
[kitchen_sink_output_7]
Implicit conversion is allowed between dimensionless quantities and their corresponding value types :
[kitchen_sink_snippet_3]
A generic function for computing mechanical work can be defined that takes force and distance arguments
in an arbitrary unit system and returns energy in the same system:
[kitchen_sink_function_snippet_3]
[kitchen_sink_snippet_4]
which functions as expected for SI quantities :
[kitchen_sink_output_9]
The ideal gas law can also be implemented in SI units :
[kitchen_sink_function_snippet_4]
[kitchen_sink_snippet_5]
with the resulting output :
[kitchen_sink_output_10]
Trigonometric and inverse trigonometric functions can be implemented for any unit system
that provides an angular base dimension. For radians, these functions are found in
[headerref boost/units/cmath.hpp] These behave as one expects, with trigonometric functions
taking an angular quantity and returning a dimensionless quantity, while the inverse trigonometric functions
take a dimensionless quantity and return an angular quantity :
Defining a few angular quantities,
[kitchen_sink_snippet_6]
yields
[kitchen_sink_output_11]
Dealing with complex quantities is trivial. Here is the calculation of complex impedance :
[kitchen_sink_snippet_7]
giving
[kitchen_sink_output_12]
[section:UDT_Quantities User-defined value types]
User-defined value types that support the appropriate arithmetic operations are automatically supported
as quantity value types. The operators that are supported by default for quantity value types are unary plus, unary minus,
addition, subtraction, multiplication, division, equal-to, not-equal-to, less-than, less-or-equal-to,
greater-than, and greater-or-equal-to. Support for rational powers and roots can be added by overloading
the [___power_typeof_helper] and [___root_typeof_helper] classes. Here we implement a user-defined `measurement`
class that models a numerical measurement with an associated measurement error and the appropriate algebra and
demonstrates its use as a quantity value type; the full code is found in [@../../libs/units/example/measurement.hpp measurement.hpp].
Then, defining some `measurement` [___quantity] variables
[kitchen_sink_snippet_8]
gives
[kitchen_sink_output_13]
If we implement the overloaded helper classes for rational powers and roots
then we can also compute rational powers of measurement quantities :
[kitchen_sink_output_14]
[endsect]
[endsect]
[section:ConversionExample Conversion Example]
([@../../libs/units/example/conversion.cpp conversion.cpp])
This example demonstrates the various allowed conversions between SI and CGS units. Defining some
quantities
[import ../example/conversion.cpp]
[conversion_snippet_1]
illustrates implicit conversion of quantities of different value types where implicit conversion
of the value types themselves is allowed. N.B. The conversion from double to int is treated
as an explicit conversion because there is no way to emulate the exact behavior of the built-in
conversion. Explicit constructors allow conversions for two cases:
* explicit casting of a [___quantity] to a different `value_type` :
[conversion_snippet_3]
* and explicit casting of a [___quantity] to a different unit :
[conversion_snippet_4]
giving the following output :
[conversion_output_1]
A few more explicit unit system conversions :
[conversion_snippet_5]
which produces the following output:
[conversion_output_2]
[endsect]
[section:UDTExample User Defined Types]
([@../../libs/units/example/quaternion.cpp quaternion.cpp])
This example demonstrates the use of `boost::math::quaternion` as a value type for [___quantity] and the converse.
For the first case, we first define specializations of [___power_typeof_helper] and [___root_typeof_helper] for
powers and roots, respectively:
[import ../example/quaternion.cpp]
[quaternion_class_snippet_1a]
[quaternion_class_snippet_1b]
We can now declare a [___quantity] of a `quaternion` :
[quaternion_snippet_1]
so that all operations that are defined in the `quaternion` class behave correctly. If rational
powers were defined for this class, it would be possible to compute rational powers and roots with
no additional changes.
[quaternion_output_1]
Now, if for some reason we preferred the [___quantity] to be the value type of the `quaternion` class we would have :
[quaternion_snippet_2]
Here, the unary plus and minus and addition and subtraction operators function correctly. Unfortunately,
the multiplication and division operations fail because `quaternion` implements them in terms of the `*=` and
`/=` operators, respectively, which are incapable of representing the heterogeneous unit algebra needed for
quantities (an identical problem
occurs with `std::complex<T>`, for the same reason). In order to compute rational powers and roots, we need to
specialize [___power_typeof_helper] and [___root_typeof_helper] as follows:
[quaternion_class_snippet_2a]
[quaternion_class_snippet_2b]
giving:
[quaternion_output_2]
[endsect]
[section:ComplexExample Complex Example]
([@../../libs/units/example/complex.cpp complex.cpp])
This example demonstrates how to implement a replacement `complex` class that functions correctly both as a
quantity value type and as a quantity container class, including heterogeneous multiplication and division
operations and rational powers and roots. Naturally, heterogeneous operations are only supported on
compilers that implement `typeof`. The primary differences are that binary operations are not implemented
using the `op=` operators and use the utility classes [___add_typeof_helper], [___subtract_typeof_helper],
[___multiply_typeof_helper], and [___divide_typeof_helper]. In addition, [___power_typeof_helper] and
[___root_typeof_helper] are defined for both cases :
[import ../example/complex.cpp]
[complex_class_snippet_1]
With this replacement `complex` class, we can declare a complex variable :
[complex_snippet_1]
to get the correct behavior for all cases supported by [___quantity] with a `complex` value type :
[complex_output_1]
and, similarly, `complex` with a [___quantity] value type
[complex_snippet_2]
gives
[complex_output_2]
[endsect]
[section:PerformanceExample Performance Example]
([@../../libs/units/example/performance.cpp performance.cpp])
This example provides an ad hoc performance test to verify that zero runtime overhead
is incurred when using [___quantity] in place of `double`. Note that performance
optimization and testing is not trivial, so some care must be taken in profiling. It
is also critical to have a compiler capable of optimizing the many template instantiations
and inline calls effectively to achieve maximal performance. Zero overhead for this test
has been verified using gcc 4.0.1, and icc 9.0, 10.0, and 10.1 on Mac OS 10.4 and 10.5, and
using msvc 8.0 on Windows XP.
[endsect]
[section:RadarBeamHeightExample Radar Beam Height]
([@../../libs/units/example/radar_beam_height.cpp radar_beam_height.cpp])
[import ../example/radar_beam_height.cpp]
This example demonstrates the implementation of two non-SI units of length, the
nautical mile :
[radar_beam_height_class_snippet_1]
and the imperial foot :
[radar_beam_height_class_snippet_2]
These units include conversions between themselves and the meter. Three functions
for computing radar beam height from radar range and the local earth radius are
defined. The first takes arguments in one system and returns a value in the same
system :
[radar_beam_height_function_snippet_1]
The second is similar, but is templated on return type, so that the arguments are
converted to the return unit system internally :
[radar_beam_height_function_snippet_2]
Finally, the third function is an empirical approximation that is only valid for
radar ranges specified in nautical miles, returning beam height in feet. This
function uses the heterogeneous unit of nautical miles per square root of feet to
ensure dimensional correctness :
[radar_beam_height_function_snippet_3]
With these, we can compute radar beam height in various unit systems :
[radar_beam_height_snippet_1]
giving
[radar_beam_height_output]
[endsect]
[section:HeterogeneousUnitExample Heterogeneous Unit Example]
([@../../libs/units/example/heterogeneous_unit.cpp heterogeneous_unit.cpp])
[import ../example/heterogeneous_unit.cpp]
Mixed units and mixed unit conversions.
This code:
[heterogeneous_unit_snippet_1]
gives
[heterogeneous_unit_output_1]
Arbitrary conversions also work:
[heterogeneous_unit_snippet_2]
yielding
[heterogeneous_unit_output_2]
[endsect]
[section:AbsoluteRelativeTemperatureExample Absolute and Relative Temperature Example]
([@../../libs/units/example/temperature.cpp temperature.cpp])
[import ../example/temperature.cpp]
This example demonstrates using of absolute temperatures and relative temperature differences in Fahrenheit
and converting between these and the Kelvin temperature scale. This issue touches on some surprisingly deep mathematical
concepts (see [@http://en.wikipedia.org/wiki/Affine_space Wikipedia] for a basic review), but for our purposes here, we
will simply observe that it is important to be able to differentiate between an absolute temperature measurement and a
measurement of temperature difference. This is accomplished by using the [___absolute] wrapper class.
First we define a system using the predefined fahrenheit base unit:
[temperature_snippet_1]
Now we can create some quantities:
[temperature_snippet_3]
Note the use of [___absolute] to wrap a unit. The resulting output is:
[temperature_output_1]
[endsect]
[section:RuntimeConversionFactorExample Runtime Conversion Factor Example]
([@../../libs/units/example/runtime_conversion_factor.cpp runtime_conversion_factor.cpp])
[import ../example/runtime_conversion_factor.cpp]
The Boost.Units library does not require that the conversion factors be compile time constants,
as is demonstrated in this example:
[runtime_conversion_factor_snippet_1]
[endsect]
[section:UnitsWithNonbaseDimensions Units with Non-base Dimensions]
([@../../libs/units/example/non_base_dimension.cpp non_base_dimension.cpp])
[import ../example/non_base_dimension.cpp]
It is also possible to define base units that have derived rather than base dimensions:
[non_base_dimension_snippet_1]
[endsect]
[section:OutputForCompositeUnits Output for Composite Units]
([@../../libs/units/example/composite_output.cpp composite_output.cpp])
[import ../example/composite_output.cpp]
If a unit has a special name and/or symbol, the free functions `name_string` and
`symbol_string` can be overloaded directly.
[composite_output_snippet_1]
In this case, any unit that reduces
to the overloaded unit will be output with the replacement symbol.
Special names and symbols for the SI and CGS unit systems are found in
[headerref boost/units/systems/si/io.hpp] and [headerref boost/units/systems/cgs/io.hpp],
respectively. If these headers are not included, the output will simply follow
default rules using the appropriate fundamental dimensions.
Note that neither of these functions is defined for quantities
because doing so would require making assumptions on how the corresponding value
type should be formatted.
Three `ostream` formatters, `symbol_format`, `name_format`, and `typename_format`
are provided for convenience. These select the textual representation of units
provided by `symbol_string` or `name_string` in the first two cases, while the
latter returns a demangled typename for debugging purposes. Formatting of scaled
unit is also done correctly.
[endsect]
[section:autoscale Automatically Scaled Units]
It is often desirable to scale a [___unit] automatically, depending on its value,
to keep the integral part in a limited range, usually between 1 and 999.
For example, using [@http://en.wikipedia.org/wiki/Engineering_notation engineering notation prefixes],
"1234.5 m" is more helpfully displayed as "1.234 km"
"0.000000001234 m" is more clearly displayed as "1.2345 nanometer".
The iostream manipulators `engineering_prefixes` or `binary_prefixes` make this easy.
[import ../example/autoprefixes.cpp]
[autoprefixes_snippet_1]
(The complete set of [@http://physics.nist.gov/cuu/Units/prefixes.html engineering and scientific multiples]
is not used (not centi or deci for example), but only powers of ten that are multiples of three, 10^3).
Similarly, the equivalent [@http://en.wikipedia.org/wiki/Binary_prefixes binary prefixes]
used for displaying computing kilobytes, megabytes, gigabytes...
These are the 2^10 = 1024, 2^20 = 1 048 576, 2^30 ... multiples.
(See also [@http://physics.nist.gov/cuu/Units/binary.html Prefixes for binary multiples]
This scale is specified in IEC 60027-2, Second edition, 2000-11,
Letter symbols to be used in electrical technology -
Part 2: Telecommunications and electronics).
[autoprefixes_snippet_2]
But note that scalar dimensionless values, like int, float and double,
are *not* prefixed automatically by the engineering_prefix or binary_prefix iostream manipulators.
[autoprefixes_snippet_3]
You can output the name or symbol of a unit (rather than the most common quantity of a unit).
[autoprefixes_snippet_4]
Note too that all the formatting flags are persistent,
so that if you set engineering_prefix, then it applies to all future outputs,
until you select binary_prefix, or explicitly switch autoprefix off.
You can specify no prefix (the default of course) in two ways:
[autoprefixes_snippet_5]
And you can get the format flags for diagnosing problems.
[autoprefixes_snippet_6]
[endsect] [/section:autoscale Automatically Scaled Units]
[section:ConversionFactor Conversion Factor]
This code demonstrates the use of the `conversion_factor` free function to determine
the scale factor between two units.
([@../../libs/units/example/conversion_factor.cpp conversion_factor.cpp])
[import ../example/conversion_factor.cpp]
[conversion_factor_snippet_1]
Produces
[conversion_factor_output]
[endsect]
[section:RuntimeUnits Runtime Units]
([@../../libs/units/example/runtime_unit.cpp runtime_unit.cpp])
[import ../example/runtime_unit.cpp]
This example shows how to implement an interface that
allow different units at runtime while still maintaining
type safety for internal calculations.
[runtime_unit_snippet_1]
[endsect]
[section:lambda Interoperability with Boost.Lambda]
([@../../libs/units/example/lambda.cpp lambda.cpp])
[import ../example/lambda.cpp]
The header [headerref boost/units/lambda.hpp] provides overloads
and specializations needed to make Boost.Units usable with the
Boost.Lambda library.
[lambda_snippet_1]
[endsect]
[endsect]
[section:Utilities Utilities]
Relatively complete SI and CGS unit systems are provided in [headerref boost/units/systems/si.hpp] and
[headerref boost/units/systems/cgs.hpp], respectively.
[section:Metaprogramming_Classes Metaprogramming Classes]
template<long N> struct ordinal<N>;
template<typename T,typename V> struct get_tag< dim<T,V> >;
template<typename T,typename V> struct get_value< dim<T,V> >;
template<class S,class DT> struct get_system_tag_of_dim<S,DT>;
template<typename Seq> struct make_dimension_list<Seq>;
template<class DT> struct fundamental_dimension<DT>;
template<class DT1,int E1,...> struct composite_dimension<DT1,E1,...>;
template<class Dim,class System> struct get_dimension< unit<Dim,System> >;
template<class Unit,class Y> struct get_dimension< quantity<Unit,Y> >;
template<class Dim,class System> struct get_system< unit<Dim,System> >;
template<class Unit,class Y> struct get_system quantity<Unit,Y> >;
struct dimensionless_type;
template<class System> struct dimensionless_unit<System>;
template<class System,class Y> struct dimensionless_quantity<System,Y>;
struct implicitly_convertible;
struct trivial_conversion;
template<class T,class S1,class S2> struct base_unit_converter<T,S1,S2>;
template<class Q1,class Q2> class conversion_helper<Q1,Q2>;
[endsect]
[section:Metaprogramming_Predicates Metaprogramming Predicates]
template<typename T,typename V> struct is_dim< dim<T,V> >;
template<typename T,typename V> struct is_empty_dim< dim<T,V> >;
template<typename Seq> struct is_dimension_list<Seq>;
template<class S> struct is_system< homogeneous_system<S> >;
template<class S> struct is_system< heterogeneous_system<S> >;
template<class S> struct is_homogeneous_system< homogeneous_system<S> >;
template<class S> struct is_heterogeneous_system< heterogeneous_system<S> >;
template<class Dim,class System> struct is_unit< unit<Dim,System> >;
template<class Dim,class System> struct is_unit_of_system< unit<Dim,System>,System >;
template<class Dim,class System> struct is_unit_of_dimension< unit<Dim,System>,Dim >;
template<class Unit,class Y> struct is_quantity< quantity<Unit,Y> >;
template<class Dim,class System,class Y> struct is_quantity_of_system< quantity<unit<Dim,System>,Y>,System >;
template<class Dim,class System,class Y> struct is_quantity_of_dimension< quantity<unit<Dim,System>,Y>,Dim >;
template<class System> struct is_dimensionless< unit<dimensionless_type,System> >;
template<class System> struct is_dimensionless_unit< unit<dimensionless_type,System> >;
template<class System,class Y> struct is_dimensionless< quantity<unit<dimensionless_type,System>,Y> >;
template<class System,class Y> struct is_dimensionless_quantity< quantity<unit<dimensionless_type,System>,Y> >;
[endsect]
[endsect]
[section:Reference Reference]
[xinclude units_reference.xml]
[xinclude dimensions_reference.xml]
[xinclude si_reference.xml]
[xinclude cgs_reference.xml]
[xinclude trig_reference.xml]
[xinclude temperature_reference.xml]
[xinclude information_reference.xml]
[xinclude abstract_reference.xml]
[section Base Units by Category]
[xinclude angle_base_units_reference.xml]
[xinclude astronomical_base_units_reference.xml]
[xinclude cgs_base_units_reference.xml]
[xinclude imperial_base_units_reference.xml]
[xinclude metric_base_units_reference.xml]
[xinclude si_base_units_reference.xml]
[xinclude temperature_base_units_reference.xml]
[xinclude us_base_units_reference.xml]
[endsect]
[section Alphabetical Listing of Base Units]
[include base_units.qbk]
[endsect]
[endsect]
[section:Installation Installation]
The core header files are located in `boost/units`. Unit system headers are
located in `<boost/units/systems>`. There are no source files for the library
itself - the library is header-only. Example programs demonstrating various aspects of the library can be found in
`boost/libs/units/example`. Programs for unit testing are provided in `boost/libs/units/test`.
[endsect]
[section:FAQ FAQ]
[section:Distinguishing_Quantities_With_Same_Units
How does one distinguish between quantities that are physically different but have the same units (such as
energy and torque)?]
Because Boost.Units includes plane and solid angle units in the SI system, torque and energy
are, in fact, distinguishable (see [@http://en.wikipedia.org/wiki/SI_units torque]).
In addition, energy is a true
[@http://mathworld.wolfram.com/Scalar.html scalar] quantity, while torque, despite
having the same units as energy if plane angle is not included, is in fact a
[@http://mathworld.wolfram.com/Pseudovector.html pseudovector]. Thus, a value type representing pseudovectors
and encapsulating their algebra could also be implemented.
There are,
however, a few SI units that are dimensionally indistinguishable within the SI system. These
include the [@http://en.wikipedia.org/wiki/Becquerel becquerel], which has units identical to
frequency (Hz), and the [@http://en.wikipedia.org/wiki/Sievert sievert], which is degenerate
with the [@http://en.wikipedia.org/wiki/Gray_%28unit%29 gray]. In cases such as this,
the proper way to treat this difference is to recognize that expanding the set of base dimensions
can provide disambiguation. For example, adding a base dimension for radioactive decays would
allow the becquerel to be written as decays/second, differentiating it from the signature of hertz,
which is simply 1/second.
[endsect]
[section:Angle_Are_Units Angles are treated as units]
If you don't like this, you can just ignore the angle units and
go on your merry way (periodically screwing up when a routine wants degrees and you give it
radians instead...)
[endsect]
[section:Why_Homogeneous_Systems Why are there homogeneous systems? Aren't heterogeneous systems sufficient?]
Consider the following code:
cout << asin(sin(90.0 * degrees));
What should this print? If only heterogeneous
systems are available it would print 1.5708 rad
Why? Well, `sin` would return a `quantity<dimensionless>`
effectively losing the information that degrees
are being used. In order to propogate this extra information
we need homogeneous systems.
[endsect]
[section:NoConstructorFromValueType Why can't I construct a quantity directly from the value type?]
This only breaks generic code--which ought to break anyway. The only
literal value that ought to be converted to a quantity by generic code
is zero, which should be handled by the default constructor. In addition,
consider the search and replace problem allowing this poses:
quantity<si::length> q(1.0);
Here, the intent is clear - we want a length of one in the SI system, which is one meter. However,
imagine some well-intentioned coder attempting to reuse this code, but to have it perform the
calculations in the CGS unit system instead. After searching for `si::` and replacing it with `cgs::` ,
we have:
quantity<cgs::length> q(1.0);
Unfortunately, the meaning of this statement has suddenly changed from one meter to one centimeter. In
contrast, as implemented, we begin with:
quantity<si::length> q(1.0*si::meter);
and, after search and replace:
quantity<cgs::length> q(1.0*cgs::meter);
which gives us an error. Even if the code has a @using namespace boost::units::si; declaration, the latter
is still safe, with:
using namespace boost::units::si;
quantity<length> q(1.0*meter);
going to
using namespace boost::units::cgs;
quantity<length> q(1.0*meter);
The latter will involve an explicit conversion from meters to centimeters, but the value remains correct.
[endsect]
[section:ExplicitConversions Why are conversions explicit by default?]
Safety and the potential for unintended conversions leading to precision loss and hidden performance costs.
Options are provided for forcing implicit conversions between specific units to be allowed.
[endsect]
[endsect]
[section:Acknowledgements Acknowledgements]
Matthias C. Schabel would like to acknowledge the Department of Defense for its support of this work under
the Prostate Cancer Research Program New Investigator Award W81XWH-04-1-0042 and the National Institutes of Health for their
support of this work under the NIBIB Mentored Quantitative Research Development Award K25EB005077.
Thanks to David Walthall for his assistance in debugging and testing on a variety of platforms and Torsten Maehne for
his work on interfacing the Boost Units and Boost Lambda libraries.
Thanks to:
* Paul Bristow,
* Michael Fawcett,
* Ben FrantzDale,
* Ron Garcia,
* David Greene,
* Peder Holt,
* Janek Kozicki,
* Andy Little,
* Kevin Lynch,
* Torsten Maehne
* Noah Roberts,
* Andrey Semashev,
* David Walthall,
* Deane Yang,
and all the members of the Boost mailing list who provided their input into
the design and implementation of this library.
[endsect] [/section:Acknowledgements Acknowledgements]
[section:HelpWanted Help Wanted]
Any help in the following areas would be much appreciated:
* testing on other compilers and operating systems
* performance testing on various architectures
* tutorials
[endsect]
[section:version_id Version Info]
__boostroot
Last edit to Quickbook file __FILENAME__ was at __TIME__ on __DATE__.
[tip This should appear on the pdf version (but may be redundant on html).]
[/ Useful on pdf version. See also Last revised timestamp on first page of html version.]
[/See also Adobe Reader pdf File Properties for creation date, and PDF producer, version and page count.]
[endsect] [/section:version_id Version Info]
[section:ReleaseNotes Release Notes]
1.2 (March 2010)
* Added autoprefix ready for Boost 1.43
1.0.0 (August 1, 2008) :
* Initial release with Boost 1.36
0.7.1 (March 14, 2007) :
* Boost.Typeof emulation support.
* attempting to rebind a heterogeneous_system to a different set of dimensions now fails.
* cmath.hpp now works with como-win32.
* minor changes to the tests and examples to make msvc 7.1 happy.
0.7.0 (March 13, 2007) :
* heterogeneous and mixed system functionality added.
* added fine-grained implicit unit conversion on a per fundamental dimension basis.
* added a number of utility metafunction classes and predicates.
* [headerref boost/units/operators.hpp] now uses `BOOST_TYPEOF` when possible.
* angular units added in [headerref boost/units/systems/angle/gradians.hpp]
and [headerref boost/units/systems/angle/gradians.hpp].
Implicit conversion of radians between trigonometric, SI, and CGS systems is allowed.
* a variety of [___unit] and [___quantity] tests added.
* examples now provide self-tests.
0.6.2 (February 22, 2007) :
* changed template order in `unit` so dimension precedes unit system
* added `homogeneous_system<S>` for unit systems
* incorporated changes to [headerref boost/units/dimension.hpp] (compile-time sorting by predicate),
[headerref boost/units/conversion.hpp] (thread-safe implementation of quantity conversions),
and [headerref boost/units/io.hpp] (now works with any `std::basic_ostream`) by SW
* added abstract units in [headerref boost/units/systems/abstract.hpp] to allow abstract dimensional
analysis
* new example demonstrating implementation of code based on requirements from
Michael Fawcett ([@../../libs/units/example/radar_beam_height.cpp radar_beam_height.cpp])
0.6.1 (February 13, 2007) :
* added metafunctions to test if a type is
* a valid dimension list (`is_dimension_list<D>`)
* a unit (`is_unit<T>` and `is_unit_of_system<U,System>`)
* a quantity (`is_quantity<T>` and `is_quantity_of_system<Q,System>`)
* quantity conversion factor is now computed at compile time
* static constants now avoid ODR problems
* unit_example_14.cpp now uses Boost.Timer
* numerous minor fixes suggested by SW
0.6.0 (February 8, 2007) :
* incorporated Steven Watanabe's optimized code for dimension.hpp, leading to *dramatic*
decreases in compilation time (nearly a factor of 10 for unit_example_4.cpp in my tests).
0.5.8 (February 7, 2007) :
* fixed `#include` in [headerref boost/units/systems/si/base.hpp] (thanks to Michael Fawcett and
Steven Watanabe)
* removed references to obsolete `base_type` in [___unit_info] (thanks to Michael Fawcett)
* moved functions in [headerref boost/units/cmath.hpp] into `boost::units` namespace
(thanks to Steven Watanabe)
* fixed `#include` guards to be consistently named `BOOST_UNITS_XXX` (thanks to Steven
Watanabe)
0.5.7 (February 5, 2007) :
* changed quantity conversion helper to increase flexibility
* minor documentation changes
* submitted for formal review as a Boost library
0.5.6 (January 22, 2007) :
* added IEEE 1541 standard binary prefixes along with SI prefixes to and extended algebra of
`scale` and `scaled_value` classes (thanks to Kevin Lynch)
* split SI units into separate header files to minimize the "kitchen sink" include problem
(thanks to Janek Kozicki)
* added convenience classes for declaring fundamental dimensions and composite dimensions
with integral powers (`fundamental_dimension` and `composite_dimension` respectively)
0.5.5 (January 18, 2007) :
* template parameter order in `quantity` switched and default `value_type` of `double` added
(thanks to Andrey Semashev and Paul Bristow)
* added implicit `value_type` conversion where allowed (thanks to Andrey Semashev)
* added `quantity_cast` for three cases (thanks to Andrey Semashev):
* constructing `quantity` from raw `value_type`
* casting from one `value_type` to another
* casting from one `unit` to another (where conversion is allowed)
* added` metre` and `metres` and related constants to the SI system for the convenience of
our Commonwealth friends...
0.5.4 (January 12, 2007) :
* completely reimplemented unit conversion to allow for arbitrary unit conversions
between systems
* strict quantity construction is default; quantities can be constructed from bare values
by using static member `from_value`
0.5.3 (December 12, 2006) :
* added Boost.Serialization support to `unit` and `quantity` classes
* added option to enforce strict construction of quantities (only constructible
by multiplication of scalar by unit or quantity by unit) by preprocessor
`MCS_STRICT_QUANTITY_CONSTRUCTION` switch
0.5.2 (December 4, 2006) :
* added `<cmath>` wrappers in the `std` namespace for functions that can support quantities
0.5.1 (November 3, 2006) :
* converted to Boost Software License
* boostified directory structure and file paths
0.5 (November 2, 2006) :
* completely reimplemented SI and CGS unit systems and changed syntax for quantities
* significantly streamlined `pow` and `root` so for most applications it is only
necessary to define `power_typeof_helper` and `root_typeof_helper` to gain this
functionality
* added a selection of physical constants from the CODATA tables
* added a skeleton `complex` class that correctly supports both `complex<quantity<Y,Unit> >`
and `quantity<complex<Y>,Unit>` as an example
* investigate using Boost.Typeof for compilers that do not support `typeof`
0.4 (October 13, 2006) :
* `pow<R>` and `root<R>` improved for user-defined types
* added unary + and unary - operators
* added new example of interfacing with `boost::math::quaternion`
* added optional preprocessor switch to enable implicit unit conversions
(`BOOST_UNITS_ENABLE_IMPLICIT_UNIT_CONVERSIONS`)
0.3 (September 6, 2006) :
* Support for `op(X x,Y y)` for g++ added. This is automatically
active when compiling with gcc and can be optionally enabled by defining the preprocessor
constant `BOOST_UNITS_HAS_TYPEOF`
0.2 (September 4, 2006) : Second alpha release based on slightly modified code from 0.1 release
0.1 (December 13, 2003) : written as a Boost demonstration of MPL-based dimensional analysis
in 2003.
[endsect]
[section:TODO TODO]
* Document concepts
* Implementation of I/O is rudimentary; consider methods of i18n using facets
* Consider runtime variant, perhaps using overload like `quantity<runtime,Y>`
[endsect] [/section:TODO TODO]