math.hpp 22.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
// Boost.Geometry (aka GGL, Generic Geometry Library)

// Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2015 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2015 Mateusz Loskot, London, UK.

// This file was modified by Oracle on 2014-2022.
// Modifications copyright (c) 2014-2022, Oracle and/or its affiliates.

// Contributed and/or modified by Adeel Ahmad, as part of Google Summer of Code 2018 program
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_UTIL_MATH_HPP
#define BOOST_GEOMETRY_UTIL_MATH_HPP

#include <cmath>
#include <limits>
#include <type_traits>

#include <boost/core/ignore_unused.hpp>

#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
//#include <boost/math/special_functions/round.hpp>
#include <boost/numeric/conversion/cast.hpp>

#include <boost/geometry/core/cs.hpp>

#include <boost/geometry/util/select_most_precise.hpp>

namespace boost { namespace geometry
{

namespace math
{

#ifndef DOXYGEN_NO_DETAIL
namespace detail
{

template <typename T>
inline T const& greatest(T const& v1, T const& v2)
{
    return (std::max)(v1, v2);
}

template <typename T>
inline T const& greatest(T const& v1, T const& v2, T const& v3)
{
    return (std::max)(greatest(v1, v2), v3);
}

template <typename T>
inline T const& greatest(T const& v1, T const& v2, T const& v3, T const& v4)
{
    return (std::max)(greatest(v1, v2, v3), v4);
}

template <typename T>
inline T const& greatest(T const& v1, T const& v2, T const& v3, T const& v4, T const& v5)
{
    return (std::max)(greatest(v1, v2, v3, v4), v5);
}


template <typename T>
inline T bounded(T const& v, T const& lower, T const& upper)
{
    return (std::min)((std::max)(v, lower), upper);
}

template <typename T>
inline T bounded(T const& v, T const& lower)
{
    return (std::max)(v, lower);
}


template <typename T,
          bool IsFloatingPoint = std::is_floating_point<T>::value>
struct abs
{
    static inline T apply(T const& value)
    {
        T const zero = T();
        return value < zero ? -value : value;
    }
};

template <typename T>
struct abs<T, true>
{
    static inline T apply(T const& value)
    {
        using ::fabs;
        using std::fabs; // for long double

        return fabs(value);
    }
};


struct equals_default_policy
{
    template <typename T>
    static inline T apply(T const& a, T const& b)
    {
        // See http://www.parashift.com/c++-faq-lite/newbie.html#faq-29.17
        return greatest(abs<T>::apply(a), abs<T>::apply(b), T(1));
    }
};

template <typename T,
          bool IsFloatingPoint = std::is_floating_point<T>::value>
struct equals_factor_policy
{
    equals_factor_policy()
        : factor(1) {}
    explicit equals_factor_policy(T const& v)
        : factor(greatest(abs<T>::apply(v), T(1)))
    {}
    equals_factor_policy(T const& v0, T const& v1, T const& v2, T const& v3)
        : factor(greatest(abs<T>::apply(v0), abs<T>::apply(v1),
                          abs<T>::apply(v2), abs<T>::apply(v3),
                          T(1)))
    {}

    T const& apply(T const&, T const&) const
    {
        return factor;
    }

    template <typename E>
    void multiply_epsilon(E const& multiplier)
    {
        factor *= multiplier;
    }

    T factor;
};

template <typename T>
struct equals_factor_policy<T, false>
{
    equals_factor_policy() {}
    explicit equals_factor_policy(T const&) {}
    equals_factor_policy(T const& , T const& , T const& , T const& ) {}

    static inline T apply(T const&, T const&)
    {
        return T(1);
    }

    void multiply_epsilon(T const& ) {}
};

template <typename Type,
          bool IsFloatingPoint = std::is_floating_point<Type>::value>
struct equals
{
    template <typename Policy>
    static inline bool apply(Type const& a, Type const& b, Policy const&)
    {
        return a == b;
    }
};

template <typename Type>
struct equals<Type, true>
{
    template <typename Policy>
    static inline bool apply(Type const& a, Type const& b, Policy const& policy)
    {
        boost::ignore_unused(policy);

        if (a == b)
        {
            return true;
        }

        if (boost::math::isfinite(a) && boost::math::isfinite(b))
        {
            // If a is INF and b is e.g. 0, the expression below returns true
            // but the values are obviously not equal, hence the condition
            return abs<Type>::apply(a - b)
                <= std::numeric_limits<Type>::epsilon() * policy.apply(a, b);
        }
        else
        {
            return a == b;
        }
    }
};

template <typename T1, typename T2, typename Policy>
inline bool equals_by_policy(T1 const& a, T2 const& b, Policy const& policy)
{
    return detail::equals
        <
            typename select_most_precise<T1, T2>::type
        >::apply(a, b, policy);
}

template <typename Type,
          bool IsFloatingPoint = std::is_floating_point<Type>::value>
struct smaller
{
    static inline bool apply(Type const& a, Type const& b)
    {
        return a < b;
    }
};

template <typename Type>
struct smaller<Type, true>
{
    static inline bool apply(Type const& a, Type const& b)
    {
        if (!(a < b)) // a >= b
        {
            return false;
        }

        return ! equals<Type, true>::apply(b, a, equals_default_policy());
    }
};

template <typename Type,
          bool IsFloatingPoint = std::is_floating_point<Type>::value>
struct smaller_or_equals
{
    static inline bool apply(Type const& a, Type const& b)
    {
        return a <= b;
    }
};

template <typename Type>
struct smaller_or_equals<Type, true>
{
    static inline bool apply(Type const& a, Type const& b)
    {
        if (a <= b)
        {
            return true;
        }

        return equals<Type, true>::apply(a, b, equals_default_policy());
    }
};


template <typename Type,
          bool IsFloatingPoint = std::is_floating_point<Type>::value>
struct equals_with_epsilon
    : public equals<Type, IsFloatingPoint>
{};

template
<
    typename T,
    bool IsFundemantal = std::is_fundamental<T>::value /* false */
>
struct square_root
{
    typedef T return_type;

    static inline T apply(T const& value)
    {
        // for non-fundamental number types assume that sqrt is
        // defined either:
        // 1) at T's scope, or
        // 2) at global scope, or
        // 3) in namespace std
        using ::sqrt;
        using std::sqrt;

        return sqrt(value);
    }
};

template <typename FundamentalFP>
struct square_root_for_fundamental_fp
{
    typedef FundamentalFP return_type;

    static inline FundamentalFP apply(FundamentalFP const& value)
    {
#ifdef BOOST_GEOMETRY_SQRT_CHECK_FINITENESS
        // This is a workaround for some 32-bit platforms.
        // For some of those platforms it has been reported that
        // std::sqrt(nan) and/or std::sqrt(-nan) returns a finite value.
        // For those platforms we need to define the macro
        // BOOST_GEOMETRY_SQRT_CHECK_FINITENESS so that the argument
        // to std::sqrt is checked appropriately before passed to std::sqrt
        if (boost::math::isfinite(value))
        {
            return std::sqrt(value);
        }
        else if (boost::math::isinf(value) && value < 0)
        {
            return -std::numeric_limits<FundamentalFP>::quiet_NaN();
        }
        return value;
#else
        // for fundamental floating point numbers use std::sqrt
        return std::sqrt(value);
#endif // BOOST_GEOMETRY_SQRT_CHECK_FINITENESS
    }
};

template <>
struct square_root<float, true>
    : square_root_for_fundamental_fp<float>
{
};

template <>
struct square_root<double, true>
    : square_root_for_fundamental_fp<double>
{
};

template <>
struct square_root<long double, true>
    : square_root_for_fundamental_fp<long double>
{
};

template <typename T>
struct square_root<T, true>
{
    typedef double return_type;

    static inline double apply(T const& value)
    {
        // for all other fundamental number types use also std::sqrt
        //
        // Note: in C++98 the only other possibility is double;
        //       in C++11 there are also overloads for integral types;
        //       this specialization works for those as well.
        return square_root_for_fundamental_fp
            <
                double
            >::apply(boost::numeric_cast<double>(value));
    }
};



template
<
    typename T,
    bool IsFundemantal = std::is_fundamental<T>::value /* false */
>
struct modulo
{
    typedef T return_type;

    static inline T apply(T const& value1, T const& value2)
    {
        // for non-fundamental number types assume that a free
        // function mod() is defined either:
        // 1) at T's scope, or
        // 2) at global scope
        return mod(value1, value2);
    }
};

template
<
    typename Fundamental,
    bool IsIntegral = std::is_integral<Fundamental>::value
>
struct modulo_for_fundamental
{
    typedef Fundamental return_type;

    static inline Fundamental apply(Fundamental const& value1,
                                    Fundamental const& value2)
    {
        return value1 % value2;
    }
};

// specialization for floating-point numbers
template <typename Fundamental>
struct modulo_for_fundamental<Fundamental, false>
{
    typedef Fundamental return_type;

    static inline Fundamental apply(Fundamental const& value1,
                                    Fundamental const& value2)
    {
        return std::fmod(value1, value2);
    }
};

// specialization for fundamental number type
template <typename Fundamental>
struct modulo<Fundamental, true>
    : modulo_for_fundamental<Fundamental>
{};



/*!
\brief Short constructs to enable partial specialization for PI, 2*PI
       and PI/2, currently not possible in Math.
*/
template <typename T>
struct define_pi
{
    static inline T apply()
    {
        // Default calls Boost.Math
        return boost::math::constants::pi<T>();
    }
};

template <typename T>
struct define_two_pi
{
    static inline T apply()
    {
        // Default calls Boost.Math
        return boost::math::constants::two_pi<T>();
    }
};

template <typename T>
struct define_half_pi
{
    static inline T apply()
    {
        // Default calls Boost.Math
        return boost::math::constants::half_pi<T>();
    }
};

template <typename T>
struct relaxed_epsilon
{
    static inline T apply(const T& factor)
    {
        return factor * std::numeric_limits<T>::epsilon();
    }
};

// This must be consistent with math::equals.
// By default math::equals() scales the error by epsilon using the greater of
// compared values but here is only one value, though it should work the same way.
// (a-a) <= max(a, a) * EPS       -> 0 <= a*EPS
// (a+da-a) <= max(a+da, a) * EPS -> da <= (a+da)*EPS
template <typename T, bool IsIntegral = std::is_integral<T>::value>
struct scaled_epsilon
{
    static inline T apply(T const& val)
    {
        return (std::max)(abs<T>::apply(val), T(1))
                    * std::numeric_limits<T>::epsilon();
    }

    static inline T apply(T const& val, T const& eps)
    {
        return (std::max)(abs<T>::apply(val), T(1))
                    * eps;
    }
};

template <typename T>
struct scaled_epsilon<T, true>
{
    static inline T apply(T const&)
    {
        return T(0);
    }

    static inline T apply(T const&, T const&)
    {
        return T(0);
    }
};

// ItoF ItoI FtoF
template <typename Result, typename Source,
          bool ResultIsInteger = std::numeric_limits<Result>::is_integer,
          bool SourceIsInteger = std::numeric_limits<Source>::is_integer>
struct rounding_cast
{
    static inline Result apply(Source const& v)
    {
        return boost::numeric_cast<Result>(v);
    }
};

// TtoT
template <typename Source, bool ResultIsInteger, bool SourceIsInteger>
struct rounding_cast<Source, Source, ResultIsInteger, SourceIsInteger>
{
    static inline Source apply(Source const& v)
    {
        return v;
    }
};

// FtoI
template <typename Result, typename Source>
struct rounding_cast<Result, Source, true, false>
{
    static inline Result apply(Source const& v)
    {
        return boost::numeric_cast<Result>(v < Source(0) ?
                                            v - Source(0.5) :
                                            v + Source(0.5));
    }
};

template <typename T, bool IsIntegral = std::is_integral<T>::value>
struct divide
{
    static inline T apply(T const& n, T const& d)
    {
        return n / d;
    }
};

template <typename T>
struct divide<T, true>
{
    static inline T apply(T const& n, T const& d)
    {
        return n == 0 ? 0
          : n < 0
          ? (d < 0 ? (n + (-d + 1) / 2) / d + 1
                   : (n + ( d + 1) / 2) / d - 1  )
          : (d < 0 ? (n - (-d + 1) / 2) / d - 1
                   : (n - ( d + 1) / 2) / d + 1  )
        ;
    }
};

} // namespace detail
#endif


template <typename T>
inline T pi() { return detail::define_pi<T>::apply(); }

template <typename T>
inline T two_pi() { return detail::define_two_pi<T>::apply(); }

template <typename T>
inline T half_pi() { return detail::define_half_pi<T>::apply(); }

template <typename T>
inline T relaxed_epsilon(T const& factor)
{
    return detail::relaxed_epsilon<T>::apply(factor);
}

template <typename T>
inline T scaled_epsilon(T const& value)
{
    return detail::scaled_epsilon<T>::apply(value);
}

template <typename T>
inline T scaled_epsilon(T const& value, T const& eps)
{
    return detail::scaled_epsilon<T>::apply(value, eps);
}

// Maybe replace this by boost equals or so

/*!
    \brief returns true if both arguments are equal.
    \ingroup utility
    \param a first argument
    \param b second argument
    \return true if a == b
    \note If both a and b are of an integral type, comparison is done by ==.
    If one of the types is floating point, comparison is done by abs and
    comparing with epsilon. If one of the types is non-fundamental, it might
    be a high-precision number and comparison is done using the == operator
    of that class.
*/

template <typename T1, typename T2>
inline bool equals(T1 const& a, T2 const& b)
{
    return detail::equals
        <
            typename select_most_precise<T1, T2>::type
        >::apply(a, b, detail::equals_default_policy());
}

template <typename T1, typename T2>
inline bool equals_with_epsilon(T1 const& a, T2 const& b)
{
    return detail::equals_with_epsilon
        <
            typename select_most_precise<T1, T2>::type
        >::apply(a, b, detail::equals_default_policy());
}

template <typename T1, typename T2>
inline bool smaller(T1 const& a, T2 const& b)
{
    return detail::smaller
        <
            typename select_most_precise<T1, T2>::type
        >::apply(a, b);
}

template <typename T1, typename T2>
inline bool larger(T1 const& a, T2 const& b)
{
    return detail::smaller
        <
            typename select_most_precise<T1, T2>::type
        >::apply(b, a);
}

template <typename T1, typename T2>
inline bool smaller_or_equals(T1 const& a, T2 const& b)
{
    return detail::smaller_or_equals
        <
            typename select_most_precise<T1, T2>::type
        >::apply(a, b);
}

template <typename T1, typename T2>
inline bool larger_or_equals(T1 const& a, T2 const& b)
{
    return detail::smaller_or_equals
        <
            typename select_most_precise<T1, T2>::type
        >::apply(b, a);
}


template <typename T>
inline T d2r()
{
    static T const conversion_coefficient = geometry::math::pi<T>() / T(180.0);
    return conversion_coefficient;
}

template <typename T>
inline T r2d()
{
    static T const conversion_coefficient = T(180.0) / geometry::math::pi<T>();
    return conversion_coefficient;
}


#ifndef DOXYGEN_NO_DETAIL
namespace detail {

template <typename DegreeOrRadian>
struct as_radian
{
    template <typename T>
    static inline T apply(T const& value)
    {
        return value;
    }
};

template <>
struct as_radian<degree>
{
    template <typename T>
    static inline T apply(T const& value)
    {
        return value * d2r<T>();
    }
};

template <typename DegreeOrRadian>
struct from_radian
{
    template <typename T>
    static inline T apply(T const& value)
    {
        return value;
    }
};

template <>
struct from_radian<degree>
{
    template <typename T>
    static inline T apply(T const& value)
    {
        return value * r2d<T>();
    }
};

} // namespace detail
#endif

template <typename DegreeOrRadian, typename T>
inline T as_radian(T const& value)
{
    return detail::as_radian<DegreeOrRadian>::apply(value);
}

template <typename DegreeOrRadian, typename T>
inline T from_radian(T const& value)
{
    return detail::from_radian<DegreeOrRadian>::apply(value);
}


/*!
    \brief Calculates the haversine of an angle
    \ingroup utility
    \note See http://en.wikipedia.org/wiki/Haversine_formula
    haversin(alpha) = sin2(alpha/2)
*/
template <typename T>
inline T hav(T const& theta)
{
    T const half = T(0.5);
    T const sn = sin(half * theta);
    return sn * sn;
}

/*!
\brief Short utility to return the square
\ingroup utility
\param value Value to calculate the square from
\return The squared value
*/
template <typename T>
inline T sqr(T const& value)
{
    return value * value;
}

/*!
\brief Short utility to return the square root
\ingroup utility
\param value Value to calculate the square root from
\return The square root value
*/
template <typename T>
inline typename detail::square_root<T>::return_type
sqrt(T const& value)
{
    return detail::square_root
        <
            T, std::is_fundamental<T>::value
        >::apply(value);
}

/*!
\brief Short utility to return the modulo of two values
\ingroup utility
\param value1 First value
\param value2 Second value
\return The result of the modulo operation on the (ordered) pair
(value1, value2)
*/
template <typename T>
inline typename detail::modulo<T>::return_type
mod(T const& value1, T const& value2)
{
    return detail::modulo
        <
            T, std::is_fundamental<T>::value
        >::apply(value1, value2);
}

/*!
\brief Short utility to workaround gcc/clang problem that abs is converting to integer
       and that older versions of MSVC does not support abs of long long...
\ingroup utility
*/
template<typename T>
inline T abs(T const& value)
{
    return detail::abs<T>::apply(value);
}

/*!
\brief Short utility to calculate the sign of a number: -1 (negative), 0 (zero), 1 (positive)
\ingroup utility
*/
template <typename T>
inline int sign(T const& value)
{
    T const zero = T();
    return value > zero ? 1 : value < zero ? -1 : 0;
}

/*!
\brief Short utility to cast a value possibly rounding it to the nearest
       integral value.
\ingroup utility
\note If the source T is NOT an integral type and Result is an integral type
      the value is rounded towards the closest integral value. Otherwise it's
      casted without rounding.
*/
template <typename Result, typename T>
inline Result rounding_cast(T const& v)
{
    return detail::rounding_cast<Result, T>::apply(v);
}

/*
\brief Short utility to divide. If the division is integer, it rounds the division
       to the nearest value, without using floating point calculations
\ingroup utility
*/
template <typename T>
inline T divide(T const& n, T const& d)
{
    return detail::divide<T>::apply(n, d);
}

/*!
\brief Evaluate the sine and cosine function with the argument in degrees
\note The results obey exactly the elementary properties of the trigonometric
      functions, e.g., sin 9&deg; = cos 81&deg; = &minus; sin 123456789&deg;.
      If x = &minus;0, then \e sinx = &minus;0; this is the only case where
      &minus;0 is returned.
*/
template<typename T>
inline void sin_cos_degrees(T const& x,
                            T & sinx,
                            T & cosx)
{
    // In order to minimize round-off errors, this function exactly reduces
    // the argument to the range [-45, 45] before converting it to radians.

    T remainder = math::mod(x, T(360));
    T const quotient = std::floor(remainder / T(90) + T(0.5));
    remainder -= T(90) * quotient;

    // Convert to radians.
    remainder *= d2r<T>();

    T const s = sin(remainder);
    T const c = cos(remainder);

    switch (unsigned(quotient) & 3U)
    {
        case 0U: sinx =  s; cosx =  c; break;
        case 1U: sinx =  c; cosx = -s; break;
        case 2U: sinx = -s; cosx = -c; break;
        default: sinx = -c; cosx =  s; break; // case 3U
    }

    // Set sign of 0 results. -0 only produced for sin(-0).
    if (x != 0)
    {
        sinx += T(0);
        cosx += T(0);
    }
}

/*!
\brief Round off a given angle
*/
template<typename T>
inline T round_angle(T const& x) {
    static const T z = 1/T(16);

    if (x == 0)
    {
        return 0;
    }

    T y = math::abs(x);

    // z - (z - y) must not be simplified to y.
    y = y < z ? z - (z - y) : y;

    return x < 0 ? -y : y;
}

/*!
\brief Evaluate the polynomial in x using Horner's method.
*/
// TODO: adl1995 - Merge these functions with formulas/area_formulas.hpp
// i.e. place them in one file.
template <typename NT, typename IteratorType>
inline NT horner_evaluate(NT const& x,
                          IteratorType begin,
                          IteratorType end)
{
    NT result(0);
    IteratorType it = end;
    do
    {
        result = result * x + *--it;
    }
    while (it != begin);
    return result;
}

/*!
\brief Evaluate the polynomial.
*/
template<typename IteratorType, typename CT>
inline CT polyval(IteratorType first,
                  IteratorType last,
                  CT const& eps)
{
    int N = std::distance(first, last) - 1;
    int index = 0;

    CT y = N < 0 ? 0 : *(first + (index++));

    while (--N >= 0)
    {
        y = y * eps + *(first + (index++));
    }

    return y;
}

/*
\brief Short utility to calculate the power
\ingroup utility
*/
template <typename T1, typename T2>
inline T1 pow(T1 const& a, T2 const& b)
{
    using std::pow;
    return pow(a, b);
}

} // namespace math


}} // namespace boost::geometry

#endif // BOOST_GEOMETRY_UTIL_MATH_HPP