traits.hpp 16.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
// Copyright 2018 Hans Dembinski
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_HISTOGRAM_AXIS_TRAITS_HPP
#define BOOST_HISTOGRAM_AXIS_TRAITS_HPP

#include <boost/histogram/axis/option.hpp>
#include <boost/histogram/detail/args_type.hpp>
#include <boost/histogram/detail/detect.hpp>
#include <boost/histogram/detail/priority.hpp>
#include <boost/histogram/detail/static_if.hpp>
#include <boost/histogram/detail/try_cast.hpp>
#include <boost/histogram/detail/type_name.hpp>
#include <boost/histogram/fwd.hpp>
#include <boost/mp11/algorithm.hpp>
#include <boost/mp11/list.hpp>
#include <boost/mp11/utility.hpp>
#include <boost/throw_exception.hpp>
#include <boost/variant2/variant.hpp>
#include <stdexcept>
#include <string>
#include <utility>

namespace boost {
namespace histogram {
namespace detail {

template <class Axis>
struct value_type_deducer {
  using type =
      std::remove_cv_t<std::remove_reference_t<detail::arg_type<decltype(&Axis::index)>>>;
};

template <class Axis>
auto traits_options(priority<2>) -> axis::option::bitset<Axis::options()>;

template <class Axis>
auto traits_options(priority<1>) -> decltype(&Axis::update, axis::option::growth_t{});

template <class Axis>
auto traits_options(priority<0>) -> axis::option::none_t;

template <class Axis>
auto traits_is_inclusive(priority<1>) -> std::integral_constant<bool, Axis::inclusive()>;

template <class Axis>
auto traits_is_inclusive(priority<0>)
    -> decltype(traits_options<Axis>(priority<2>{})
                    .test(axis::option::underflow | axis::option::overflow));

template <class Axis>
auto traits_is_ordered(priority<1>) -> std::integral_constant<bool, Axis::ordered()>;

template <class Axis, class ValueType = typename value_type_deducer<Axis>::type>
auto traits_is_ordered(priority<0>) -> typename std::is_arithmetic<ValueType>::type;

template <class I, class D, class A,
          class J = std::decay_t<arg_type<decltype(&A::value)>>>
decltype(auto) value_method_switch(I&& i, D&& d, const A& a, priority<1>) {
  return static_if<std::is_same<J, axis::index_type>>(std::forward<I>(i),
                                                      std::forward<D>(d), a);
}

template <class I, class D, class A>
double value_method_switch(I&&, D&&, const A&, priority<0>) {
  // comma trick to make all compilers happy; some would complain about
  // unreachable code after the throw, others about a missing return
  return BOOST_THROW_EXCEPTION(
             std::runtime_error(type_name<A>() + " has no value method")),
         double{};
}

struct variant_access {
  template <class T, class Variant>
  static auto get_if(Variant* v) noexcept {
    using T0 = mp11::mp_first<std::decay_t<Variant>>;
    return static_if<std::is_pointer<T0>>(
        [](auto* vptr) {
          using TP = mp11::mp_if<std::is_const<std::remove_pointer_t<T0>>, const T*, T*>;
          auto ptp = variant2::get_if<TP>(vptr);
          return ptp ? *ptp : nullptr;
        },
        [](auto* vptr) { return variant2::get_if<T>(vptr); }, &(v->impl));
  }

  template <class T0, class Visitor, class Variant>
  static decltype(auto) visit_impl(mp11::mp_identity<T0>, Visitor&& vis, Variant&& v) {
    return variant2::visit(std::forward<Visitor>(vis), v.impl);
  }

  template <class T0, class Visitor, class Variant>
  static decltype(auto) visit_impl(mp11::mp_identity<T0*>, Visitor&& vis, Variant&& v) {
    return variant2::visit(
        [&vis](auto&& x) -> decltype(auto) { return std::forward<Visitor>(vis)(*x); },
        v.impl);
  }

  template <class Visitor, class Variant>
  static decltype(auto) visit(Visitor&& vis, Variant&& v) {
    using T0 = mp11::mp_first<std::decay_t<Variant>>;
    return visit_impl(mp11::mp_identity<T0>{}, std::forward<Visitor>(vis),
                      std::forward<Variant>(v));
  }
};

template <class A>
decltype(auto) metadata_impl(A&& a, decltype(a.metadata(), 0)) {
  return std::forward<A>(a).metadata();
}

template <class A>
axis::null_type& metadata_impl(A&&, float) {
  static axis::null_type null_value;
  return null_value;
}

} // namespace detail

namespace axis {
namespace traits {

/** Value type for axis type.

  Doxygen does not render this well. This is a meta-function (template alias), it accepts
  an axis type and returns the value type.

  The value type is deduced from the argument of the `Axis::index` method. Const
  references are decayed to the their value types, for example, the type deduced for
  `Axis::index(const int&)` is `int`.

  The deduction always succeeds if the axis type models the Axis concept correctly. Errors
  come from violations of the concept, in particular, an index method that is templated or
  overloaded is not allowed.

  @tparam Axis axis type.
*/
template <class Axis>
#ifndef BOOST_HISTOGRAM_DOXYGEN_INVOKED
using value_type = typename detail::value_type_deducer<Axis>::type;
#else
struct value_type;
#endif

/** Whether axis is continuous or discrete.

  Doxygen does not render this well. This is a meta-function (template alias), it accepts
  an axis type and returns a compile-time boolean.

  If the boolean is true, the axis is continuous (covers a continuous range of values).
  Otherwise it is discrete (covers discrete values).
*/
template <class Axis>
#ifndef BOOST_HISTOGRAM_DOXYGEN_INVOKED
using is_continuous = typename std::is_floating_point<traits::value_type<Axis>>::type;
#else
struct is_continuous;
#endif

/** Meta-function to detect whether an axis is reducible.

  Doxygen does not render this well. This is a meta-function (template alias), it accepts
  an axis type and represents compile-time boolean which is true or false, depending on
  whether the axis can be reduced with boost::histogram::algorithm::reduce().

  An axis can be made reducible by adding a special constructor, see Axis concept for
  details.

  @tparam Axis axis type.
 */
template <class Axis>
#ifndef BOOST_HISTOGRAM_DOXYGEN_INVOKED
using is_reducible = std::is_constructible<Axis, const Axis&, axis::index_type,
                                           axis::index_type, unsigned>;
#else
struct is_reducible;
#endif

/** Get axis options for axis type.

  Doxygen does not render this well. This is a meta-function (template alias), it accepts
  an axis type and returns the boost::histogram::axis::option::bitset.

  If Axis::options() is valid and constexpr, get_options is the corresponding
  option type. Otherwise, it is boost::histogram::axis::option::growth_t, if the
  axis has a method `update`, else boost::histogram::axis::option::none_t.

  @tparam Axis axis type
*/
template <class Axis>
#ifndef BOOST_HISTOGRAM_DOXYGEN_INVOKED
using get_options = decltype(detail::traits_options<Axis>(detail::priority<2>{}));
#else
struct get_options;
#endif

/** Meta-function to detect whether an axis is inclusive.

  Doxygen does not render this well. This is a meta-function (template alias), it accepts
  an axis type and represents compile-time boolean which is true or false, depending on
  whether the axis is inclusive or not.

  An inclusive axis has a bin for every possible input value. In other words, all
  possible input values always end up in a valid cell and there is no need to keep track
  of input tuples that need to be discarded. A histogram which consists entirely of
  inclusive axes can be filled more efficiently, which can be a factor 2 faster.

  An axis with underflow and overflow bins is always inclusive, but an axis may be
  inclusive under other conditions. The meta-function checks for the method `constexpr
  static bool inclusive()`, and uses the result. If this method is not present, it uses
  get_options<Axis> and checks whether the underflow and overflow bits are present.

  @tparam Axis axis type
*/
template <class Axis>
#ifndef BOOST_HISTOGRAM_DOXYGEN_INVOKED
using is_inclusive = decltype(detail::traits_is_inclusive<Axis>(detail::priority<1>{}));
#else
struct is_inclusive;
#endif

/** Meta-function to detect whether an axis is ordered.

  Doxygen does not render this well. This is a meta-function (template alias), it accepts
  an axis type and returns a compile-time boolean. If the boolean is true, the axis is
  ordered.

  The meta-function checks for the method `constexpr static bool ordered()`, and uses the
  result. If this method is not present, it returns true if the value type of the Axis is
  arithmetic and false otherwise.

  An ordered axis has a value type that is ordered, which means that indices i <
  j < k implies either value(i) < value(j) < value(k) or value(i) > value(j) > value(k)
  for all i,j,k. For example, the integer axis is ordered, but the category axis is not.
  Axis which are not ordered must not have underflow bins, because they only have an
  "other" category, which is identified with the overflow bin if it is available.

  @tparam Axis axis type
*/
template <class Axis>
#ifndef BOOST_HISTOGRAM_DOXYGEN_INVOKED
using is_ordered = decltype(detail::traits_is_ordered<Axis>(detail::priority<1>{}));
#else
struct is_ordered;
#endif

/** Returns axis options as unsigned integer.

  See get_options for details.

  @param axis any axis instance
*/
template <class Axis>
constexpr unsigned options(const Axis& axis) noexcept {
  (void)axis;
  return get_options<Axis>::value;
}

// specialization for variant
template <class... Ts>
unsigned options(const variant<Ts...>& axis) noexcept {
  return axis.options();
}

/** Returns true if axis is inclusive or false.

  See is_inclusive for details.

  @param axis any axis instance
*/
template <class Axis>
constexpr bool inclusive(const Axis& axis) noexcept {
  (void)axis;
  return is_inclusive<Axis>::value;
}

// specialization for variant
template <class... Ts>
bool inclusive(const variant<Ts...>& axis) noexcept {
  return axis.inclusive();
}

/** Returns true if axis is ordered or false.

  See is_ordered for details.

  @param axis any axis instance
*/
template <class Axis>
constexpr bool ordered(const Axis& axis) noexcept {
  (void)axis;
  return is_ordered<Axis>::value;
}

// specialization for variant
template <class... Ts>
bool ordered(const variant<Ts...>& axis) noexcept {
  return axis.ordered();
}

/** Returns true if axis is continuous or false.

  See is_continuous for details.

  @param axis any axis instance
*/
template <class Axis>
constexpr bool continuous(const Axis& axis) noexcept {
  (void)axis;
  return is_continuous<Axis>::value;
}

// specialization for variant
template <class... Ts>
bool continuous(const variant<Ts...>& axis) noexcept {
  return axis.continuous();
}

/** Returns axis size plus any extra bins for under- and overflow.

  @param axis any axis instance
*/
template <class Axis>
index_type extent(const Axis& axis) noexcept {
  const auto opt = options(axis);
  return axis.size() + (opt & option::underflow ? 1 : 0) +
         (opt & option::overflow ? 1 : 0);
}

/** Returns reference to metadata of an axis.

  If the expression x.metadata() for an axis instance `x` (maybe const) is valid, return
  the result. Otherwise, return a reference to a static instance of
  boost::histogram::axis::null_type.

  @param axis any axis instance
*/
template <class Axis>
decltype(auto) metadata(Axis&& axis) noexcept {
  return detail::metadata_impl(std::forward<Axis>(axis), 0);
}

/** Returns axis value for index.

  If the axis has no `value` method, throw std::runtime_error. If the method exists and
  accepts a floating point index, pass the index and return the result. If the method
  exists but accepts only integer indices, cast the floating point index to int, pass this
  index and return the result.

  @param axis any axis instance
  @param index floating point axis index
*/
template <class Axis>
decltype(auto) value(const Axis& axis, real_index_type index) {
  return detail::value_method_switch(
      [index](const auto& a) { return a.value(static_cast<index_type>(index)); },
      [index](const auto& a) { return a.value(index); }, axis, detail::priority<1>{});
}

/** Returns axis value for index if it is convertible to target type or throws.

  Like boost::histogram::axis::traits::value, but converts the result into the requested
  return type. If the conversion is not possible, throws std::runtime_error.

  @tparam Result requested return type
  @tparam Axis axis type
  @param axis any axis instance
  @param index floating point axis index
*/
template <class Result, class Axis>
Result value_as(const Axis& axis, real_index_type index) {
  return detail::try_cast<Result, std::runtime_error>(
      axis::traits::value(axis, index)); // avoid conversion warning
}

/** Returns axis index for value.

  Throws std::invalid_argument if the value argument is not implicitly convertible.

  @param axis any axis instance
  @param value argument to be passed to `index` method
*/
template <class Axis, class U>
axis::index_type index(const Axis& axis, const U& value) noexcept(
    std::is_convertible<U, value_type<Axis>>::value) {
  return axis.index(detail::try_cast<value_type<Axis>, std::invalid_argument>(value));
}

// specialization for variant
template <class... Ts, class U>
axis::index_type index(const variant<Ts...>& axis, const U& value) {
  return axis.index(value);
}

/** Return axis rank (how many arguments it processes).

  @param axis any axis instance
*/
// gcc workaround: must use unsigned int not unsigned as return type
template <class Axis>
constexpr unsigned int rank(const Axis& axis) {
  (void)axis;
  using T = value_type<Axis>;
  // cannot use mp_eval_or since T could be a fixed-sized sequence
  return mp11::mp_eval_if_not<detail::is_tuple<T>, mp11::mp_size_t<1>, mp11::mp_size,
                              T>::value;
}

// specialization for variant
// gcc workaround: must use unsigned int not unsigned as return type
template <class... Ts>
unsigned int rank(const axis::variant<Ts...>& axis) {
  return detail::variant_access::visit(
      [](const auto& a) { return axis::traits::rank(a); }, axis);
}

/** Returns pair of axis index and shift for the value argument.

  Throws `std::invalid_argument` if the value argument is not implicitly convertible to
  the argument expected by the `index` method. If the result of
  boost::histogram::axis::traits::get_options<decltype(axis)> has the growth flag set,
  call `update` method with the argument and return the result. Otherwise, call `index`
  and return the pair of the result and a zero shift.

  @param axis any axis instance
  @param value argument to be passed to `update` or `index` method
*/
template <class Axis, class U>
std::pair<index_type, index_type> update(Axis& axis, const U& value) noexcept(
    std::is_convertible<U, value_type<Axis>>::value) {
  return detail::static_if_c<get_options<Axis>::test(option::growth)>(
      [&value](auto& a) {
        return a.update(detail::try_cast<value_type<Axis>, std::invalid_argument>(value));
      },
      [&value](auto& a) -> std::pair<index_type, index_type> {
        return {axis::traits::index(a, value), 0};
      },
      axis);
}

// specialization for variant
template <class... Ts, class U>
std::pair<index_type, index_type> update(variant<Ts...>& axis, const U& value) {
  return visit([&value](auto& a) { return a.update(value); }, axis);
}

/** Returns bin width at axis index.

  If the axis has no `value` method, throw std::runtime_error. If the method exists and
  accepts a floating point index, return the result of `axis.value(index + 1) -
  axis.value(index)`. If the method exists but accepts only integer indices, return 0.

  @param axis any axis instance
  @param index bin index
 */
template <class Axis>
decltype(auto) width(const Axis& axis, index_type index) {
  return detail::value_method_switch(
      [](const auto&) { return 0; },
      [index](const auto& a) { return a.value(index + 1) - a.value(index); }, axis,
      detail::priority<1>{});
}

/** Returns bin width at axis index.

  Like boost::histogram::axis::traits::width, but converts the result into the requested
  return type. If the conversion is not possible, throw std::runtime_error.

  @param axis any axis instance
  @param index bin index
 */
template <class Result, class Axis>
Result width_as(const Axis& axis, index_type index) {
  return detail::value_method_switch(
      [](const auto&) { return Result{}; },
      [index](const auto& a) {
        return detail::try_cast<Result, std::runtime_error>(a.value(index + 1) -
                                                            a.value(index));
      },
      axis, detail::priority<1>{});
}

} // namespace traits
} // namespace axis
} // namespace histogram
} // namespace boost

#endif