laplace.hpp 11.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
//  Copyright Thijs van den Berg, 2008.
//  Copyright John Maddock 2008.
//  Copyright Paul A. Bristow 2008, 2014.

//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

// This module implements the Laplace distribution.
// Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/LaplaceDistribution.html
// http://en.wikipedia.org/wiki/Laplace_distribution
//
// Abramowitz and Stegun 1972, p 930
// http://www.math.sfu.ca/~cbm/aands/page_930.htm

#ifndef BOOST_STATS_LAPLACE_HPP
#define BOOST_STATS_LAPLACE_HPP

#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/math/distributions/complement.hpp>
#include <boost/math/constants/constants.hpp>
#include <limits>

namespace boost{ namespace math{

#ifdef _MSC_VER
#  pragma warning(push)
#  pragma warning(disable:4127) // conditional expression is constant
#endif

template <class RealType = double, class Policy = policies::policy<> >
class laplace_distribution
{
public:
   // ----------------------------------
   // public Types
   // ----------------------------------
   using value_type = RealType;
   using policy_type = Policy;

   // ----------------------------------
   // Constructor(s)
   // ----------------------------------
   explicit laplace_distribution(RealType l_location = 0, RealType l_scale = 1)
      : m_location(l_location), m_scale(l_scale)
   {
      RealType result;
      check_parameters("boost::math::laplace_distribution<%1%>::laplace_distribution()", &result);
   }


   // ----------------------------------
   // Public functions
   // ----------------------------------

   RealType location() const
   {
      return m_location;
   }

   RealType scale() const
   {
      return m_scale;
   }

   bool check_parameters(const char* function, RealType* result) const
   {
         if(false == detail::check_scale(function, m_scale, result, Policy())) return false;
         if(false == detail::check_location(function, m_location, result, Policy())) return false;
         return true;
   }

private:
   RealType m_location;
   RealType m_scale;
}; // class laplace_distribution

//
// Convenient type synonym for double.
using laplace = laplace_distribution<double>;

#ifdef __cpp_deduction_guides
template <class RealType>
laplace_distribution(RealType)->laplace_distribution<typename boost::math::tools::promote_args<RealType>::type>;
template <class RealType>
laplace_distribution(RealType,RealType)->laplace_distribution<typename boost::math::tools::promote_args<RealType>::type>;
#endif

//
// Non-member functions.
template <class RealType, class Policy>
inline std::pair<RealType, RealType> range(const laplace_distribution<RealType, Policy>&)
{
  if (std::numeric_limits<RealType>::has_infinity)
  {  // Can use infinity.
     return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
  }
  else
  { // Can only use max_value.
    using boost::math::tools::max_value;
    return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
  }

}

template <class RealType, class Policy>
inline std::pair<RealType, RealType> support(const laplace_distribution<RealType, Policy>&)
{
  if (std::numeric_limits<RealType>::has_infinity)
  { // Can Use infinity.
     return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
  }
  else
  { // Can only use max_value.
    using boost::math::tools::max_value;
    return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
  }
}

template <class RealType, class Policy>
inline RealType pdf(const laplace_distribution<RealType, Policy>& dist, const RealType& x)
{
   BOOST_MATH_STD_USING // for ADL of std functions

   // Checking function argument
   RealType result = 0;
   const char* function = "boost::math::pdf(const laplace_distribution<%1%>&, %1%))";

   // Check scale and location.
   if (false == dist.check_parameters(function, &result)) return result;
   // Special pdf values.
   if((boost::math::isinf)(x))
   {
      return 0; // pdf + and - infinity is zero.
   }
   if (false == detail::check_x(function, x, &result, Policy())) return result;

   // General case
   RealType scale( dist.scale() );
   RealType location( dist.location() );

   RealType exponent = x - location;
   if (exponent>0) exponent = -exponent;
   exponent /= scale;

   result = exp(exponent);
   result /= 2 * scale;

   return result;
} // pdf

template <class RealType, class Policy>
inline RealType logpdf(const laplace_distribution<RealType, Policy>& dist, const RealType& x)
{
   BOOST_MATH_STD_USING // for ADL of std functions

   // Checking function argument
   RealType result = -std::numeric_limits<RealType>::infinity();
   const char* function = "boost::math::logpdf(const laplace_distribution<%1%>&, %1%))";

   // Check scale and location.
   if (false == dist.check_parameters(function, &result))
   {
       return result;
   }
   // Special pdf values.
   if((boost::math::isinf)(x))
   {
      return result; // pdf + and - infinity is zero so logpdf is -INF
   }
   if (false == detail::check_x(function, x, &result, Policy()))
   {
       return result;
   }

   const RealType mu = dist.scale();
   const RealType b = dist.location();

   // if b is 0 avoid divde by 0 error
   if(abs(b) < std::numeric_limits<RealType>::epsilon())
   {
      result = log(pdf(dist, x));
   }
   else
   {
      // General case
      const RealType log2 = boost::math::constants::ln_two<RealType>();
      result = -abs(x-mu)/b - log(b) - log2;
   }

   return result;
} // logpdf

template <class RealType, class Policy>
inline RealType cdf(const laplace_distribution<RealType, Policy>& dist, const RealType& x)
{
   BOOST_MATH_STD_USING  // For ADL of std functions.

   RealType result = 0;
   // Checking function argument.
   const char* function = "boost::math::cdf(const laplace_distribution<%1%>&, %1%)";
   // Check scale and location.
   if (false == dist.check_parameters(function, &result)) return result;

   // Special cdf values:
   if((boost::math::isinf)(x))
   {
     if(x < 0) return 0; // -infinity.
     return 1; // + infinity.
   }
   if (false == detail::check_x(function, x, &result, Policy())) return result;

   // General cdf  values
   RealType scale( dist.scale() );
   RealType location( dist.location() );

   if (x < location)
   {
      result = exp( (x-location)/scale )/2;
   }
   else
   {
      result = 1 - exp( (location-x)/scale )/2;
   }
   return result;
} // cdf


template <class RealType, class Policy>
inline RealType quantile(const laplace_distribution<RealType, Policy>& dist, const RealType& p)
{
   BOOST_MATH_STD_USING // for ADL of std functions.

   // Checking function argument
   RealType result = 0;
   const char* function = "boost::math::quantile(const laplace_distribution<%1%>&, %1%)";
   if (false == dist.check_parameters(function, &result)) return result;
   if(false == detail::check_probability(function, p, &result, Policy())) return result;

   // Extreme values of p:
   if(p == 0)
   {
      result = policies::raise_overflow_error<RealType>(function,
        "probability parameter is 0, but must be > 0!", Policy());
      return -result; // -inf
   }
  
   if(p == 1)
   {
      result = policies::raise_overflow_error<RealType>(function,
        "probability parameter is 1, but must be < 1!", Policy());
      return result; // inf
   }
   // Calculate Quantile
   RealType scale( dist.scale() );
   RealType location( dist.location() );

   if (p - 0.5 < 0.0)
      result = location + scale*log( static_cast<RealType>(p*2) );
   else
      result = location - scale*log( static_cast<RealType>(-p*2 + 2) );

   return result;
} // quantile


template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<laplace_distribution<RealType, Policy>, RealType>& c)
{
   // Calculate complement of cdf.
   BOOST_MATH_STD_USING // for ADL of std functions

   RealType scale = c.dist.scale();
   RealType location = c.dist.location();
   RealType x = c.param;
   RealType result = 0;

   // Checking function argument.
   const char* function = "boost::math::cdf(const complemented2_type<laplace_distribution<%1%>, %1%>&)";

   // Check scale and location.
    if (false == c.dist.check_parameters(function, &result)) return result;

   // Special cdf values.
   if((boost::math::isinf)(x))
   {
     if(x < 0) return 1; // cdf complement -infinity is unity.
     return 0; // cdf complement +infinity is zero.
   }
   if(false == detail::check_x(function, x, &result, Policy()))return result;

   // Cdf interval value.
   if (-x < -location)
   {
      result = exp( (-x+location)/scale )/2;
   }
   else
   {
      result = 1 - exp( (-location+x)/scale )/2;
   }
   return result;
} // cdf complement


template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<laplace_distribution<RealType, Policy>, RealType>& c)
{
   BOOST_MATH_STD_USING // for ADL of std functions.

   // Calculate quantile.
   RealType scale = c.dist.scale();
   RealType location = c.dist.location();
   RealType q = c.param;
   RealType result = 0;

   // Checking function argument.
   const char* function = "quantile(const complemented2_type<laplace_distribution<%1%>, %1%>&)";
   if (false == c.dist.check_parameters(function, &result)) return result;
   
   // Extreme values.
   if(q == 0)
   {
       return std::numeric_limits<RealType>::infinity();
   }
   if(q == 1)
   {
       return -std::numeric_limits<RealType>::infinity();
   }
   if(false == detail::check_probability(function, q, &result, Policy())) return result;

   if (0.5 - q < 0.0)
      result = location + scale*log( static_cast<RealType>(-q*2 + 2) );
   else
      result = location - scale*log( static_cast<RealType>(q*2) );


   return result;
} // quantile

template <class RealType, class Policy>
inline RealType mean(const laplace_distribution<RealType, Policy>& dist)
{
   return dist.location();
}

template <class RealType, class Policy>
inline RealType standard_deviation(const laplace_distribution<RealType, Policy>& dist)
{
   return constants::root_two<RealType>() * dist.scale();
}

template <class RealType, class Policy>
inline RealType mode(const laplace_distribution<RealType, Policy>& dist)
{
   return dist.location();
}

template <class RealType, class Policy>
inline RealType median(const laplace_distribution<RealType, Policy>& dist)
{
   return dist.location();
}

template <class RealType, class Policy>
inline RealType skewness(const laplace_distribution<RealType, Policy>& /*dist*/)
{
   return 0;
}

template <class RealType, class Policy>
inline RealType kurtosis(const laplace_distribution<RealType, Policy>& /*dist*/)
{
   return 6;
}

template <class RealType, class Policy>
inline RealType kurtosis_excess(const laplace_distribution<RealType, Policy>& /*dist*/)
{
   return 3;
}

template <class RealType, class Policy>
inline RealType entropy(const laplace_distribution<RealType, Policy> & dist)
{
   using std::log;
   return log(2*dist.scale()*constants::e<RealType>());
}

#ifdef _MSC_VER
#  pragma warning(pop)
#endif

} // namespace math
} // namespace boost

// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>

#endif // BOOST_STATS_LAPLACE_HPP