discrete_distribution.hpp 20.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/* boost random/discrete_distribution.hpp header file
 *
 * Copyright Steven Watanabe 2009-2011
 * Distributed under the Boost Software License, Version 1.0. (See
 * accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org for most recent version including documentation.
 *
 * $Id$
 */

#ifndef BOOST_RANDOM_DISCRETE_DISTRIBUTION_HPP_INCLUDED
#define BOOST_RANDOM_DISCRETE_DISTRIBUTION_HPP_INCLUDED

#include <vector>
#include <limits>
#include <numeric>
#include <utility>
#include <iterator>
#include <boost/assert.hpp>
#include <boost/random/uniform_01.hpp>
#include <boost/random/uniform_int_distribution.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/operators.hpp>
#include <boost/random/detail/vector_io.hpp>

#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST
#include <initializer_list>
#endif

#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>

#include <boost/random/detail/disable_warnings.hpp>

namespace boost {
namespace random {
namespace detail {

template<class IntType, class WeightType>
struct integer_alias_table {
    WeightType get_weight(IntType bin) const {
        WeightType result = _average;
        if(bin < _excess) ++result;
        return result;
    }
    template<class Iter>
    WeightType init_average(Iter begin, Iter end) {
        WeightType weight_average = 0;
        IntType excess = 0;
        IntType n = 0;
        // weight_average * n + excess == current partial sum
        // This is a bit messy, but it's guaranteed not to overflow
        for(Iter iter = begin; iter != end; ++iter) {
            ++n;
            if(*iter < weight_average) {
                WeightType diff = weight_average - *iter;
                weight_average -= diff / n;
                if(diff % n > excess) {
                    --weight_average;
                    excess += n - diff % n;
                } else {
                    excess -= diff % n;
                }
            } else {
                WeightType diff = *iter - weight_average;
                weight_average += diff / n;
                if(diff % n < n - excess) {
                    excess += diff % n;
                } else {
                    ++weight_average;
                    excess -= n - diff % n;
                }
            }
        }
        _alias_table.resize(static_cast<std::size_t>(n));
        _average = weight_average;
        _excess = excess;
        return weight_average;
    }
    void init_empty()
    {
        _alias_table.clear();
        _alias_table.push_back(std::make_pair(static_cast<WeightType>(1),
                                              static_cast<IntType>(0)));
        _average = static_cast<WeightType>(1);
        _excess = static_cast<IntType>(0);
    }
    bool operator==(const integer_alias_table& other) const
    {
        return _alias_table == other._alias_table &&
            _average == other._average && _excess == other._excess;
    }
    static WeightType normalize(WeightType val, WeightType /* average */)
    {
        return val;
    }
    static void normalize(std::vector<WeightType>&) {}
    template<class URNG>
    WeightType test(URNG &urng) const
    {
        return uniform_int_distribution<WeightType>(0, _average)(urng);
    }
    bool accept(IntType result, WeightType val) const
    {
        return result < _excess || val < _average;
    }
    static WeightType try_get_sum(const std::vector<WeightType>& weights)
    {
        WeightType result = static_cast<WeightType>(0);
        for(typename std::vector<WeightType>::const_iterator
                iter = weights.begin(), end = weights.end();
            iter != end; ++iter)
        {
            if((std::numeric_limits<WeightType>::max)() - result > *iter) {
                return static_cast<WeightType>(0);
            }
            result += *iter;
        }
        return result;
    }
    template<class URNG>
    static WeightType generate_in_range(URNG &urng, WeightType max)
    {
        return uniform_int_distribution<WeightType>(
            static_cast<WeightType>(0), max-1)(urng);
    }
    typedef std::vector<std::pair<WeightType, IntType> > alias_table_t;
    alias_table_t _alias_table;
    WeightType _average;
    IntType _excess;
};

template<class IntType, class WeightType>
struct real_alias_table {
    WeightType get_weight(IntType) const
    {
        return WeightType(1.0);
    }
    template<class Iter>
    WeightType init_average(Iter first, Iter last)
    {
        std::size_t size = std::distance(first, last);
        WeightType weight_sum =
            std::accumulate(first, last, static_cast<WeightType>(0));
        _alias_table.resize(size);
        return weight_sum / size;
    }
    void init_empty()
    {
        _alias_table.clear();
        _alias_table.push_back(std::make_pair(static_cast<WeightType>(1),
                                              static_cast<IntType>(0)));
    }
    bool operator==(const real_alias_table& other) const
    {
        return _alias_table == other._alias_table;
    }
    static WeightType normalize(WeightType val, WeightType average)
    {
        return val / average;
    }
    static void normalize(std::vector<WeightType>& weights)
    {
        WeightType sum =
            std::accumulate(weights.begin(), weights.end(),
                            static_cast<WeightType>(0));
        for(typename std::vector<WeightType>::iterator
                iter = weights.begin(),
                end = weights.end();
            iter != end; ++iter)
        {
            *iter /= sum;
        }
    }
    template<class URNG>
    WeightType test(URNG &urng) const
    {
        return uniform_01<WeightType>()(urng);
    }
    bool accept(IntType, WeightType) const
    {
        return true;
    }
    static WeightType try_get_sum(const std::vector<WeightType>& /* weights */)
    {
        return static_cast<WeightType>(1);
    }
    template<class URNG>
    static WeightType generate_in_range(URNG &urng, WeightType)
    {
        return uniform_01<WeightType>()(urng);
    }
    typedef std::vector<std::pair<WeightType, IntType> > alias_table_t;
    alias_table_t _alias_table;
};

template<bool IsIntegral>
struct select_alias_table;

template<>
struct select_alias_table<true> {
    template<class IntType, class WeightType>
    struct apply {
        typedef integer_alias_table<IntType, WeightType> type;
    };
};

template<>
struct select_alias_table<false> {
    template<class IntType, class WeightType>
    struct apply {
        typedef real_alias_table<IntType, WeightType> type;
    };
};

}

/**
 * The class @c discrete_distribution models a \random_distribution.
 * It produces integers in the range [0, n) with the probability
 * of producing each value is specified by the parameters of the
 * distribution.
 */
template<class IntType = int, class WeightType = double>
class discrete_distribution {
public:
    typedef WeightType input_type;
    typedef IntType result_type;

    class param_type {
    public:

        typedef discrete_distribution distribution_type;

        /**
         * Constructs a @c param_type object, representing a distribution
         * with \f$p(0) = 1\f$ and \f$p(k|k>0) = 0\f$.
         */
        param_type() : _probabilities(1, static_cast<WeightType>(1)) {}
        /**
         * If @c first == @c last, equivalent to the default constructor.
         * Otherwise, the values of the range represent weights for the
         * possible values of the distribution.
         */
        template<class Iter>
        param_type(Iter first, Iter last) : _probabilities(first, last)
        {
            normalize();
        }
#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST
        /**
         * If wl.size() == 0, equivalent to the default constructor.
         * Otherwise, the values of the @c initializer_list represent
         * weights for the possible values of the distribution.
         */
        param_type(const std::initializer_list<WeightType>& wl)
          : _probabilities(wl)
        {
            normalize();
        }
#endif
        /**
         * If the range is empty, equivalent to the default constructor.
         * Otherwise, the elements of the range represent
         * weights for the possible values of the distribution.
         */
        template<class Range>
        explicit param_type(const Range& range)
          : _probabilities(boost::begin(range), boost::end(range))
        {
            normalize();
        }

        /**
         * If nw is zero, equivalent to the default constructor.
         * Otherwise, the range of the distribution is [0, nw),
         * and the weights are found by  calling fw with values
         * evenly distributed between \f$\mbox{xmin} + \delta/2\f$ and
         * \f$\mbox{xmax} - \delta/2\f$, where
         * \f$\delta = (\mbox{xmax} - \mbox{xmin})/\mbox{nw}\f$.
         */
        template<class Func>
        param_type(std::size_t nw, double xmin, double xmax, Func fw)
        {
            std::size_t n = (nw == 0) ? 1 : nw;
            double delta = (xmax - xmin) / n;
            BOOST_ASSERT(delta > 0);
            for(std::size_t k = 0; k < n; ++k) {
                _probabilities.push_back(fw(xmin + k*delta + delta/2));
            }
            normalize();
        }

        /**
         * Returns a vector containing the probabilities of each possible
         * value of the distribution.
         */
        std::vector<WeightType> probabilities() const
        {
            return _probabilities;
        }

        /** Writes the parameters to a @c std::ostream. */
        BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm)
        {
            detail::print_vector(os, parm._probabilities);
            return os;
        }
        
        /** Reads the parameters from a @c std::istream. */
        BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm)
        {
            std::vector<WeightType> temp;
            detail::read_vector(is, temp);
            if(is) {
                parm._probabilities.swap(temp);
            }
            return is;
        }

        /** Returns true if the two sets of parameters are the same. */
        BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs)
        {
            return lhs._probabilities == rhs._probabilities;
        }
        /** Returns true if the two sets of parameters are different. */
        BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type)
    private:
        /// @cond show_private
        friend class discrete_distribution;
        explicit param_type(const discrete_distribution& dist)
          : _probabilities(dist.probabilities())
        {}
        void normalize()
        {
            impl_type::normalize(_probabilities);
        }
        std::vector<WeightType> _probabilities;
        /// @endcond
    };

    /**
     * Creates a new @c discrete_distribution object that has
     * \f$p(0) = 1\f$ and \f$p(i|i>0) = 0\f$.
     */
    discrete_distribution()
    {
        _impl.init_empty();
    }
    /**
     * Constructs a discrete_distribution from an iterator range.
     * If @c first == @c last, equivalent to the default constructor.
     * Otherwise, the values of the range represent weights for the
     * possible values of the distribution.
     */
    template<class Iter>
    discrete_distribution(Iter first, Iter last)
    {
        init(first, last);
    }
#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST
    /**
     * Constructs a @c discrete_distribution from a @c std::initializer_list.
     * If the @c initializer_list is empty, equivalent to the default
     * constructor.  Otherwise, the values of the @c initializer_list
     * represent weights for the possible values of the distribution.
     * For example, given the distribution
     *
     * @code
     * discrete_distribution<> dist{1, 4, 5};
     * @endcode
     *
     * The probability of a 0 is 1/10, the probability of a 1 is 2/5,
     * the probability of a 2 is 1/2, and no other values are possible.
     */
    discrete_distribution(std::initializer_list<WeightType> wl)
    {
        init(wl.begin(), wl.end());
    }
#endif
    /**
     * Constructs a discrete_distribution from a Boost.Range range.
     * If the range is empty, equivalent to the default constructor.
     * Otherwise, the values of the range represent weights for the
     * possible values of the distribution.
     */
    template<class Range>
    explicit discrete_distribution(const Range& range)
    {
        init(boost::begin(range), boost::end(range));
    }
    /**
     * Constructs a discrete_distribution that approximates a function.
     * If nw is zero, equivalent to the default constructor.
     * Otherwise, the range of the distribution is [0, nw),
     * and the weights are found by  calling fw with values
     * evenly distributed between \f$\mbox{xmin} + \delta/2\f$ and
     * \f$\mbox{xmax} - \delta/2\f$, where
     * \f$\delta = (\mbox{xmax} - \mbox{xmin})/\mbox{nw}\f$.
     */
    template<class Func>
    discrete_distribution(std::size_t nw, double xmin, double xmax, Func fw)
    {
        std::size_t n = (nw == 0) ? 1 : nw;
        double delta = (xmax - xmin) / n;
        BOOST_ASSERT(delta > 0);
        std::vector<WeightType> weights;
        for(std::size_t k = 0; k < n; ++k) {
            weights.push_back(fw(xmin + k*delta + delta/2));
        }
        init(weights.begin(), weights.end());
    }
    /**
     * Constructs a discrete_distribution from its parameters.
     */
    explicit discrete_distribution(const param_type& parm)
    {
        param(parm);
    }

    /**
     * Returns a value distributed according to the parameters of the
     * discrete_distribution.
     */
    template<class URNG>
    IntType operator()(URNG& urng) const
    {
        BOOST_ASSERT(!_impl._alias_table.empty());
        IntType result;
        WeightType test;
        do {
            result = uniform_int_distribution<IntType>((min)(), (max)())(urng);
            test = _impl.test(urng);
        } while(!_impl.accept(result, test));
        if(test < _impl._alias_table[static_cast<std::size_t>(result)].first) {
            return result;
        } else {
            return(_impl._alias_table[static_cast<std::size_t>(result)].second);
        }
    }
    
    /**
     * Returns a value distributed according to the parameters
     * specified by param.
     */
    template<class URNG>
    IntType operator()(URNG& urng, const param_type& parm) const
    {
        if(WeightType limit = impl_type::try_get_sum(parm._probabilities)) {
            WeightType val = impl_type::generate_in_range(urng, limit);
            WeightType sum = 0;
            std::size_t result = 0;
            for(typename std::vector<WeightType>::const_iterator
                    iter = parm._probabilities.begin(),
                    end = parm._probabilities.end();
                iter != end; ++iter, ++result)
            {
                sum += *iter;
                if(sum > val) {
                    return result;
                }
            }
            // This shouldn't be reachable, but round-off error
            // can prevent any match from being found when val is
            // very close to 1.
            return static_cast<IntType>(parm._probabilities.size() - 1);
        } else {
            // WeightType is integral and sum(parm._probabilities)
            // would overflow.  Just use the easy solution.
            return discrete_distribution(parm)(urng);
        }
    }
    
    /** Returns the smallest value that the distribution can produce. */
    result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return 0; }
    /** Returns the largest value that the distribution can produce. */
    result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const
    { return static_cast<result_type>(_impl._alias_table.size() - 1); }

    /**
     * Returns a vector containing the probabilities of each
     * value of the distribution.  For example, given
     *
     * @code
     * discrete_distribution<> dist = { 1, 4, 5 };
     * std::vector<double> p = dist.param();
     * @endcode
     *
     * the vector, p will contain {0.1, 0.4, 0.5}.
     *
     * If @c WeightType is integral, then the weights
     * will be returned unchanged.
     */
    std::vector<WeightType> probabilities() const
    {
        std::vector<WeightType> result(_impl._alias_table.size(), static_cast<WeightType>(0));
        std::size_t i = 0;
        for(typename impl_type::alias_table_t::const_iterator
                iter = _impl._alias_table.begin(),
                end = _impl._alias_table.end();
                iter != end; ++iter, ++i)
        {
            WeightType val = iter->first;
            result[i] += val;
            result[static_cast<std::size_t>(iter->second)] += _impl.get_weight(i) - val;
        }
        impl_type::normalize(result);
        return(result);
    }

    /** Returns the parameters of the distribution. */
    param_type param() const
    {
        return param_type(*this);
    }
    /** Sets the parameters of the distribution. */
    void param(const param_type& parm)
    {
        init(parm._probabilities.begin(), parm._probabilities.end());
    }
    
    /**
     * Effects: Subsequent uses of the distribution do not depend
     * on values produced by any engine prior to invoking reset.
     */
    void reset() {}

    /** Writes a distribution to a @c std::ostream. */
    BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, discrete_distribution, dd)
    {
        os << dd.param();
        return os;
    }

    /** Reads a distribution from a @c std::istream */
    BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, discrete_distribution, dd)
    {
        param_type parm;
        if(is >> parm) {
            dd.param(parm);
        }
        return is;
    }

    /**
     * Returns true if the two distributions will return the
     * same sequence of values, when passed equal generators.
     */
    BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(discrete_distribution, lhs, rhs)
    {
        return lhs._impl == rhs._impl;
    }
    /**
     * Returns true if the two distributions may return different
     * sequences of values, when passed equal generators.
     */
    BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(discrete_distribution)

private:

    /// @cond show_private

    template<class Iter>
    void init(Iter first, Iter last, std::input_iterator_tag)
    {
        std::vector<WeightType> temp(first, last);
        init(temp.begin(), temp.end());
    }
    template<class Iter>
    void init(Iter first, Iter last, std::forward_iterator_tag)
    {
        size_t input_size = std::distance(first, last);
        std::vector<std::pair<WeightType, IntType> > below_average;
        std::vector<std::pair<WeightType, IntType> > above_average;
        below_average.reserve(input_size);
        above_average.reserve(input_size);
        
        WeightType weight_average = _impl.init_average(first, last);
        WeightType normalized_average = _impl.get_weight(0);
        std::size_t i = 0;
        for(; first != last; ++first, ++i) {
            WeightType val = impl_type::normalize(*first, weight_average);
            std::pair<WeightType, IntType> elem(val, static_cast<IntType>(i));
            if(val < normalized_average) {
                below_average.push_back(elem);
            } else {
                above_average.push_back(elem);
            }
        }

        typename impl_type::alias_table_t::iterator
            b_iter = below_average.begin(),
            b_end = below_average.end(),
            a_iter = above_average.begin(),
            a_end = above_average.end()
            ;
        while(b_iter != b_end && a_iter != a_end) {
            _impl._alias_table[static_cast<std::size_t>(b_iter->second)] =
                std::make_pair(b_iter->first, a_iter->second);
            a_iter->first -= (_impl.get_weight(b_iter->second) - b_iter->first);
            if(a_iter->first < normalized_average) {
                *b_iter = *a_iter++;
            } else {
                ++b_iter;
            }
        }
        for(; b_iter != b_end; ++b_iter) {
            _impl._alias_table[static_cast<std::size_t>(b_iter->second)].first =
                _impl.get_weight(b_iter->second);
        }
        for(; a_iter != a_end; ++a_iter) {
            _impl._alias_table[static_cast<std::size_t>(a_iter->second)].first =
                _impl.get_weight(a_iter->second);
        }
    }
    template<class Iter>
    void init(Iter first, Iter last)
    {
        if(first == last) {
            _impl.init_empty();
        } else {
            typename std::iterator_traits<Iter>::iterator_category category;
            init(first, last, category);
        }
    }
    typedef typename detail::select_alias_table<
        (::boost::is_integral<WeightType>::value)
    >::template apply<IntType, WeightType>::type impl_type;
    impl_type _impl;
    /// @endcond
};

}
}

#include <boost/random/detail/enable_warnings.hpp>

#endif