unbuffered_channel.hpp 16.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

//          Copyright Oliver Kowalke 2016.
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_FIBERS_UNBUFFERED_CHANNEL_H
#define BOOST_FIBERS_UNBUFFERED_CHANNEL_H

#include <atomic>
#include <chrono>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <vector>

#include <boost/config.hpp>

#include <boost/fiber/channel_op_status.hpp>
#include <boost/fiber/context.hpp>
#include <boost/fiber/detail/config.hpp>
#include <boost/fiber/detail/convert.hpp>
#if defined(BOOST_NO_CXX14_STD_EXCHANGE)
#include <boost/fiber/detail/exchange.hpp>
#endif
#include <boost/fiber/detail/spinlock.hpp>
#include <boost/fiber/exceptions.hpp>
#include <boost/fiber/waker.hpp>

#ifdef BOOST_HAS_ABI_HEADERS
#  include BOOST_ABI_PREFIX
#endif

namespace boost {
namespace fibers {

template< typename T >
class unbuffered_channel {
public:
    using value_type = typename std::remove_reference<T>::type;

private:
    struct slot {
        value_type  value;
        waker       w;

        slot( value_type const& value_, waker && w) :
            value{ value_ },
            w{ std::move(w) } {
        }

        slot( value_type && value_, waker && w) :
            value{ std::move( value_) },
            w{ std::move(w) } {
        }
    };

    // shared cacheline
    std::atomic< slot * >       slot_{ nullptr };
    // shared cacheline
    std::atomic_bool            closed_{ false };
    mutable detail::spinlock    splk_producers_{};
    wait_queue                  waiting_producers_{};
    mutable detail::spinlock    splk_consumers_{};
    wait_queue                  waiting_consumers_{};
    char                        pad_[cacheline_length];

    bool is_empty_() {
        return nullptr == slot_.load( std::memory_order_acquire);
    }

    bool try_push_( slot * own_slot) {
        for (;;) {
            slot * s = slot_.load( std::memory_order_acquire);
            if ( nullptr == s) {
                if ( ! slot_.compare_exchange_strong( s, own_slot, std::memory_order_acq_rel) ) {
                    continue;
                }
                return true;
            }
            return false;
        }
    }

    slot * try_pop_() {
        slot * nil_slot = nullptr;
        for (;;) {
            slot * s = slot_.load( std::memory_order_acquire);
            if ( nullptr != s) {
                if ( ! slot_.compare_exchange_strong( s, nil_slot, std::memory_order_acq_rel) ) {
                    continue;}
            }
            return s;
        }
    }

public:
    unbuffered_channel() = default;

    ~unbuffered_channel() {
        close();
    }

    unbuffered_channel( unbuffered_channel const&) = delete;
    unbuffered_channel & operator=( unbuffered_channel const&) = delete;

    bool is_closed() const noexcept {
        return closed_.load( std::memory_order_acquire);
    }

    void close() noexcept {
        // set flag
        if ( ! closed_.exchange( true, std::memory_order_acquire) ) {
            // notify current waiting  
            slot * s = slot_.load( std::memory_order_acquire);
            if ( nullptr != s) {
                // notify context
                s->w.wake();
            }
            detail::spinlock_lock lk1{ splk_producers_ };
            waiting_producers_.notify_all();

            detail::spinlock_lock lk2{ splk_consumers_ };
            waiting_consumers_.notify_all();
        }
    }

    channel_op_status push( value_type const& value) {
        context * active_ctx = context::active();
        slot s{ value, {} };
        for (;;) {
            if ( BOOST_UNLIKELY( is_closed() ) ) {
                return channel_op_status::closed;
            }
            s.w = active_ctx->create_waker();
            if ( try_push_( & s) ) {
                detail::spinlock_lock lk{ splk_consumers_ };
                waiting_consumers_.notify_one();
                // suspend till value has been consumed
                active_ctx->suspend( lk);
                // resumed
                if ( BOOST_UNLIKELY( is_closed() ) ) {
                    // channel was closed before value was consumed
                    return channel_op_status::closed;
                }
                // value has been consumed
                return channel_op_status::success;
            }
            detail::spinlock_lock lk{ splk_producers_ };
            if ( BOOST_UNLIKELY( is_closed() ) ) {
                return channel_op_status::closed;
            }
            if ( is_empty_() ) {
                continue;
            }

            waiting_producers_.suspend_and_wait( lk, active_ctx);
            // resumed, slot mabye free
        }
    }

    channel_op_status push( value_type && value) {
        context * active_ctx = context::active();
        slot s{ std::move( value), {} };
        for (;;) {
            if ( BOOST_UNLIKELY( is_closed() ) ) {
                return channel_op_status::closed;
            }
            s.w = active_ctx->create_waker();
            if ( try_push_( & s) ) {
                detail::spinlock_lock lk{ splk_consumers_ };
                waiting_consumers_.notify_one();
                // suspend till value has been consumed
                active_ctx->suspend( lk);
                // resumed
                if ( BOOST_UNLIKELY( is_closed() ) ) {
                    // channel was closed before value was consumed
                    return channel_op_status::closed;
                }
                // value has been consumed
                return channel_op_status::success;
            }
            detail::spinlock_lock lk{ splk_producers_ };
            if ( BOOST_UNLIKELY( is_closed() ) ) {
                return channel_op_status::closed;
            }
            if ( is_empty_() ) {
                continue;
            }
            waiting_producers_.suspend_and_wait( lk, active_ctx);
            // resumed, slot mabye free
        }
    }

    template< typename Rep, typename Period >
    channel_op_status push_wait_for( value_type const& value,
                                     std::chrono::duration< Rep, Period > const& timeout_duration) {
        return push_wait_until( value,
                                std::chrono::steady_clock::now() + timeout_duration);
    }

    template< typename Rep, typename Period >
    channel_op_status push_wait_for( value_type && value,
                                     std::chrono::duration< Rep, Period > const& timeout_duration) {
        return push_wait_until( std::forward< value_type >( value),
                                std::chrono::steady_clock::now() + timeout_duration);
    }

    template< typename Clock, typename Duration >
    channel_op_status push_wait_until( value_type const& value,
                                       std::chrono::time_point< Clock, Duration > const& timeout_time_) {
        context * active_ctx = context::active();
        slot s{ value, {} };
        std::chrono::steady_clock::time_point timeout_time = detail::convert( timeout_time_);
        for (;;) {
            if ( BOOST_UNLIKELY( is_closed() ) ) {
                return channel_op_status::closed;
            }
            s.w = active_ctx->create_waker();
            if ( try_push_( & s) ) {
                detail::spinlock_lock lk{ splk_consumers_ };
                waiting_consumers_.notify_one();
                // suspend this producer
                if ( ! active_ctx->wait_until(timeout_time, lk, waker(s.w))) {
                    // clear slot
                    slot * nil_slot = nullptr, * own_slot = & s;
                    slot_.compare_exchange_strong( own_slot, nil_slot, std::memory_order_acq_rel);
                    // resumed, value has not been consumed
                    return channel_op_status::timeout;
                }
                // resumed
                if ( BOOST_UNLIKELY( is_closed() ) ) {
                    // channel was closed before value was consumed
                    return channel_op_status::closed;
                }
                // value has been consumed
                return channel_op_status::success;
            }
            detail::spinlock_lock lk{ splk_producers_ };
            if ( BOOST_UNLIKELY( is_closed() ) ) {
                return channel_op_status::closed;
            }
            if ( is_empty_() ) {
                continue;
            }

            if (! waiting_producers_.suspend_and_wait_until( lk, active_ctx, timeout_time))
            {
                return channel_op_status::timeout;
            }
            // resumed, slot maybe free
        }
    }

    template< typename Clock, typename Duration >
    channel_op_status push_wait_until( value_type && value,
                                       std::chrono::time_point< Clock, Duration > const& timeout_time_) {
        context * active_ctx = context::active();
        slot s{ std::move( value), {} };
        std::chrono::steady_clock::time_point timeout_time = detail::convert( timeout_time_);
        for (;;) {
            if ( BOOST_UNLIKELY( is_closed() ) ) {
                return channel_op_status::closed;
            }
            s.w = active_ctx->create_waker();
            if ( try_push_( & s) ) {
                detail::spinlock_lock lk{ splk_consumers_ };
                waiting_consumers_.notify_one();
                // suspend this producer
                if ( ! active_ctx->wait_until(timeout_time, lk, waker(s.w))) {
                    // clear slot
                    slot * nil_slot = nullptr, * own_slot = & s;
                    slot_.compare_exchange_strong( own_slot, nil_slot, std::memory_order_acq_rel);
                    // resumed, value has not been consumed
                    return channel_op_status::timeout;
                }
                // resumed
                if ( BOOST_UNLIKELY( is_closed() ) ) {
                    // channel was closed before value was consumed
                    return channel_op_status::closed;
                }
                // value has been consumed
                return channel_op_status::success;
            }
            detail::spinlock_lock lk{ splk_producers_ };
            if ( BOOST_UNLIKELY( is_closed() ) ) {
                return channel_op_status::closed;
            }
            if ( is_empty_() ) {
                continue;
            }
            if (! waiting_producers_.suspend_and_wait_until( lk, active_ctx, timeout_time))
            {
                return channel_op_status::timeout;
            }
            // resumed, slot maybe free
        }
    }

    channel_op_status pop( value_type & value) {
        context * active_ctx = context::active();
        slot * s = nullptr;
        for (;;) {
            if ( nullptr != ( s = try_pop_() ) ) {
                {
                    detail::spinlock_lock lk{ splk_producers_ };
                    waiting_producers_.notify_one();
                }
                value = std::move( s->value);
                // notify context
                s->w.wake();
                return channel_op_status::success;
            }
            detail::spinlock_lock lk{ splk_consumers_ };
            if ( BOOST_UNLIKELY( is_closed() ) ) {
                return channel_op_status::closed;
            }
            if ( ! is_empty_() ) {
                continue;
            }
            waiting_consumers_.suspend_and_wait( lk, active_ctx);
            // resumed, slot mabye set
        }
    }

    value_type value_pop() {
        context * active_ctx = context::active();
        slot * s = nullptr;
        for (;;) {
            if ( nullptr != ( s = try_pop_() ) ) {
                {
                    detail::spinlock_lock lk{ splk_producers_ };
                    waiting_producers_.notify_one();
                }
                // consume value
                value_type value = std::move( s->value);
                // notify context
                s->w.wake();
                return std::move( value);
            }
            detail::spinlock_lock lk{ splk_consumers_ };
            if ( BOOST_UNLIKELY( is_closed() ) ) {
                throw fiber_error{
                        std::make_error_code( std::errc::operation_not_permitted),
                        "boost fiber: channel is closed" };
            }
            if ( ! is_empty_() ) {
                continue;
            }
            waiting_consumers_.suspend_and_wait( lk, active_ctx);
            // resumed, slot mabye set
        }
    }

    template< typename Rep, typename Period >
    channel_op_status pop_wait_for( value_type & value,
                                    std::chrono::duration< Rep, Period > const& timeout_duration) {
        return pop_wait_until( value,
                               std::chrono::steady_clock::now() + timeout_duration);
    }

    template< typename Clock, typename Duration >
    channel_op_status pop_wait_until( value_type & value,
                                      std::chrono::time_point< Clock, Duration > const& timeout_time_) {
        context * active_ctx = context::active();
        slot * s = nullptr;
        std::chrono::steady_clock::time_point timeout_time = detail::convert( timeout_time_);
        for (;;) {
            if ( nullptr != ( s = try_pop_() ) ) {
                {
                    detail::spinlock_lock lk{ splk_producers_ };
                    waiting_producers_.notify_one();
                }
                // consume value
                value = std::move( s->value);
                // notify context
                s->w.wake();
                return channel_op_status::success;
            }
            detail::spinlock_lock lk{ splk_consumers_ };
            if ( BOOST_UNLIKELY( is_closed() ) ) {
                return channel_op_status::closed;
            }
            if ( ! is_empty_() ) {
                continue;
            }
            if ( ! waiting_consumers_.suspend_and_wait_until( lk, active_ctx, timeout_time)) {
                return channel_op_status::timeout;
            }
        }
    }

    class iterator {
    private:
        typedef typename std::aligned_storage< sizeof( value_type), alignof( value_type) >::type  storage_type;

        unbuffered_channel  *   chan_{ nullptr };
        storage_type            storage_;

        void increment_( bool initial = false) {
            BOOST_ASSERT( nullptr != chan_);
            try {
                if ( ! initial) {
                    reinterpret_cast< value_type * >( std::addressof( storage_) )->~value_type();
                }
                ::new ( static_cast< void * >( std::addressof( storage_) ) ) value_type{ chan_->value_pop() };
            } catch ( fiber_error const&) {
                chan_ = nullptr;
            }
        }

    public:
        using iterator_category = std::input_iterator_tag;
        using difference_type = std::ptrdiff_t;
        using pointer = value_type *;
        using reference = value_type &;

        using pointer_t = pointer;
        using reference_t = reference;

        iterator() = default;

        explicit iterator( unbuffered_channel< T > * chan) noexcept :
            chan_{ chan } {
            increment_( true);
        }

        iterator( iterator const& other) noexcept :
            chan_{ other.chan_ } {
        }

        iterator & operator=( iterator const& other) noexcept {
            if ( this == & other) return * this;
            chan_ = other.chan_;
            return * this;
        }

        bool operator==( iterator const& other) const noexcept {
            return other.chan_ == chan_;
        }

        bool operator!=( iterator const& other) const noexcept {
            return other.chan_ != chan_;
        }

        iterator & operator++() {
            reinterpret_cast< value_type * >( std::addressof( storage_) )->~value_type();
            increment_();
            return * this;
        }

        const iterator operator++( int) = delete;

        reference_t operator*() noexcept {
            return * reinterpret_cast< value_type * >( std::addressof( storage_) );
        }

        pointer_t operator->() noexcept {
            return reinterpret_cast< value_type * >( std::addressof( storage_) );
        }
    };

    friend class iterator;
};

template< typename T >
typename unbuffered_channel< T >::iterator
begin( unbuffered_channel< T > & chan) {
    return typename unbuffered_channel< T >::iterator( & chan);
}

template< typename T >
typename unbuffered_channel< T >::iterator
end( unbuffered_channel< T > &) {
    return typename unbuffered_channel< T >::iterator();
}

}}

#ifdef BOOST_HAS_ABI_HEADERS
#  include BOOST_ABI_SUFFIX
#endif

#endif // BOOST_FIBERS_UNBUFFERED_CHANNEL_H