sequence.hpp
7.29 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
// Boost.Geometry
// Copyright (c) 2020-2021, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Licensed under the Boost Software License version 1.0.
// http://www.boost.org/users/license.html
#ifndef BOOST_GEOMETRY_UTIL_SEQUENCE_HPP
#define BOOST_GEOMETRY_UTIL_SEQUENCE_HPP
#include <type_traits>
namespace boost { namespace geometry
{
namespace util
{
// An alternative would be to use std:tuple and std::pair
// but it would add dependency.
template <typename ...Ts>
struct type_sequence {};
// true if T is a sequence
template <typename T>
struct is_sequence : std::false_type {};
template <typename ...Ts>
struct is_sequence<type_sequence<Ts...>> : std::true_type {};
template <typename T, T ...Is>
struct is_sequence<std::integer_sequence<T, Is...>> : std::true_type {};
// number of elements in a sequence
template <typename Sequence>
struct sequence_size {};
template <typename ...Ts>
struct sequence_size<type_sequence<Ts...>>
: std::integral_constant<std::size_t, sizeof...(Ts)>
{};
template <typename T, T ...Is>
struct sequence_size<std::integer_sequence<T, Is...>>
: std::integral_constant<std::size_t, sizeof...(Is)>
{};
// element of a sequence
template <std::size_t I, typename Sequence>
struct sequence_element {};
template <std::size_t I, typename T, typename ...Ts>
struct sequence_element<I, type_sequence<T, Ts...>>
{
using type = typename sequence_element<I - 1, type_sequence<Ts...>>::type;
};
template <typename T, typename ...Ts>
struct sequence_element<0, type_sequence<T, Ts...>>
{
using type = T;
};
template <std::size_t I, typename T, T J, T ...Js>
struct sequence_element<I, std::integer_sequence<T, J, Js...>>
: std::integral_constant
<
T,
sequence_element<I - 1, std::integer_sequence<T, Js...>>::value
>
{};
template <typename T, T J, T ...Js>
struct sequence_element<0, std::integer_sequence<T, J, Js...>>
: std::integral_constant<T, J>
{};
template <typename ...Ts>
struct pack_front
{
static_assert(sizeof...(Ts) > 0, "Parameter pack can not be empty.");
};
template <typename T, typename ... Ts>
struct pack_front<T, Ts...>
{
typedef T type;
};
template <typename Sequence>
struct sequence_front
: sequence_element<0, Sequence>
{
static_assert(sequence_size<Sequence>::value > 0, "Sequence can not be empty.");
};
template <typename Sequence>
struct sequence_back
: sequence_element<sequence_size<Sequence>::value - 1, Sequence>
{
static_assert(sequence_size<Sequence>::value > 0, "Sequence can not be empty.");
};
template <typename Sequence>
struct sequence_empty
: std::integral_constant
<
bool,
sequence_size<Sequence>::value == 0
>
{};
// Defines type member for the first type in sequence that satisfies UnaryPred.
template
<
typename Sequence,
template <typename> class UnaryPred
>
struct sequence_find_if {};
template
<
typename T, typename ...Ts,
template <typename> class UnaryPred
>
struct sequence_find_if<type_sequence<T, Ts...>, UnaryPred>
: std::conditional
<
UnaryPred<T>::value,
T,
// TODO: prevent instantiation for the rest of the sequence if value is true
typename sequence_find_if<type_sequence<Ts...>, UnaryPred>::type
>
{};
template <template <typename> class UnaryPred>
struct sequence_find_if<type_sequence<>, UnaryPred>
{
// TODO: This is technically incorrect because void can be stored in a type_sequence
using type = void;
};
// sequence_merge<type_sequence<A, B>, type_sequence<C, D>>::type is
// type_sequence<A, B, C, D>
// sequence_merge<integer_sequence<A, B>, integer_sequence<C, D>>::type is
// integer_sequence<A, B, C, D>
template <typename ...Sequences>
struct sequence_merge;
template <typename S>
struct sequence_merge<S>
{
using type = S;
};
template <typename ...T1s, typename ...T2s>
struct sequence_merge<type_sequence<T1s...>, type_sequence<T2s...>>
{
using type = type_sequence<T1s..., T2s...>;
};
template <typename T, T ...I1s, T ...I2s>
struct sequence_merge<std::integer_sequence<T, I1s...>, std::integer_sequence<T, I2s...>>
{
using type = std::integer_sequence<T, I1s..., I2s...>;
};
template <typename S1, typename S2, typename ...Sequences>
struct sequence_merge<S1, S2, Sequences...>
{
using type = typename sequence_merge
<
typename sequence_merge<S1, S2>::type,
typename sequence_merge<Sequences...>::type
>::type;
};
// sequence_combine<type_sequence<A, B>, type_sequence<C, D>>::type is
// type_sequence<type_sequence<A, C>, type_sequence<A, D>,
// type_sequence<B, C>, type_sequence<B, D>>
template <typename Sequence1, typename Sequence2>
struct sequence_combine;
template <typename ...T1s, typename ...T2s>
struct sequence_combine<type_sequence<T1s...>, type_sequence<T2s...>>
{
template <typename T1>
using type_sequence_t = type_sequence<type_sequence<T1, T2s>...>;
using type = typename sequence_merge<type_sequence_t<T1s>...>::type;
};
// sequence_combine<integer_sequence<T, 1, 2>, integer_sequence<T, 3, 4>>::type is
// type_sequence<integer_sequence<T, 1, 3>, integer_sequence<T, 1, 4>,
// integer_sequence<T, 2, 3>, integer_sequence<T, 2, 4>>
template <typename T, T ...I1s, T ...I2s>
struct sequence_combine<std::integer_sequence<T, I1s...>, std::integer_sequence<T, I2s...>>
{
template <T I1>
using type_sequence_t = type_sequence<std::integer_sequence<T, I1, I2s>...>;
using type = typename sequence_merge<type_sequence_t<I1s>...>::type;
};
// Selects least element from a parameter pack based on
// LessPred<T1, T2>::value comparison, similar to std::min_element
template
<
template <typename, typename> class LessPred,
typename ...Ts
>
struct pack_min_element;
template
<
template <typename, typename> class LessPred,
typename T
>
struct pack_min_element<LessPred, T>
{
using type = T;
};
template
<
template <typename, typename> class LessPred,
typename T1, typename T2
>
struct pack_min_element<LessPred, T1, T2>
{
using type = std::conditional_t<LessPred<T1, T2>::value, T1, T2>;
};
template
<
template <typename, typename> class LessPred,
typename T1, typename T2, typename ...Ts
>
struct pack_min_element<LessPred, T1, T2, Ts...>
{
using type = typename pack_min_element
<
LessPred,
typename pack_min_element<LessPred, T1, T2>::type,
typename pack_min_element<LessPred, Ts...>::type
>::type;
};
// Selects least element from a sequence based on
// LessPred<T1, T2>::value comparison, similar to std::min_element
template
<
typename Sequence,
template <typename, typename> class LessPred
>
struct sequence_min_element;
template
<
typename ...Ts,
template <typename, typename> class LessPred
>
struct sequence_min_element<type_sequence<Ts...>, LessPred>
{
using type = typename pack_min_element<LessPred, Ts...>::type;
};
// TODO: Since there are two kinds of parameter packs and sequences there probably should be two
// versions of sequence_find_if as well as parameter_pack_min_element and sequence_min_element.
// Currently these utilities support only types.
} // namespace util
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_UTIL_SEQUENCE_HPP