hyperexponential_distribution.hpp 36.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
/* boost random/hyperexponential_distribution.hpp header file
 *
 * Copyright Marco Guazzone 2014
 * Distributed under the Boost Software License, Version 1.0. (See
 * accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org for most recent version including documentation.
 *
 * Much of the code here taken by boost::math::hyperexponential_distribution.
 * To this end, we would like to thank Paul Bristow and John Maddock for their
 * valuable feedback.
 *
 * \author Marco Guazzone (marco.guazzone@gmail.com)
 */

#ifndef BOOST_RANDOM_HYPEREXPONENTIAL_DISTRIBUTION_HPP
#define BOOST_RANDOM_HYPEREXPONENTIAL_DISTRIBUTION_HPP


#include <boost/config.hpp>
#include <boost/core/cmath.hpp>
#include <boost/random/detail/operators.hpp>
#include <boost/random/detail/vector_io.hpp>
#include <boost/random/discrete_distribution.hpp>
#include <boost/random/exponential_distribution.hpp>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/range/size.hpp>
#include <boost/type_traits/has_pre_increment.hpp>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <iterator>
#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST
# include <initializer_list>
#endif // BOOST_NO_CXX11_HDR_INITIALIZER_LIST
#include <iostream>
#include <limits>
#include <numeric>
#include <vector>


namespace boost { namespace random {

namespace hyperexp_detail {

template <typename T>
std::vector<T>& normalize(std::vector<T>& v)
{
    if (v.size() == 0)
    {
        return v;
    }

    const T sum = std::accumulate(v.begin(), v.end(), static_cast<T>(0));
    T final_sum = 0;

    const typename std::vector<T>::iterator end = --v.end();
    for (typename std::vector<T>::iterator it = v.begin();
         it != end;
         ++it)
    {
        *it /= sum;
        final_sum += *it;
    }
    *end = 1-final_sum; // avoids round off errors thus ensuring the probabilities really sum to 1

    return v;
}

template <typename RealT>
bool check_probabilities(std::vector<RealT> const& probabilities)
{
    const std::size_t n = probabilities.size();
    RealT sum = 0;
    for (std::size_t i = 0; i < n; ++i)
    {
        if (probabilities[i] < 0
            || probabilities[i] > 1
            || !(boost::core::isfinite)(probabilities[i]))
        {
            return false;
        }
        sum += probabilities[i];
    }

    //NOTE: the check below seems to fail on some architectures.
    //      So we commented it.
    //// - We try to keep phase probabilities correctly normalized in the distribution constructors
    //// - However in practice we have to allow for a very slight divergence from a sum of exactly 1:
    ////if (std::abs(sum-1) > (std::numeric_limits<RealT>::epsilon()*2))
    //// This is from Knuth "The Art of Computer Programming: Vol.2, 3rd Ed", and can be used to
    //// check is two numbers are approximately equal
    //const RealT one = 1;
    //const RealT tol = std::numeric_limits<RealT>::epsilon()*2.0;
    //if (std::abs(sum-one) > (std::max(std::abs(sum), std::abs(one))*tol))
    //{
    //    return false;
    //}

    return true;
}

template <typename RealT>
bool check_rates(std::vector<RealT> const& rates)
{
    const std::size_t n = rates.size();
    for (std::size_t i = 0; i < n; ++i)
    {
        if (rates[i] <= 0
            || !(boost::core::isfinite)(rates[i]))
        {
            return false;
        }
    }
    return true;
}

template <typename RealT>
bool check_params(std::vector<RealT> const& probabilities, std::vector<RealT> const& rates)
{
    if (probabilities.size() != rates.size())
    {
        return false;
    }

    return check_probabilities(probabilities)
           && check_rates(rates);
}

} // Namespace hyperexp_detail


/**
 * The hyperexponential distribution is a real-valued continuous distribution
 * with two parameters, the <em>phase probability vector</em> \c probs and the
 * <em>rate vector</em> \c rates.
 *
 * A \f$k\f$-phase hyperexponential distribution is a mixture of \f$k\f$
 * exponential distributions.
 * For this reason, it is also referred to as <em>mixed exponential
 * distribution</em> or <em>parallel \f$k\f$-phase exponential
 * distribution</em>.
 *
 * A \f$k\f$-phase hyperexponential distribution is characterized by two
 * parameters, namely a <em>phase probability vector</em> \f$\mathbf{\alpha}=(\alpha_1,\ldots,\alpha_k)\f$ and a <em>rate vector</em> \f$\mathbf{\lambda}=(\lambda_1,\ldots,\lambda_k)\f$.
 *
 * A \f$k\f$-phase hyperexponential distribution is frequently used in
 * <em>queueing theory</em> to model the distribution of the superposition of
 * \f$k\f$ independent events, like, for instance, the  service time distribution
 * of a queueing station with \f$k\f$ servers in parallel where the \f$i\f$-th
 * server is chosen with probability \f$\alpha_i\f$ and its service time
 * distribution is an exponential distribution with rate \f$\lambda_i\f$
 * (Allen,1990; Papadopolous et al.,1993; Trivedi,2002).
 *
 * For instance, CPUs service-time distribution in a computing system has often
 * been observed to possess such a distribution (Rosin,1965).
 * Also, the arrival of different types of customer to a single queueing station
 * is often modeled as a hyperexponential distribution (Papadopolous et al.,1993).
 * Similarly, if a product manufactured in several parallel assemply lines and
 * the outputs are merged, the failure density of the overall product is likely
 * to be hyperexponential (Trivedi,2002).
 *
 * Finally, since the hyperexponential distribution exhibits a high Coefficient
 * of Variation (CoV), that is a CoV > 1, it is especially suited to fit
 * empirical data with large CoV (Feitelson,2014; Wolski et al.,2013) and to
 * approximate <em>long-tail probability distributions</em> (Feldmann et al.,1998).
 *
 * See (Boost,2014) for more information and examples.
 *
 * A \f$k\f$-phase hyperexponential distribution has a probability density
 * function
 * \f[
 *  f(x) = \sum_{i=1}^k \alpha_i \lambda_i e^{-x\lambda_i}
 * \f]
 * where:
 * - \f$k\f$ is the <em>number of phases</em> and also the size of the input
 *   vector parameters,
 * - \f$\mathbf{\alpha}=(\alpha_1,\ldots,\alpha_k)\f$ is the <em>phase probability
 *   vector</em> parameter, and
 * - \f$\mathbf{\lambda}=(\lambda_1,\ldots,\lambda_k)\f$ is the <em>rate vector</em>
 *   parameter.
 * .
 *
 * Given a \f$k\f$-phase hyperexponential distribution with phase probability
 * vector \f$\mathbf{\alpha}\f$ and rate vector \f$\mathbf{\lambda}\f$, the
 * random variate generation algorithm consists of the following steps (Tyszer,1999):
 * -# Generate a random variable \f$U\f$ uniformly distribution on the interval \f$(0,1)\f$.
 * -# Use \f$U\f$ to select the appropriate \f$\lambda_i\f$ (e.g., the
 *  <em>alias method</em> can possibly be used for this step).
 * -# Generate an exponentially distributed random variable \f$X\f$ with rate parameter \f$\lambda_i\f$.
 * -# Return \f$X\f$.
 * .
 *
 * References:
 * -# A.O. Allen, <em>Probability, Statistics, and Queuing Theory with Computer Science Applications, Second Edition</em>, Academic Press, 1990.
 * -# Boost C++ Libraries, <em>Boost.Math / Statistical Distributions: Hyperexponential Distribution</em>, Online: http://www.boost.org/doc/libs/release/libs/math/doc/html/dist.html , 2014.
 * -# D.G. Feitelson, <em>Workload Modeling for Computer Systems Performance Evaluation</em>, Cambridge University Press, 2014
 * -# A. Feldmann and W. Whitt, <em>Fitting mixtures of exponentials to long-tail distributions to analyze network performance models</em>, Performance Evaluation 31(3-4):245, doi:10.1016/S0166-5316(97)00003-5, 1998.
 * -# H.T. Papadopolous, C. Heavey and J. Browne, <em>Queueing Theory in Manufacturing Systems Analysis and Design</em>, Chapman & Hall/CRC, 1993, p. 35.
 * -# R.F. Rosin, <em>Determining a computing center environment</em>, Communications of the ACM 8(7):463-468, 1965.
 * -# K.S. Trivedi, <em>Probability and Statistics with Reliability, Queueing, and Computer Science Applications</em>, John Wiley & Sons, Inc., 2002.
 * -# J. Tyszer, <em>Object-Oriented Computer Simulation of Discrete-Event Systems</em>, Springer, 1999.
 * -# Wikipedia, <em>Hyperexponential Distribution</em>, Online: http://en.wikipedia.org/wiki/Hyperexponential_distribution , 2014.
 * -# Wolfram Mathematica, <em>Hyperexponential Distribution</em>, Online: http://reference.wolfram.com/language/ref/HyperexponentialDistribution.html , 2014.
 * .
 *
 * \author Marco Guazzone (marco.guazzone@gmail.com)
 */
template<class RealT = double>
class hyperexponential_distribution
{
    public: typedef RealT result_type;
    public: typedef RealT input_type;


    /**
     * The parameters of a hyperexponential distribution.
     *
     * Stores the <em>phase probability vector</em> and the <em>rate vector</em>
     * of the hyperexponential distribution.
     *
     * \author Marco Guazzone (marco.guazzone@gmail.com)
     */
    public: class param_type
    {
        public: typedef hyperexponential_distribution distribution_type;

        /**
         * Constructs a \c param_type with the default parameters
         * of the distribution.
         */
        public: param_type()
        : probs_(1, 1),
          rates_(1, 1)
        {
        }

        /**
         * Constructs a \c param_type from the <em>phase probability vector</em>
         * and <em>rate vector</em> parameters of the distribution.
         *
         * The <em>phase probability vector</em> parameter is given by the range
         * defined by [\a prob_first, \a prob_last) iterator pair, and the
         * <em>rate vector</em> parameter is given by the range defined by
         * [\a rate_first, \a rate_last) iterator pair.
         *
         * \tparam ProbIterT Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]).
         * \tparam RateIterT Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]).
         *
         * \param prob_first The iterator to the beginning of the range of non-negative real elements representing the phase probabilities; if elements don't sum to 1, they are normalized.
         * \param prob_last The iterator to the ending of the range of non-negative real elements representing the phase probabilities; if elements don't sum to 1, they are normalized.
         * \param rate_first The iterator to the beginning of the range of non-negative real elements representing the rates.
         * \param rate_last The iterator to the ending of the range of non-negative real elements representing the rates.
         *
         * References:
         * -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014
         * .
         */
        public: template <typename ProbIterT, typename RateIterT>
                param_type(ProbIterT prob_first, ProbIterT prob_last,
                           RateIterT rate_first, RateIterT rate_last)
        : probs_(prob_first, prob_last),
          rates_(rate_first, rate_last)
        {
            hyperexp_detail::normalize(probs_);

            assert( hyperexp_detail::check_params(probs_, rates_) );
        }

        /**
         * Constructs a \c param_type from the <em>phase probability vector</em>
         * and <em>rate vector</em> parameters of the distribution.
         *
         * The <em>phase probability vector</em> parameter is given by the range
         * defined by \a prob_range, and the <em>rate vector</em> parameter is
         * given by the range defined by \a rate_range.
         *
         * \tparam ProbRangeT Must meet the requirements of <a href="boost:/libs/range/doc/html/range/concepts.html">Range</a> concept.
         * \tparam RateRangeT Must meet the requirements of <a href="boost:/libs/range/doc/html/range/concepts.html">Range</a> concept.
         *
         * \param prob_range The range of non-negative real elements representing the phase probabilities; if elements don't sum to 1, they are normalized.
         * \param rate_range The range of positive real elements representing the rates.
         *
         * \note
         *  The final \c disable_if parameter is an implementation detail that
         *  differentiates between this two argument constructor and the
         *  iterator-based two argument constructor described below.
         */
        //  We SFINAE this out of existance if either argument type is
        //  incrementable as in that case the type is probably an iterator:
        public: template <typename ProbRangeT, typename RateRangeT>
                param_type(ProbRangeT const& prob_range,
                           RateRangeT const& rate_range,
                           typename boost::disable_if_c<boost::has_pre_increment<ProbRangeT>::value || boost::has_pre_increment<RateRangeT>::value>::type* = 0)
        : probs_(boost::begin(prob_range), boost::end(prob_range)),
          rates_(boost::begin(rate_range), boost::end(rate_range))
        {
            hyperexp_detail::normalize(probs_);

            assert( hyperexp_detail::check_params(probs_, rates_) );
        }

        /**
         * Constructs a \c param_type from the <em>rate vector</em> parameter of
         * the distribution and with equal phase probabilities.
         *
         * The <em>rate vector</em> parameter is given by the range defined by
         * [\a rate_first, \a rate_last) iterator pair, and the <em>phase
         * probability vector</em> parameter is set to the equal phase
         * probabilities (i.e., to a vector of the same length \f$k\f$ of the
         * <em>rate vector</em> and with each element set to \f$1.0/k\f$).
         *
         * \tparam RateIterT Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]).
         * \tparam RateIterT2 Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]).
         *
         * \param rate_first The iterator to the beginning of the range of non-negative real elements representing the rates.
         * \param rate_last The iterator to the ending of the range of non-negative real elements representing the rates.
         *
         * \note
         *  The final \c disable_if parameter is an implementation detail that
         *  differentiates between this two argument constructor and the
         *  range-based two argument constructor described above.
         *
         * References:
         * -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014
         * .
         */
        //  We SFINAE this out of existance if the argument type is
        //  incrementable as in that case the type is probably an iterator.
        public: template <typename RateIterT>
                param_type(RateIterT rate_first, 
                           RateIterT rate_last,  
                           typename boost::enable_if_c<boost::has_pre_increment<RateIterT>::value>::type* = 0)
        : probs_(std::distance(rate_first, rate_last), 1), // will be normalized below
          rates_(rate_first, rate_last)
        {
            assert(probs_.size() == rates_.size());
        }

        /**
         * Constructs a @c param_type from the "rates" parameters
         * of the distribution and with equal phase probabilities.
         *
         * The <em>rate vector</em> parameter is given by the range defined by
         * \a rate_range, and the <em>phase probability vector</em> parameter is
         * set to the equal phase probabilities (i.e., to a vector of the same
         * length \f$k\f$ of the <em>rate vector</em> and with each element set
         * to \f$1.0/k\f$).
         *
         * \tparam RateRangeT Must meet the requirements of <a href="boost:/libs/range/doc/html/range/concepts.html">Range</a> concept.
         *
         * \param rate_range The range of positive real elements representing the rates.
         */
        public: template <typename RateRangeT>
                param_type(RateRangeT const& rate_range)
        : probs_(boost::size(rate_range), 1), // Will be normalized below
          rates_(boost::begin(rate_range), boost::end(rate_range))
        {
            hyperexp_detail::normalize(probs_);

            assert( hyperexp_detail::check_params(probs_, rates_) );
        }

#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST
        /**
         * Constructs a \c param_type from the <em>phase probability vector</em>
         * and <em>rate vector</em> parameters of the distribution.
         *
         * The <em>phase probability vector</em> parameter is given by the
         * <em>brace-init-list</em> (ISO,2014,sec. 8.5.4 [dcl.init.list])
         * defined by \a l1, and the <em>rate vector</em> parameter is given by the
         * <em>brace-init-list</em> (ISO,2014,sec. 8.5.4 [dcl.init.list])
         * defined by \a l2.
         *
         * \param l1 The initializer list for inizializing the phase probability vector.
         * \param l2 The initializer list for inizializing the rate vector.
         *
         * References:
         * -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014
         * .
         */
        public: param_type(std::initializer_list<RealT> l1, std::initializer_list<RealT> l2)
        : probs_(l1.begin(), l1.end()),
          rates_(l2.begin(), l2.end())
        {
            hyperexp_detail::normalize(probs_);

            assert( hyperexp_detail::check_params(probs_, rates_) );
        }

        /**
         * Constructs a \c param_type from the <em>rate vector</em> parameter
         * of the distribution and with equal phase probabilities.
         *
         * The <em>rate vector</em> parameter is given by the
         * <em>brace-init-list</em> (ISO,2014,sec. 8.5.4 [dcl.init.list])
         * defined by \a l1, and the <em>phase probability vector</em> parameter is
         * set to the equal phase probabilities (i.e., to a vector of the same
         * length \f$k\f$ of the <em>rate vector</em> and with each element set
         * to \f$1.0/k\f$).
         *
         * \param l1 The initializer list for inizializing the rate vector.
         *
         * References:
         * -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014
         * .
         */
        public: param_type(std::initializer_list<RealT> l1)
        : probs_(std::distance(l1.begin(), l1.end()), 1), // Will be normalized below
          rates_(l1.begin(), l1.end())
        {
            hyperexp_detail::normalize(probs_);

            assert( hyperexp_detail::check_params(probs_, rates_) );
        }
#endif // BOOST_NO_CXX11_HDR_INITIALIZER_LIST

        /**
         * Gets the <em>phase probability vector</em> parameter of the distribtuion.
         *
         * \return The <em>phase probability vector</em> parameter of the distribution.
         *
         * \note
         *  The returned probabilities are the normalized version of the ones
         *  passed at construction time.
         */
        public: std::vector<RealT> probabilities() const
        {
            return probs_;
        }

        /**
         * Gets the <em>rate vector</em> parameter of the distribtuion.
         *
         * \return The <em>rate vector</em> parameter of the distribution.
         */
        public: std::vector<RealT> rates() const
        {
            return rates_;
        }

        /** Writes a \c param_type to a \c std::ostream. */
        public: BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, param)
        {
            detail::print_vector(os, param.probs_);
            os << ' ';
            detail::print_vector(os, param.rates_);

            return os;
        }

        /** Reads a \c param_type from a \c std::istream. */
        public: BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, param)
        {
            // NOTE: if \c std::ios_base::exceptions is set, the code below may
            //       throw in case of a I/O failure.
            //       To prevent leaving the state of \c param inconsistent:
            //       - if an exception is thrown, the state of \c param is left
            //         unchanged (i.e., is the same as the one at the beginning
            //         of the function's execution), and
            //       - the state of \c param only after reading the whole input.

            std::vector<RealT> probs;
            std::vector<RealT> rates;

            // Reads probability and rate vectors
            detail::read_vector(is, probs);
            if (!is)
            {
                return is;
            }
            is >> std::ws;
            detail::read_vector(is, rates);
            if (!is)
            {
                return is;
            }

            // Update the state of the param_type object
            if (probs.size() > 0)
            {
                param.probs_.swap(probs);
                probs.clear();
            }
            if (rates.size() > 0)
            {
                param.rates_.swap(rates);
                rates.clear();
            }

            // Adjust vector sizes (if needed)
            if (param.probs_.size() != param.rates_.size()
                || param.probs_.size() == 0)
            {
                const std::size_t np = param.probs_.size();
                const std::size_t nr = param.rates_.size();

                if (np > nr)
                {
                    param.rates_.resize(np, 1);
                }
                else if (nr > np)
                {
                    param.probs_.resize(nr, 1);
                }
                else
                {
                    param.probs_.resize(1, 1);
                    param.rates_.resize(1, 1);
                }
            }

            // Normalize probabilities
            // NOTE: this cannot be done earlier since the probability vector
            //       can be changed due to size conformance
            hyperexp_detail::normalize(param.probs_);

            //post: vector size conformance
            assert(param.probs_.size() == param.rates_.size());

            return is;
        }

        /** Returns true if the two sets of parameters are the same. */
        public: BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs)
        {
            return lhs.probs_ == rhs.probs_
                   && lhs.rates_ == rhs.rates_;
        }
        
        /** Returns true if the two sets of parameters are the different. */
        public: BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type)


        private: std::vector<RealT> probs_; ///< The <em>phase probability vector</em> parameter of the distribution
        private: std::vector<RealT> rates_; ///< The <em>rate vector</em> parameter of the distribution
    }; // param_type


    /**
     * Constructs a 1-phase \c hyperexponential_distribution (i.e., an
     * exponential distribution) with rate 1.
     */
    public: hyperexponential_distribution()
    : dd_(std::vector<RealT>(1, 1)),
      rates_(1, 1)
    {
        // empty
    }

    /**
     * Constructs a \c hyperexponential_distribution from the <em>phase
     * probability vector</em> and <em>rate vector</em> parameters of the
     * distribution.
     *
     * The <em>phase probability vector</em> parameter is given by the range
     * defined by [\a prob_first, \a prob_last) iterator pair, and the
     * <em>rate vector</em> parameter is given by the range defined by
     * [\a rate_first, \a rate_last) iterator pair.
     *
     * \tparam ProbIterT Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]).
     * \tparam RateIterT Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]).
     *
     * \param prob_first The iterator to the beginning of the range of non-negative real elements representing the phase probabilities; if elements don't sum to 1, they are normalized.
     * \param prob_last The iterator to the ending of the range of non-negative real elements representing the phase probabilities; if elements don't sum to 1, they are normalized.
     * \param rate_first The iterator to the beginning of the range of non-negative real elements representing the rates.
     * \param rate_last The iterator to the ending of the range of non-negative real elements representing the rates.
     *
     * References:
     * -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014
     * .
     */
    public: template <typename ProbIterT, typename RateIterT>
            hyperexponential_distribution(ProbIterT prob_first, ProbIterT prob_last,
                                          RateIterT rate_first, RateIterT rate_last)
    : dd_(prob_first, prob_last),
      rates_(rate_first, rate_last)
    {
        assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) );
    }

    /**
     * Constructs a \c hyperexponential_distribution from the <em>phase
     * probability vector</em> and <em>rate vector</em> parameters of the
     * distribution.
     *
     * The <em>phase probability vector</em> parameter is given by the range
     * defined by \a prob_range, and the <em>rate vector</em> parameter is
     * given by the range defined by \a rate_range.
     *
     * \tparam ProbRangeT Must meet the requirements of <a href="boost:/libs/range/doc/html/range/concepts.html">Range</a> concept.
     * \tparam RateRangeT Must meet the requirements of <a href="boost:/libs/range/doc/html/range/concepts.html">Range</a> concept.
     *
     * \param prob_range The range of non-negative real elements representing the phase probabilities; if elements don't sum to 1, they are normalized.
     * \param rate_range The range of positive real elements representing the rates.
     *
     * \note
     *  The final \c disable_if parameter is an implementation detail that
     *  differentiates between this two argument constructor and the
     *  iterator-based two argument constructor described below.
     */
    //  We SFINAE this out of existance if either argument type is
    //  incrementable as in that case the type is probably an iterator:
    public: template <typename ProbRangeT, typename RateRangeT>
            hyperexponential_distribution(ProbRangeT const& prob_range,
                                          RateRangeT const& rate_range,
                                          typename boost::disable_if_c<boost::has_pre_increment<ProbRangeT>::value || boost::has_pre_increment<RateRangeT>::value>::type* = 0)
    : dd_(prob_range),
      rates_(boost::begin(rate_range), boost::end(rate_range))
    {
        assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) );
    }

    /**
     * Constructs a \c hyperexponential_distribution from the <em>rate
     * vector</em> parameter of the distribution and with equal phase
     * probabilities.
     *
     * The <em>rate vector</em> parameter is given by the range defined by
     * [\a rate_first, \a rate_last) iterator pair, and the <em>phase
     * probability vector</em> parameter is set to the equal phase
     * probabilities (i.e., to a vector of the same length \f$k\f$ of the
     * <em>rate vector</em> and with each element set to \f$1.0/k\f$).
     *
     * \tparam RateIterT Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]).
     * \tparam RateIterT2 Must meet the requirements of \c InputIterator concept (ISO,2014,sec. 24.2.3 [input.iterators]).
     *
     * \param rate_first The iterator to the beginning of the range of non-negative real elements representing the rates.
     * \param rate_last The iterator to the ending of the range of non-negative real elements representing the rates.
     *
     * \note
     *  The final \c disable_if parameter is an implementation detail that
     *  differentiates between this two argument constructor and the
     *  range-based two argument constructor described above.
     *
     * References:
     * -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014
     * .
     */
    //  We SFINAE this out of existance if the argument type is
    //  incrementable as in that case the type is probably an iterator.
    public: template <typename RateIterT>
            hyperexponential_distribution(RateIterT rate_first,
                                          RateIterT rate_last,
                                          typename boost::enable_if_c<boost::has_pre_increment<RateIterT>::value>::type* = 0)
    : dd_(std::vector<RealT>(std::distance(rate_first, rate_last), 1)),
      rates_(rate_first, rate_last)
    {
        assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) );
    }

    /**
     * Constructs a @c param_type from the "rates" parameters
     * of the distribution and with equal phase probabilities.
     *
     * The <em>rate vector</em> parameter is given by the range defined by
     * \a rate_range, and the <em>phase probability vector</em> parameter is
     * set to the equal phase probabilities (i.e., to a vector of the same
     * length \f$k\f$ of the <em>rate vector</em> and with each element set
     * to \f$1.0/k\f$).
     *
     * \tparam RateRangeT Must meet the requirements of <a href="boost:/libs/range/doc/html/range/concepts.html">Range</a> concept.
     *
     * \param rate_range The range of positive real elements representing the rates.
     */
    public: template <typename RateRangeT>
            hyperexponential_distribution(RateRangeT const& rate_range)
    : dd_(std::vector<RealT>(boost::size(rate_range), 1)),
      rates_(boost::begin(rate_range), boost::end(rate_range))
    {
        assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) );
    }

    /**
     * Constructs a \c hyperexponential_distribution from its parameters.
     *
     * \param param The parameters of the distribution.
     */
    public: explicit hyperexponential_distribution(param_type const& param)
    : dd_(param.probabilities()),
      rates_(param.rates())
    {
        assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) );
    }

#ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST
    /**
     * Constructs a \c hyperexponential_distribution from the <em>phase
     * probability vector</em> and <em>rate vector</em> parameters of the
     * distribution.
     *
     * The <em>phase probability vector</em> parameter is given by the
     * <em>brace-init-list</em> (ISO,2014,sec. 8.5.4 [dcl.init.list])
     * defined by \a l1, and the <em>rate vector</em> parameter is given by the
     * <em>brace-init-list</em> (ISO,2014,sec. 8.5.4 [dcl.init.list])
     * defined by \a l2.
     *
     * \param l1 The initializer list for inizializing the phase probability vector.
     * \param l2 The initializer list for inizializing the rate vector.
     *
     * References:
     * -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014
     * .
     */
    public: hyperexponential_distribution(std::initializer_list<RealT> const& l1, std::initializer_list<RealT> const& l2)
    : dd_(l1.begin(), l1.end()),
      rates_(l2.begin(), l2.end())
    {
        assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) );
    }

    /**
     * Constructs a \c hyperexponential_distribution from the <em>rate
     * vector</em> parameter of the distribution and with equal phase
     * probabilities.
     *
     * The <em>rate vector</em> parameter is given by the
     * <em>brace-init-list</em> (ISO,2014,sec. 8.5.4 [dcl.init.list])
     * defined by \a l1, and the <em>phase probability vector</em> parameter is
     * set to the equal phase probabilities (i.e., to a vector of the same
     * length \f$k\f$ of the <em>rate vector</em> and with each element set
     * to \f$1.0/k\f$).
     *
     * \param l1 The initializer list for inizializing the rate vector.
     *
     * References:
     * -# ISO, <em>ISO/IEC 14882-2014: Information technology - Programming languages - C++</em>, 2014
     * .
     */
    public: hyperexponential_distribution(std::initializer_list<RealT> const& l1)
    : dd_(std::vector<RealT>(std::distance(l1.begin(), l1.end()), 1)),
      rates_(l1.begin(), l1.end())
    {
        assert( hyperexp_detail::check_params(dd_.probabilities(), rates_) );
    }
#endif

    /**
     * Gets a random variate distributed according to the
     * hyperexponential distribution.
     *
     * \tparam URNG Must meet the requirements of \uniform_random_number_generator.
     *
     * \param urng A uniform random number generator object.
     *
     * \return A random variate distributed according to the hyperexponential distribution.
     */
    public: template<class URNG>\
            RealT operator()(URNG& urng) const
    {
        const int i = dd_(urng);

        return boost::random::exponential_distribution<RealT>(rates_[i])(urng);
    }

    /**
     * Gets a random variate distributed according to the hyperexponential
     * distribution with parameters specified by \c param.
     *
     * \tparam URNG Must meet the requirements of \uniform_random_number_generator.
     *
     * \param urng A uniform random number generator object.
     * \param param A distribution parameter object.
     *
     * \return A random variate distributed according to the hyperexponential distribution.
     *  distribution with parameters specified by \c param.
     */
    public: template<class URNG>
            RealT operator()(URNG& urng, const param_type& param) const
    {
        return hyperexponential_distribution(param)(urng);
    }

    /** Returns the number of phases of the distribution. */
    public: std::size_t num_phases() const
    {
        return rates_.size();
    }

    /** Returns the <em>phase probability vector</em> parameter of the distribution. */
    public: std::vector<RealT> probabilities() const
    {
        return dd_.probabilities();
    }

    /** Returns the <em>rate vector</em> parameter of the distribution. */
    public: std::vector<RealT> rates() const
    {
        return rates_;
    }

    /** Returns the smallest value that the distribution can produce. */
    public: RealT min BOOST_PREVENT_MACRO_SUBSTITUTION () const
    {
        return 0;
    }

    /** Returns the largest value that the distribution can produce. */
    public: RealT max BOOST_PREVENT_MACRO_SUBSTITUTION () const
    {
        return std::numeric_limits<RealT>::infinity();
    }

    /** Returns the parameters of the distribution. */
    public: param_type param() const
    {
        std::vector<RealT> probs = dd_.probabilities();

        return param_type(probs.begin(), probs.end(), rates_.begin(), rates_.end());
    }

    /** Sets the parameters of the distribution. */
    public: void param(param_type const& param)
    {
        dd_.param(typename boost::random::discrete_distribution<int,RealT>::param_type(param.probabilities()));
        rates_ = param.rates();
    }

    /**
     * Effects: Subsequent uses of the distribution do not depend
     * on values produced by any engine prior to invoking reset.
     */
    public: void reset()
    {
        // empty
    }

    /** Writes an @c hyperexponential_distribution to a @c std::ostream. */
    public: BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, hyperexponential_distribution, hd)
    {
        os << hd.param();
        return os;
    }

    /** Reads an @c hyperexponential_distribution from a @c std::istream. */
    public: BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, hyperexponential_distribution, hd)
    {
        param_type param;
        if(is >> param)
        {
            hd.param(param);
        }
        return is;
    }

    /**
     * Returns true if the two instances of @c hyperexponential_distribution will
     * return identical sequences of values given equal generators.
     */
    public: BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(hyperexponential_distribution, lhs, rhs)
    {
        return lhs.dd_ == rhs.dd_
               && lhs.rates_ == rhs.rates_;
    }
    
    /**
     * Returns true if the two instances of @c hyperexponential_distribution will
     * return different sequences of values given equal generators.
     */
    public: BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(hyperexponential_distribution)


    private: boost::random::discrete_distribution<int,RealT> dd_; ///< The \c discrete_distribution used to sample the phase probability and choose the rate
    private: std::vector<RealT> rates_; ///< The <em>rate vector</em> parameter of the distribution
}; // hyperexponential_distribution

}} // namespace boost::random


#endif // BOOST_RANDOM_HYPEREXPONENTIAL_DISTRIBUTION_HPP