algorithm.hpp 24.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
// Copyright (C) 2016-2018 T. Zachary Laine
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_YAP_ALGORITHM_HPP_INCLUDED
#define BOOST_YAP_ALGORITHM_HPP_INCLUDED

#include <boost/yap/algorithm_fwd.hpp>
#include <boost/yap/user_macros.hpp>
#include <boost/yap/detail/algorithm.hpp>

#include <boost/hana/size.hpp>
#include <boost/hana/comparing.hpp>


namespace boost { namespace yap {

#ifdef BOOST_NO_CONSTEXPR_IF

    namespace detail {

        template<typename Expr, bool MutableRvalueRef>
        struct deref_impl
        {
            constexpr decltype(auto) operator()(Expr && expr)
            {
                return std::move(*expr.elements[hana::llong_c<0>]);
            }
        };

        template<typename Expr>
        struct deref_impl<Expr, false>
        {
            constexpr decltype(auto) operator()(Expr && expr)
            {
                return *expr.elements[hana::llong_c<0>];
            }
        };
    }

#endif

    /** "Dereferences" a reference-expression, forwarding its referent to
       the caller. */
    template<typename Expr>
    constexpr decltype(auto) deref(Expr && expr)
    {
        static_assert(
            is_expr<Expr>::value, "deref() is only defined for expressions.");

        static_assert(
            detail::remove_cv_ref_t<Expr>::kind == expr_kind::expr_ref,
            "deref() is only defined for expr_ref-kind expressions.");

#ifdef BOOST_NO_CONSTEXPR_IF
        return detail::deref_impl < Expr,
               std::is_rvalue_reference<Expr>::value &&
                   !std::is_const<std::remove_reference_t<Expr>>::value >
                       {}(static_cast<Expr &&>(expr));
#else
        using namespace hana::literals;
        if constexpr (
            std::is_rvalue_reference<Expr>::value &&
            !std::is_const<std::remove_reference_t<Expr>>::value) {
            return std::move(*expr.elements[0_c]);
        } else {
            return *expr.elements[0_c];
        }
#endif
    }

    namespace detail {

        template<typename Tuple, long long I>
        struct lvalue_ref_ith_element
            : std::is_lvalue_reference<decltype(
                  std::declval<Tuple>()[hana::llong<I>{}])>
        {
        };

#ifdef BOOST_NO_CONSTEXPR_IF

        template<bool ValueOfTerminalsOnly, typename T>
        constexpr decltype(auto) value_impl(T && x);

        template<
            typename T,
            bool IsExprRef,
            bool ValueOfTerminalsOnly,
            bool TakeValue,
            bool IsLvalueRef>
        struct value_expr_impl;

        template<
            typename T,
            bool ValueOfTerminalsOnly,
            bool TakeValue,
            bool IsLvalueRef>
        struct value_expr_impl<
            T,
            true,
            ValueOfTerminalsOnly,
            TakeValue,
            IsLvalueRef>
        {
            constexpr decltype(auto) operator()(T && x)
            {
                return ::boost::yap::detail::value_impl<ValueOfTerminalsOnly>(
                    ::boost::yap::deref(static_cast<T &&>(x)));
            }
        };

        template<typename T, bool ValueOfTerminalsOnly>
        struct value_expr_impl<T, false, ValueOfTerminalsOnly, true, true>
        {
            constexpr decltype(auto) operator()(T && x)
            {
                return x.elements[hana::llong_c<0>];
            }
        };

        template<typename T, bool ValueOfTerminalsOnly>
        struct value_expr_impl<T, false, ValueOfTerminalsOnly, true, false>
        {
            constexpr decltype(auto) operator()(T && x)
            {
                return std::move(x.elements[hana::llong_c<0>]);
            }
        };

        template<typename T, bool ValueOfTerminalsOnly, bool IsLvalueRef>
        struct value_expr_impl<
            T,
            false,
            ValueOfTerminalsOnly,
            false,
            IsLvalueRef>
        {
            constexpr decltype(auto) operator()(T && x)
            {
                return static_cast<T &&>(x);
            }
        };

        template<typename T, bool IsExpr, bool ValueOfTerminalsOnly>
        struct value_impl_t
        {
            constexpr decltype(auto) operator()(T && x)
            {
                constexpr expr_kind kind = detail::remove_cv_ref_t<T>::kind;
                constexpr detail::expr_arity arity = detail::arity_of<kind>();
                return value_expr_impl < T, kind == expr_kind::expr_ref,
                       ValueOfTerminalsOnly,
                       (ValueOfTerminalsOnly && kind == expr_kind::terminal) ||
                           (!ValueOfTerminalsOnly &&
                            arity == detail::expr_arity::one),
                       std::is_lvalue_reference<T>::value ||
                           detail::lvalue_ref_ith_element<
                               decltype(x.elements),
                               0>::value > {}(static_cast<T &&>(x));
            }
        };

        template<typename T, bool ValueOfTerminalsOnly>
        struct value_impl_t<T, false, ValueOfTerminalsOnly>
        {
            constexpr decltype(auto) operator()(T && x)
            {
                return static_cast<T &&>(x);
            }
        };

        template<bool ValueOfTerminalsOnly, typename T>
        constexpr decltype(auto) value_impl(T && x)
        {
            return detail::
                value_impl_t<T, is_expr<T>::value, ValueOfTerminalsOnly>{}(
                    static_cast<T &&>(x));
        }

#else

        template<bool ValueOfTerminalsOnly, typename T>
        constexpr decltype(auto) value_impl(T && x)
        {
            if constexpr (is_expr<T>::value) {
                using namespace hana::literals;
                constexpr expr_kind kind = remove_cv_ref_t<T>::kind;
                constexpr expr_arity arity = arity_of<kind>();
                if constexpr (kind == expr_kind::expr_ref) {
                    return value_impl<ValueOfTerminalsOnly>(
                        ::boost::yap::deref(static_cast<T &&>(x)));
                } else if constexpr (
                    kind == expr_kind::terminal ||
                    (!ValueOfTerminalsOnly && arity == expr_arity::one)) {
                    if constexpr (
                        std::is_lvalue_reference<T>::value ||
                        detail::
                            lvalue_ref_ith_element<decltype(x.elements), 0>{}) {
                        return x.elements[0_c];
                    } else {
                        return std::move(x.elements[0_c]);
                    }
                } else {
                    return static_cast<T &&>(x);
                }
            } else {
                return static_cast<T &&>(x);
            }
        }

#endif
    }

    /** Forwards the sole element of \a x to the caller, possibly calling
        <code>deref()</code> first if \a x is a reference expression, or
        forwards \a x to the caller unchanged.

        More formally:

        - If \a x is not an expression, \a x is forwarded to the caller.

        - Otherwise, if \a x is a reference expression, the result is
        <code>value(deref(x))</code>.

        - Otherwise, if \a x is an expression with only one value (a unary
        expression or a terminal expression), the result is the forwarded
        first element of \a x.

        - Otherwise, \a x is forwarded to the caller. */
    template<typename T>
    constexpr decltype(auto) value(T && x)
    {
        return detail::value_impl<false>(static_cast<T &&>(x));
    }

#ifdef BOOST_NO_CONSTEXPR_IF

    template<typename Expr, typename I>
    constexpr decltype(auto) get(Expr && expr, I const & i);

    namespace detail {

        template<long long I, typename Expr, bool IsExpr, bool IsLvalueRef>
        struct get_impl;

        template<long long I, typename Expr, bool IsLvalueRef>
        struct get_impl<I, Expr, true, IsLvalueRef>
        {
            constexpr decltype(auto) operator()(Expr && expr, hana::llong<I> i)
            {
                return ::boost::yap::get(
                    ::boost::yap::deref(static_cast<Expr &&>(expr)), i);
            }
        };

        template<long long I, typename Expr>
        struct get_impl<I, Expr, false, true>
        {
            constexpr decltype(auto) operator()(Expr && expr, hana::llong<I> i)
            {
                return expr.elements[i];
            }
        };

        template<long long I, typename Expr>
        struct get_impl<I, Expr, false, false>
        {
            constexpr decltype(auto) operator()(Expr && expr, hana::llong<I> i)
            {
                return std::move(expr.elements[i]);
            }
        };
    }

#endif

    /** Forwards the <i>i</i>-th element of \a expr to the caller.  If \a
       expr is a reference expression, the result is <code>get(deref(expr),
        i)</code>.

        \note <code>get()</code> is only valid if \a Expr is an expression.
    */
    template<typename Expr, typename I>
    constexpr decltype(auto) get(Expr && expr, I const & i)
    {
        static_assert(
            is_expr<Expr>::value, "get() is only defined for expressions.");
        static_assert(
            hana::IntegralConstant<I>::value,
            "'i' must be an IntegralConstant");

        constexpr expr_kind kind = detail::remove_cv_ref_t<Expr>::kind;

        static_assert(
            kind == expr_kind::expr_ref ||
                (0 <= I::value &&
                 I::value < decltype(hana::size(expr.elements))::value),
            "In get(expr, I), I must be a valid index into expr's tuple "
            "elements.");

#ifdef BOOST_NO_CONSTEXPR_IF
        return detail::get_impl<
            I::value,
            Expr,
            kind == expr_kind::expr_ref,
            std::is_lvalue_reference<Expr>::value>{}(static_cast<Expr &&>(expr), i);
#else
        using namespace hana::literals;
        if constexpr (kind == expr_kind::expr_ref) {
            return ::boost::yap::get(
                ::boost::yap::deref(static_cast<Expr &&>(expr)), i);
        } else {
            if constexpr (std::is_lvalue_reference<Expr>::value) {
                return expr.elements[i];
            } else {
                return std::move(expr.elements[i]);
            }
        }
#endif
    }

    /** Returns <code>get(expr, boost::hana::llong_c<I>)</code>. */
    template<long long I, typename Expr>
    constexpr decltype(auto) get_c(Expr && expr)
    {
        return ::boost::yap::get(static_cast<Expr &&>(expr), hana::llong_c<I>);
    }

    /** Returns the left operand in a binary operator expression.

        Equivalent to <code>get(expr, 0_c)</code>.

        \note <code>left()</code> is only valid if \a Expr is a binary
        operator expression.
    */
    template<typename Expr>
    constexpr decltype(auto) left(Expr && expr)
    {
        using namespace hana::literals;
        return ::boost::yap::get(static_cast<Expr &&>(expr), 0_c);
        constexpr expr_kind kind = detail::remove_cv_ref_t<Expr>::kind;
        static_assert(
            kind == expr_kind::expr_ref ||
                detail::arity_of<kind>() == detail::expr_arity::two,
            "left() is only defined for binary expressions.");
    }

    /** Returns the right operand in a binary operator expression.

        Equivalent to <code>get(expr, 1_c)</code>.

        \note <code>right()</code> is only valid if \a Expr is a binary
        operator expression.
    */
    template<typename Expr>
    constexpr decltype(auto) right(Expr && expr)
    {
        using namespace hana::literals;
        return ::boost::yap::get(static_cast<Expr &&>(expr), 1_c);
        constexpr expr_kind kind = detail::remove_cv_ref_t<Expr>::kind;
        static_assert(
            kind == expr_kind::expr_ref ||
                detail::arity_of<kind>() == detail::expr_arity::two,
            "right() is only defined for binary expressions.");
    }

    /** Returns the condition expression in an if_else expression.

        Equivalent to <code>get(expr, 0_c)</code>.

        \note <code>cond()</code> is only valid if \a Expr is an
        <code>expr_kind::if_else</code> expression.
    */
    template<typename Expr>
    constexpr decltype(auto) cond(Expr && expr)
    {
        using namespace hana::literals;
        return ::boost::yap::get(static_cast<Expr &&>(expr), 0_c);
        constexpr expr_kind kind = detail::remove_cv_ref_t<Expr>::kind;
        static_assert(
            kind == expr_kind::expr_ref || kind == expr_kind::if_else,
            "cond() is only defined for if_else expressions.");
    }

    /** Returns the then-expression in an if_else expression.

        Equivalent to <code>get(expr, 1_c)</code>.

        \note <code>then()</code> is only valid if \a Expr is an
        <code>expr_kind::if_else</code> expression.
    */
    template<typename Expr>
    constexpr decltype(auto) then(Expr && expr)
    {
        using namespace hana::literals;
        return ::boost::yap::get(static_cast<Expr &&>(expr), 1_c);
        constexpr expr_kind kind = detail::remove_cv_ref_t<Expr>::kind;
        static_assert(
            kind == expr_kind::expr_ref || kind == expr_kind::if_else,
            "then() is only defined for if_else expressions.");
    }

    /** Returns the else-expression in an if_else expression.

        Equivalent to <code>get(expr, 2_c)</code>.

        \note <code>else_()</code> is only valid if \a Expr is an
        <code>expr_kind::if_else</code> expression.
    */
    template<typename Expr>
    constexpr decltype(auto) else_(Expr && expr)
    {
        using namespace hana::literals;
        return ::boost::yap::get(static_cast<Expr &&>(expr), 2_c);
        constexpr expr_kind kind = detail::remove_cv_ref_t<Expr>::kind;
        static_assert(
            kind == expr_kind::expr_ref || kind == expr_kind::if_else,
            "else_() is only defined for if_else expressions.");
    }

    /** Returns the callable in a call expression.

        Equivalent to <code>get(expr, 0)</code>.

        \note <code>callable()</code> is only valid if \a Expr is an
        <code>expr_kind::call</code> expression.
    */
    template<typename Expr>
    constexpr decltype(auto) callable(Expr && expr)
    {
        return ::boost::yap::get(static_cast<Expr &&>(expr), hana::llong_c<0>);
        constexpr expr_kind kind = detail::remove_cv_ref_t<Expr>::kind;
        static_assert(
            kind == expr_kind::expr_ref ||
                detail::arity_of<kind>() == detail::expr_arity::n,
            "callable() is only defined for call expressions.");
    }

    /** Returns the <i>i-th</i> argument expression in a call expression.

        Equivalent to <code>get(expr, i + 1)</code>.

        \note <code>argument()</code> is only valid if \a Expr is an
        <code>expr_kind::call</code> expression.
    */
    template<long long I, typename Expr>
    constexpr decltype(auto) argument(Expr && expr, hana::llong<I> i)
    {
        return ::boost::yap::get(
            static_cast<Expr &&>(expr), hana::llong_c<I + 1>);
        constexpr expr_kind kind = detail::remove_cv_ref_t<Expr>::kind;
        static_assert(
            kind == expr_kind::expr_ref ||
                detail::arity_of<kind>() == detail::expr_arity::n,
            "argument() is only defined for call expressions.");
        static_assert(
            kind == expr_kind::expr_ref ||
                (0 <= I && I < decltype(hana::size(expr.elements))::value - 1),
            "I must be a valid call-expression argument index.");
    }

    /** Makes a new expression instantiated from the expression template \a
        ExprTemplate, of kind \a Kind, with the given values as its
       elements.

        For each parameter P:

        - If P is an expression, P is moved into the result if P is an
       rvalue and captured by reference into the result otherwise.

        - Otherwise, P is wrapped in a terminal expression.

        \note <code>make_expression()</code> is only valid if the number of
        parameters passed is appropriate for \a Kind.
    */
    template<
        template<expr_kind, class> class ExprTemplate,
        expr_kind Kind,
        typename... T>
    constexpr auto make_expression(T &&... t)
    {
        constexpr detail::expr_arity arity = detail::arity_of<Kind>();
        static_assert(
            (arity == detail::expr_arity::one && sizeof...(T) == 1) ||
                (arity == detail::expr_arity::two && sizeof...(T) == 2) ||
                (arity == detail::expr_arity::three && sizeof...(T) == 3) ||
                arity == detail::expr_arity::n,
            "The number of parameters passed to make_expression() must "
            "match the arity "
            "implied by the expr_kind template parameter.");
        using tuple_type =
            hana::tuple<detail::operand_type_t<ExprTemplate, T>...>;
        return ExprTemplate<Kind, tuple_type>{tuple_type{
            detail::make_operand<detail::operand_type_t<ExprTemplate, T>>{}(
                static_cast<T &&>(t))...}};
    }

    /** Makes a new terminal expression instantiated from the expression
        template \a ExprTemplate, with the given value as its sole element.

        \note <code>make_terminal()</code> is only valid if \a T is \b not
       an expression.
    */
    template<template<expr_kind, class> class ExprTemplate, typename T>
    constexpr auto make_terminal(T && t)
    {
        static_assert(
            !is_expr<T>::value,
            "make_terminal() is only defined for non expressions.");
        using result_type = detail::operand_type_t<ExprTemplate, T>;
        using tuple_type = decltype(std::declval<result_type>().elements);
        return result_type{tuple_type{static_cast<T &&>(t)}};
    }

#ifdef BOOST_NO_CONSTEXPR_IF

    namespace detail {

        template<
            template<expr_kind, class> class ExprTemplate,
            typename T,
            bool IsExpr>
        struct as_expr_impl
        {
            constexpr decltype(auto) operator()(T && t)
            {
                return static_cast<T &&>(t);
            }
        };

        template<template<expr_kind, class> class ExprTemplate, typename T>
        struct as_expr_impl<ExprTemplate, T, false>
        {
            constexpr decltype(auto) operator()(T && t)
            {
                return make_terminal<ExprTemplate>(static_cast<T &&>(t));
            }
        };
    }

#endif

    /** Returns an expression formed from \a t as follows:

        - If \a t is an expression, \a t is forwarded to the caller.

        - Otherwise, \a t is wrapped in a terminal expression.
    */
    template<template<expr_kind, class> class ExprTemplate, typename T>
    constexpr decltype(auto) as_expr(T && t)
    {
#ifdef BOOST_NO_CONSTEXPR_IF
        return detail::as_expr_impl<ExprTemplate, T, is_expr<T>::value>{}(
            static_cast<T &&>(t));
#else
        if constexpr (is_expr<T>::value) {
            return static_cast<T &&>(t);
        } else {
            return make_terminal<ExprTemplate>(static_cast<T &&>(t));
        }
#endif
    }

    /** A callable type that evaluates its contained expression when called.

        \see <code>make_expression_function()</code>
    */
    template<typename Expr>
    struct expression_function
    {
        template<typename... U>
        constexpr decltype(auto) operator()(U &&... u)
        {
            return ::boost::yap::evaluate(expr, static_cast<U &&>(u)...);
        }

        Expr expr;
    };

    namespace detail {

        template<expr_kind Kind, typename Tuple>
        struct expression_function_expr
        {
            static const expr_kind kind = Kind;
            Tuple elements;
        };
    }

    /** Returns a callable object that \a expr has been forwarded into. This
        is useful for using expressions as function objects.

        Lvalue expressions are stored in the result by reference; rvalue
        expressions are moved into the result.

        \note <code>make_expression_function()</code> is only valid if \a
        Expr is an expression.
    */
    template<typename Expr>
    constexpr auto make_expression_function(Expr && expr)
    {
        static_assert(
            is_expr<Expr>::value,
            "make_expression_function() is only defined for expressions.");
        using stored_type =
            detail::operand_type_t<detail::expression_function_expr, Expr &&>;
        return expression_function<stored_type>{
            detail::make_operand<stored_type>{}(static_cast<Expr &&>(expr))};
    }
}}

#include <boost/yap/detail/transform.hpp>

namespace boost { namespace yap {

    /** Returns a transform object that replaces placeholders within an
        expression with the given values.
    */
    template<typename... T>
    constexpr auto replacements(T &&... t)
    {
        return detail::placeholder_transform_t<T...>(static_cast<T &&>(t)...);
    }

    /** Returns \a expr with the placeholders replaced by YAP terminals
        containing the given values.

        \note <code>replace_placeholders(expr, t...)</code> is only valid if
        \a expr is an expression, and <code>max_p <= sizeof...(t)</code>,
        where <code>max_p</code> is the maximum placeholder index in \a expr.
    */
    template<typename Expr, typename... T>
    constexpr decltype(auto) replace_placeholders(Expr && expr, T &&... t)
    {
        static_assert(
            is_expr<Expr>::value,
            "evaluate() is only defined for expressions.");
        return transform(
            static_cast<Expr &&>(expr), replacements(static_cast<T &&>(t)...));
    }

    /** Returns a transform object that evaluates an expression using the
        built-in semantics.  The transform replaces any placeholders with the
        given values.
    */
    template<typename... T>
    constexpr auto evaluation(T &&... t)
    {
        return detail::evaluation_transform_t<T...>(static_cast<T &&>(t)...);
    }

    /** Evaluates \a expr using the built-in semantics, replacing any
        placeholders with the given values.

        \note <code>evaluate(expr)</code> is only valid if \a expr is an
        expression.
    */
    template<typename Expr, typename... T>
    constexpr decltype(auto) evaluate(Expr && expr, T &&... t)
    {
        static_assert(
            is_expr<Expr>::value,
            "evaluate() is only defined for expressions.");
        return transform(
            static_cast<Expr &&>(expr), evaluation(static_cast<T &&>(t)...));
    }

    namespace detail {

        template<typename... Transforms>
        constexpr auto make_transform_tuple(Transforms &... transforms)
        {
            return hana::tuple<Transforms *...>{&transforms...};
        }

        template<bool Strict>
        struct transform_
        {
            template<typename Expr, typename Transform, typename... Transforms>
            constexpr decltype(auto) operator()(
                Expr && expr, Transform & transform, Transforms &... transforms) const
            {
                auto transform_tuple =
                    detail::make_transform_tuple(transform, transforms...);
                constexpr expr_kind kind = detail::remove_cv_ref_t<Expr>::kind;
                return detail::
                    transform_impl<Strict, 0, kind == expr_kind::expr_ref>{}(
                        static_cast<Expr &&>(expr), transform_tuple);
            }
        };
    }

    /** Returns the result of transforming (all or part of) \a expr using
        whatever overloads of <code>Transform::operator()</code> match \a
        expr.

        \note Transformations can do anything: they may have side effects;
        they may mutate values; they may mutate types; and they may do any
        combination of these.
    */
    template<typename Expr, typename Transform, typename... Transforms>
    constexpr decltype(auto)
    transform(Expr && expr, Transform && transform, Transforms &&... transforms)
    {
        static_assert(
            is_expr<Expr>::value,
            "transform() is only defined for expressions.");
        return detail::transform_<false>{}(
            static_cast<Expr &&>(expr), transform, transforms...);
    }

    /** Returns the result of transforming \a expr using whichever overload of
        <code>Transform::operator()</code> best matches \a expr.  If no
        overload of <code>Transform::operator()</code> matches, a compile-time
        error results.

        \note Transformations can do anything: they may have side effects;
        they may mutate values; they may mutate types; and they may do any
        combination of these.
    */
    template<typename Expr, typename Transform, typename... Transforms>
    constexpr decltype(auto) transform_strict(
        Expr && expr, Transform && transform, Transforms &&... transforms)
    {
        static_assert(
            is_expr<Expr>::value,
            "transform() is only defined for expressions.");
        return detail::transform_<true>{}(
            static_cast<Expr &&>(expr), transform, transforms...);
    }

}}

#endif