view.qbk 22.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
[/==============================================================================
    Copyright (C) 2001-2011 Joel de Guzman
    Copyright (C) 2006 Dan Marsden
    Copyright (c) 2022 Denis Mikhailov

    Use, modification and distribution is subject to the Boost Software
    License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
    http://www.boost.org/LICENSE_1_0.txt)
===============================================================================/]
[section View]

Views are sequences that do not actually contain data, but instead impart
an alternative presentation over the data from one or more underlying
sequences. Views are proxies. They provide an efficient yet purely
functional way to work on potentially expensive sequence operations. Views
are inherently lazy. Their elements are only computed on demand only when
the elements of the underlying sequence(s) are actually accessed. Views'
lazy nature make them very cheap to copy and be passed around by value.

[heading Header]

    #include <boost/fusion/view.hpp>
    #include <boost/fusion/include/view.hpp>

[section single_view]

`single_view` is a view into a value as a single element sequence.

[heading Header]

    #include <boost/fusion/view/single_view.hpp>
    #include <boost/fusion/include/single_view.hpp>

[heading Synopsis]

    template <typename T>
    struct single_view;

[heading Template parameters]

[table
    [[Parameter]            [Description]               [Default]]
    [[`T`]                  [Any type]                  []]
]

[heading Model of]

* __random_access_sequence__

[variablelist Notation
    [[`S`]              [A `single_view` type]]
    [[`s`, `s2`]        [Instances of `single_view`]]
    [[`x`]              [An instance of `T`]]
]

[heading Expression Semantics]

Semantics of an expression is defined only where it differs from, or is not
defined in __random_access_sequence__.

[table
    [[Expression]           [Semantics]]
    [[`S(x)`]               [Creates a `single_view` from `x`.]]
    [[`S(s)`]               [Copy constructs a `single_view` from another `single_view`, `s`.]]
    [[`s = s2`]             [Assigns to a `single_view`, `s`, from another `single_view`, `s2`.]]
]

[heading Example]

    single_view<int> view(3);
    std::cout << view << std::endl;

[endsect]

[section filter_view]

[heading Description]

`filter_view` is a view into a subset of its underlying sequence's elements
satisfying a given predicate (an __mpl__ metafunction). The `filter_view`
presents only those elements for which its predicate evaluates to
`mpl::true_`.

[heading Header]

    #include <boost/fusion/view/filter_view.hpp>
    #include <boost/fusion/include/filter_view.hpp>

[heading Synopsis]

    template <typename Sequence, typename Pred>
    struct filter_view;

[heading Template parameters]

[table
    [[Parameter]            [Description]                       [Default]]
    [[`Sequence`]           [A __forward_sequence__]            []]
    [[`Pred`]               [A unary __mpl_lambda_expression__] []]
]

[heading Model of]

* __forward_sequence__
* __associative_sequence__ if `Sequence` implements the __associative_sequence__ model.

[variablelist Notation
    [[`F`]              [A `filter_view` type]]
    [[`f`, `f2`]        [Instances of `filter_view`]]
    [[`s`]              [A __forward_sequence__]]
]

[heading Expression Semantics]

Semantics of an expression is defined only where it differs from, or is not
defined in the implemented models.

[table
    [[Expression]           [Semantics]]
    [[`F(s)`]               [Creates a `filter_view` given a sequence, `s`.]]
    [[`F(f)`]               [Copy constructs a `filter_view` from another `filter_view`, `f`.]]
    [[`f = f2`]             [Assigns to a `filter_view`, `f`, from another `filter_view`, `f2`.]]
]

[heading Example]

    using boost::mpl::_;
    using boost::mpl::not_;
    using boost::is_class;

    typedef __vector__<std::string, char, long, bool, double> vector_type;

    vector_type v("a-string", '@', 987654, true, 6.6);
    filter_view<vector_type const, not_<is_class<_> > > view(v);
    std::cout << view << std::endl;

[endsect]

[section iterator_range]

[heading Description]

`iterator_range` presents a sub-range of its underlying sequence delimited
by a pair of iterators.

[heading Header]

    #include <boost/fusion/view/iterator_range.hpp>
    #include <boost/fusion/include/iterator_range.hpp>

[heading Synopsis]

    template <typename First, typename Last>
    struct iterator_range;

[heading Template parameters]

[table
    [[Parameter]            [Description]               [Default]]
    [[`First`]              [A fusion __iterator__]     []]
    [[`Last`]               [A fusion __iterator__]     []]
]

[heading Model of]

* __forward_sequence__, __bidirectional_sequence__ or
__random_access_sequence__ depending on the traversal characteristics (see
__traversal_concept__) of its underlying sequence.
* __associative_sequence__ if `First` and `Last` implement the __associative_iterator__ model.

[variablelist Notation
    [[`IR`]             [An `iterator_range` type]]
    [[`f`]              [An instance of `First`]]
    [[`l`]              [An instance of `Last`]]
    [[`ir`, `ir2`]      [Instances of `iterator_range`]]
]

[heading Expression Semantics]

Semantics of an expression is defined only where it differs from, or is not
defined in the implemented models.

[table
    [[Expression]           [Semantics]]
    [[`IR(f, l)`]           [Creates an `iterator_range` given iterators, `f` and `l`.]]
    [[`IR(ir)`]             [Copy constructs an `iterator_range` from another `iterator_range`, `ir`.]]
    [[`ir = ir2`]           [Assigns to a `iterator_range`, `ir`, from another `iterator_range`, `ir2`.]]
]

[heading Example]

    char const* s = "Ruby";
    typedef __vector__<int, char, double, char const*> vector_type;
    vector_type vec(1, 'x', 3.3, s);

    typedef __result_of_begin__<vector_type>::type A;
    typedef __result_of_end__<vector_type>::type B;
    typedef __result_of_next__<A>::type C;
    typedef __result_of_prior__<B>::type D;

    C c(vec);
    D d(vec);

    iterator_range<C, D> range(c, d);
    std::cout << range << std::endl;

[endsect]

[section joint_view]

[heading Description]

`joint_view` presents a view which is a concatenation of two sequences.

[heading Header]

    #include <boost/fusion/view/joint_view.hpp>
    #include <boost/fusion/include/joint_view.hpp>

[heading Synopsis]

    template <typename Sequence1, typename Sequence2>
    struct joint_view;

[heading Template parameters]

[table
    [[Parameter]            [Description]                   [Default]]
    [[`Sequence1`]          [A __forward_sequence__]        []]
    [[`Sequence2`]          [A __forward_sequence__]        []]
]

[heading Model of]

* __forward_sequence__
* __associative_sequence__ if `Sequence1` and `Sequence2` implement the __associative_sequence__ model.

[variablelist Notation
    [[`JV`]             [A `joint_view` type]]
    [[`s1`]             [An instance of `Sequence1`]]
    [[`s2`]             [An instance of `Sequence2`]]
    [[`jv`, `jv2`]      [Instances of `joint_view`]]
]

[heading Expression Semantics]

Semantics of an expression is defined only where it differs from, or is not
defined in the implemented models.

[table
    [[Expression]           [Semantics]]
    [[`JV(s1, s2)`]         [Creates a `joint_view` given sequences, `s1` and `s2`.]]
    [[`JV(jv)`]             [Copy constructs a `joint_view` from another `joint_view`, `jv`.]]
    [[`jv = jv2`]           [Assigns to a `joint_view`, `jv`, from another `joint_view`, `jv2`.]]
]

[heading Example]

    __vector__<int, char> v1(3, 'x');
    __vector__<std::string, int> v2("hello", 123);
    joint_view<
        __vector__<int, char>
      , __vector__<std::string, int>
    > view(v1, v2);
    std::cout << view << std::endl;

[endsect]

[section zip_view]

[heading Description]

`zip_view` presents a view which iterates over a collection of __sequence__(s) in parallel. A `zip_view`
is constructed from a __sequence__ of references to the component `__sequence__`s.

[heading Header]

    #include <boost/fusion/view/zip_view.hpp>
    #include <boost/fusion/include/zip_view.hpp>

[heading Synopsis]

    template <typename Sequences>
    struct zip_view;

[heading Template parameters]

[table
    [[Parameter]            [Description]                   [Default]]
    [[`Sequences`]          [A __forward_sequence__ of references to other Fusion `__sequence__`s]        []]
]

[heading Model of]

* __forward_sequence__, __bidirectional_sequence__ or
__random_access_sequence__ depending on the traversal characteristics (see
__traversal_concept__) of its underlying sequence.

[variablelist Notation
    [[`ZV`]             [A `zip_view` type]]
    [[`s`]             [An instance of `Sequences`]]
    [[`zv1`, `zv2`]             [Instances of `ZV`]]
]

[heading Expression Semantics]

Semantics of an expression is defined only where it differs from, or is not
defined in __forward_sequence__.

[table
    [[Expression]           [Semantics]]
    [[`ZV(s)`]              [Creates a `zip_view` given a sequence of references to the component `__sequence__`s.]]
    [[`ZV(zv1)`]             [Copy constructs a `zip_view` from another `zip_view`, `zv`.]]
    [[`zv1 = zv2`]           [Assigns to a `zip_view`, `zv`, from another `zip_view`, `zv2`.]]
]

[heading Example]
    typedef __vector__<int,int> vec1;
    typedef __vector__<char,char> vec2;
    vec1 v1(1,2);
    vec2 v2('a','b');
    typedef __vector__<vec1&, vec2&> sequences;
    std::cout << zip_view<sequences>(sequences(v1, v2)) << std::endl; // ((1 a) (2 b))

[endsect]

[section transform_view]

The unary version of `transform_view` presents a view of its underlying
sequence given a unary function object or function pointer. The binary
version of `transform_view` presents a view of 2 underlying sequences,
given a binary function object or function pointer.

[heading Header]

    #include <boost/fusion/view/transform_view.hpp>
    #include <boost/fusion/include/transform_view.hpp>

[heading Synopsis]

[*Unary Version]

    template <typename Sequence, typename F1>
    struct transform_view;

[*Binary Version]

    template <typename Sequence1, typename Sequence2, typename F2>
    struct transform_view;

[heading Template parameters]

[table
    [[Parameter]            [Description]                           [Default]]
    [[`Sequence`]           [A __forward_sequence__]                []]
    [[`Sequence1`]          [A __forward_sequence__]                []]
    [[`Sequence2`]          [A __forward_sequence__]                []]
    [[`F1`]                  [A unary function object or function pointer. `__boost_result_of_call__<F1(E)>::type` is the return type of an instance of `F1` when called with a value of each element type `E` in the input sequence.]                   []]
    [[`F2`]                  [A binary function object or function pointer. `__boost_result_of_call__<F2(E1, E2)>::type` is the return type of an instance of `F2` when called with a value of each corresponding pair of element type `E1` and `E2` in the input sequences.]                   []]
]

[heading Model of]

* __forward_sequence__, __bidirectional_sequence__ or
__random_access_sequence__ depending on the traversal characteristics (see
__traversal_concept__) of its underlying sequence or sequences.
* __associative_sequence__ if underlying sequence implements the __associative_sequence__ model(available only with unary version of `transform_view`).

[variablelist Notation
    [[`TV`]             [A `transform_view` type]]
    [[`BTV`]            [A binary `transform_view` type]]
    [[`UTV`]            [A unary `transform_view` type]]
    [[`f1`]              [An instance of `F1`]]
    [[`f2`]              [An instance of `F2`]]
    [[`s`]              [An instance of `Sequence`]]
    [[`s1`]             [An instance of `Sequence1`]]
    [[`s2`]             [An instance of `Sequence2`]]
    [[`tv`, `tv2`]      [Instances of `transform_view`]]
]

[heading Expression Semantics]

Semantics of an expression is defined only where it differs from, or is not
defined in the implemented models.

[table
    [[Expression]           [Semantics]]
    [[`UTV(s, f1)`]          [Creates a unary `transform_view` given sequence,
                             `s` and unary function object or function pointer, `f1`.]]
    [[`BTV(s1, s2, f2)`]     [Creates a binary `transform_view` given sequences, `s1` and `s2`
                             and binary function object or function pointer, `f2`.]]
    [[`TV(tv)`]             [Copy constructs a `transform_view` from another `transform_view`, `tv`.]]
    [[`tv = tv2`]           [Assigns to a `transform_view`, `tv`, from another `transform_view`, `tv2`.]]
]

[heading Example]

    struct square
    {
        template<typename Sig>
        struct result;

        template<typename U>
        struct result<square(U)>
        : remove_reference<U>
        {};

        template <typename T>
        T operator()(T x) const
        {
            return x * x;
        }
    };

    typedef __vector__<int, short, double> vector_type;
    vector_type vec(2, 5, 3.3);

    transform_view<vector_type, square> transform(vec, square());
    std::cout << transform << std::endl;

[endsect]

[section reverse_view]

`reverse_view` presents a reversed view of underlying sequence. The first
element will be its last and the last element will be its first.

[heading Header]

    #include <boost/fusion/view/reverse_view.hpp>
    #include <boost/fusion/include/reverse_view.hpp>

[heading Synopsis]

    template <typename Sequence>
    struct reverse_view;

[heading Template parameters]

[table
    [[Parameter]            [Description]                           [Default]]
    [[`Sequence`]           [A __bidirectional_sequence__]          []]
]

[heading Model of]

* A model of __bidirectional_sequence__ if `Sequence` is a __bidirectional_sequence__
else, __random_access_sequence__ if `Sequence` is a __random_access_sequence__.
* __associative_sequence__ if `Sequence` implements the __associative_sequence__ model.

[variablelist Notation
    [[`RV`]             [A `reverse_view` type]]
    [[`s`]              [An instance of `Sequence`]]
    [[`rv`, `rv2`]      [Instances of `reverse_view`]]
]

[heading Expression Semantics]

Semantics of an expression is defined only where it differs from, or is not
defined in the implemented models.

[table
    [[Expression]           [Semantics]]
    [[`RV(s)`]              [Creates a unary `reverse_view` given sequence, `s`.]]
    [[`RV(rv)`]             [Copy constructs a `reverse_view` from another `reverse_view`, `rv`.]]
    [[`rv = rv2`]           [Assigns to a `reverse_view`, `rv`, from another `reverse_view`, `rv2`.]]
]

[heading Example]

    typedef __vector__<int, short, double> vector_type;
    vector_type vec(2, 5, 3.3);

    reverse_view<vector_type> reverse(vec);
    std::cout << reverse << std::endl;

[endsect]

[section nview]

[heading Description]

`nview` presents a view which iterates over a given __sequence__ in a specified order.
An `nview` is constructed from an arbitrary __sequence__ and a list of indices specifying
the elements to iterate over.

[heading Header]

    #include <boost/fusion/view/nview.hpp>
    #include <boost/fusion/include/nview.hpp>

[heading Synopsis]

    template <typename Sequence, typename Indices>
    struct nview;

    template <typename Sequence, int I1, int I2 = -1, ...>
    typename result_of::nview<Sequence, I1, I2, ...>::type
    as_nview(Sequence& s);

[heading Template parameters]

[table
    [[Parameter]            [Description]                   [Default]]
    [[`Sequence`]           [An arbitrary Fusion __forward_sequence__]
                                                            []]
    [[`Indices`]           [A `mpl::vector_c<int, ...>` holding the indices defining
                             the required iteration order.] []]
    [[`I1`, `I2`, `I3`...]  [A list of integers specifying the required
                             iteration order.]              [`INT_MAX` for `I2`, `I3`...]]
]

[heading Model of]

* __random_access_sequence__ (see __traversal_concept__)

[variablelist Notation
    [[`NV`]            [A `nview` type]]
    [[`s`]             [An instance of `Sequences`]]
    [[`nv1`, `nv2`]    [Instances of `NV`]]
]

[heading Expression Semantics]

Semantics of an expression is defined only where it differs from, or is not
defined in __random_access_sequence__.

[table
    [[Expression]           [Semantics]]
    [[`NV(s)`]              [Creates an `nview` given a sequence and a list of indices.]]
    [[`NV(nv1)`]            [Copy constructs an `nview` from another `nview`, `nv1`.]]
    [[`nv1 = nv2`]          [Assigns to an `nview`, `nv1`, from another `nview`, `nv2`.]]
]

The `nview` internally stores a Fusion __vector__ of references to the elements
of the original Fusion __sequence__

[heading Example]
    typedef __vector__<int, char, double> vec;
    typedef mpl::vector_c<int, 2, 1, 0, 2, 0> indices;

    vec v1(1, 'c', 2.0);

    std::cout << nview<vec, indices>(v1) << std::endl; // (2.0 c 1 2.0 1)
    std::cout << as_nview<2, 1, 1, 0>(v1) << std::endl; // (2.0 c c 1)

[endsect]

[section repetitive_view]

[heading Description]

`repetitive_view` presents a view which iterates over a given
__sequence__ repeatedly.  Because a `repetitive_view`
has infinite length, it can only be used when some external
condition determines the end.  Thus, initializing a fixed
length sequence with a `repetitive_view` is okay, but
printing a `repetitive_view` to `std::cout` is not.

[heading Header]

    #include <boost/fusion/view/repetitive_view.hpp>
    #include <boost/fusion/include/repetitive_view.hpp>

[heading Synopsis]

    template <typename Sequence>
    struct repetitive_view;

[heading Template parameters]

[table
    [[Parameter]            [Description]                   [Default]]
    [[`Sequence`]           [An arbitrary Fusion __forward_sequence__]
                                                            []]
]

[variablelist Notation
    [[`RV`]            [A `repetitive_view` type]]
    [[`s`]             [An instance of `Sequences`]]
    [[`rv`, `rv1`, `rv2`]    [Instances of `RV`]]
]

[heading Expression Semantics]

[table
    [[Expression]           [Return Type]          [Semantics]]
    [[`RV(s)`]              []                     [Creates an `repetitive_view` given the underlying sequence.]]
    [[`RV(rv1)`]            []                     [Copy constructs an `repetitive_view` from another `repetitive_view`, `rv1`.]]
    [[`rv1 = rv2`]          []                     [Assigns to a `repetitive_view`, `rv1`, from another `repetitive_view`, `rv2`.]]
    [[`__begin__(rv)`]      [__forward_iterator__] []]
    [[`__end__(rv)`]       [__forward_iterator__] [Creates an unreachable iterator (since the sequence is infinite)]]
]

[heading Result Type Expressions]

[table
    [[Expression]]
    [[`__result_of_begin__<RV>::type`]]
    [[`__result_of_end__<RV>::type`]]
]

[heading Example]
    typedef __vector__<int, char, double> vec1;
    typedef __vector__<int, char, double, int, char> vec2;

    vec1 v1(1, 'c', 2.0);
    vec2 v2(repetitive_view<vec1>(v1));

    std::cout << v2 << std::endl; // 1, 'c', 2.0, 1, 'c'

[endsect]

[section flatten_view]

[heading Description]

`flatten_view` presents a view which iterates over its elements recursively in depth-first order.

[heading Header]

    #include <boost/fusion/view/flatten_view.hpp>
    #include <boost/fusion/include/flatten_view.hpp>

[heading Synopsis]

    template <typename Sequence>
    struct flatten_view;

[heading Template parameters]

[table
    [[Parameter]            [Description]                   [Default]]
    [[`Sequence`]           [A __forward_sequence__]        []]
]

[heading Model of]

* __forward_sequence__

[variablelist Notation
    [[`F`]             [A `flatten_view` type]]
    [[`s`]             [An instance of `Sequence`]]
    [[`f`, `f2`]       [Instances of `F`]]
]

[heading Expression Semantics]

Semantics of an expression is defined only where it differs from, or is not
defined in __forward_sequence__.

[table
    [[Expression]           [Semantics]]
    [[`F(s)`]              	[Creates a `flatten_view` given sequence, `s`.]]
    [[`F(f)`]             	[Copy constructs a `flatten_view` from another `flatten_view`, `f`.]]
    [[`f = f2`]           	[Assigns to a `flatten_view`, `f`, from another `flatten_view`, `f2`.]]
]

[heading Example]
    typedef __vector__<int, int, __vector__<int, int>, int> sequence_type;
    sequence_type seq;
    __flatten_view__<sequence_type> flattened(seq);
    __copy__(__make_vector__(1, 2, 3, 4, 5), flattened);
    assert(seq == __make_vector__(1, 2, __make_vector__(3, 4), 5));

[endsect]

[section identity_view]

[heading Description]

`identity_view` presents underlying sequence unchanged.

[heading Header]

    #include <boost/fusion/view/identity_view.hpp>
    #include <boost/fusion/include/identity_view.hpp>

[heading Synopsis]

    template <typename Sequence>
    struct identity_view;

[heading Template parameters]

[table
    [[Parameter]            [Description]                   [Default]]
    [[`Sequence`]           [A __forward_sequence__]        []]
]

[heading Model of]

* A model of __forward_sequence__ if `Sequence` is a __forward_sequence__ else, __bidirectional_sequence__ if `Sequence` is a __bidirectional_sequence__
else, __random_access_sequence__ if `Sequence` is a __random_access_sequence__.
* __associative_sequence__ if `Sequence` implements the __associative_sequence__ model.

[variablelist Notation
    [[`IV`]             [An `identity_view` type]]
    [[`s`]              [An instance of `Sequence`]]
    [[`iv`, `iv2`]      [Instances of `identity_view`]]
]

[heading Expression Semantics]

Semantics of an expression is defined only where it differs from, or is not
defined in the implemented models.

[table
    [[Expression]           [Semantics]]
    [[`IV(s)`]              [Creates an `identity_view` given sequence, `s`.]]
    [[`IV(iv)`]             [Copy constructs an `identity_view` from another `identity_view`, `iv`.]]
    [[`iv = iv2`]           [Assigns to an `identity_view`, `iv`, from another `identity_view`, `iv2`.]]
]

[heading Example]
    typedef __vector__<int, short, double> vector_type;
    vector_type vec(2, 5, 3.3);

    __identity_view__<vector_type> identity(vec);
    std::cout << identity << std::endl; // (2 5 3.3)

[endsect]

[endsect]