lambda.cpp
5.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
///////////////////////////////////////////////////////////////////////////////
// lambda.hpp
//
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <sstream>
#include <boost/mpl/int.hpp>
#include <boost/mpl/min_max.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/mpl/next_prior.hpp>
#include <boost/fusion/tuple.hpp>
#include <boost/typeof/typeof.hpp>
#include <boost/typeof/std/sstream.hpp>
#include <boost/typeof/std/ostream.hpp>
#include <boost/typeof/std/iostream.hpp>
#include <boost/type_traits/add_const.hpp>
#include <boost/type_traits/add_reference.hpp>
#include <boost/proto/core.hpp>
#include <boost/proto/context.hpp>
#include <boost/proto/transform.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
using namespace boost;
// Forward declaration of the lambda expression wrapper
template<typename T>
struct lambda;
struct lambda_domain
: proto::domain<proto::pod_generator<lambda> >
{};
template<typename I>
struct placeholder
{
typedef I arity;
};
template<typename T>
struct placeholder_arity
{
typedef typename T::arity type;
};
namespace grammar
{
using namespace proto;
// The lambda grammar, with the transforms for calculating the max arity
struct Lambda
: or_<
when< terminal< placeholder<_> >, mpl::next<placeholder_arity<_value> >() >
, when< terminal<_>, mpl::int_<0>() >
, when< nary_expr<_, vararg<_> >, fold<_, mpl::int_<0>(), mpl::max<Lambda,_state>()> >
>
{};
}
// simple wrapper for calculating a lambda expression's arity.
template<typename Expr>
struct lambda_arity
: boost::result_of<grammar::Lambda(Expr, mpl::void_, mpl::void_)>
{};
// The lambda context is the same as the default context
// with the addition of special handling for lambda placeholders
template<typename Tuple>
struct lambda_context
: proto::callable_context<lambda_context<Tuple> const>
{
lambda_context(Tuple const &args)
: args_(args)
{}
template<typename Sig>
struct result;
template<typename This, typename I>
struct result<This(proto::tag::terminal, placeholder<I> const &)>
: fusion::result_of::at<Tuple, I>
{};
template<typename I>
typename fusion::result_of::at<Tuple, I>::type
operator ()(proto::tag::terminal, placeholder<I> const &) const
{
return fusion::at<I>(this->args_);
}
Tuple args_;
};
// The lambda<> expression wrapper makes expressions polymorphic
// function objects
template<typename T>
struct lambda
{
BOOST_PROTO_BASIC_EXTENDS(T, lambda<T>, lambda_domain)
BOOST_PROTO_EXTENDS_ASSIGN()
BOOST_PROTO_EXTENDS_SUBSCRIPT()
// Careful not to evaluate the return type of the nullary function
// unless we have a nullary lambda!
typedef typename mpl::eval_if<
typename lambda_arity<T>::type
, mpl::identity<void>
, proto::result_of::eval<T const, lambda_context<fusion::tuple<> > >
>::type nullary_type;
// Define our operator () that evaluates the lambda expression.
nullary_type operator ()() const
{
fusion::tuple<> args;
lambda_context<fusion::tuple<> > ctx(args);
return proto::eval(*this, ctx);
}
#define M0(N, typename_A, A_const_ref, A_const_ref_a, ref_a) \
template<typename_A(N)> \
typename proto::result_of::eval<T const, lambda_context<fusion::tuple<A_const_ref(N)> > >::type \
operator ()(A_const_ref_a(N)) const \
{ \
fusion::tuple<A_const_ref(N)> args(ref_a(N)); \
lambda_context<fusion::tuple<A_const_ref(N)> > ctx(args); \
return proto::eval(*this, ctx); \
} \
/**/
BOOST_PROTO_REPEAT_FROM_TO(1, 4, M0)
#undef M0
};
// Define some lambda placeholders
lambda<proto::terminal<placeholder<mpl::int_<0> > >::type> const _1 = {{}};
lambda<proto::terminal<placeholder<mpl::int_<1> > >::type> const _2 = {{}};
lambda<proto::terminal<placeholder<mpl::int_<3> > >::type> const _3 = {{}};
template<typename T>
lambda<typename proto::terminal<T>::type> const val(T const &t)
{
lambda<typename proto::terminal<T>::type> that = {{t}};
return that;
}
template<typename T>
lambda<typename proto::terminal<T &>::type> const var(T &t)
{
lambda<typename proto::terminal<T &>::type> that = {{t}};
return that;
}
void test_lambda()
{
BOOST_CHECK_EQUAL(11, ( (_1 + 2) / 4 )(42));
BOOST_CHECK_EQUAL(-11, ( (-(_1 + 2)) / 4 )(42));
BOOST_CHECK_CLOSE(2.58, ( (4 - _2) * 3 )(42, 3.14), 0.1);
// check non-const ref terminals
std::stringstream sout;
(sout << _1 << " -- " << _2)(42, "Life, the Universe and Everything!");
BOOST_CHECK_EQUAL("42 -- Life, the Universe and Everything!", sout.str());
// check nullary lambdas
BOOST_CHECK_EQUAL(3, (val(1) + val(2))());
// check array indexing for kicks
int integers[5] = {0};
(var(integers)[2] = 2)();
(var(integers)[_1] = _1)(3);
BOOST_CHECK_EQUAL(2, integers[2]);
BOOST_CHECK_EQUAL(3, integers[3]);
}
using namespace unit_test;
///////////////////////////////////////////////////////////////////////////////
// init_unit_test_suite
//
test_suite* init_unit_test_suite( int argc, char* argv[] )
{
test_suite *test = BOOST_TEST_SUITE("test expression template domains");
test->add(BOOST_TEST_CASE(&test_lambda));
return test;
}