ares__sortaddrinfo.c 13.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * Original file name getaddrinfo.c
 * Lifted from the 'Android Bionic' project with the BSD license.
 */

/*
 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
 * Copyright (C) 2018 The Android Open Source Project
 * Copyright (C) 2019 by Andrew Selivanov
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the project nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include "ares_setup.h"

#ifdef HAVE_NETINET_IN_H
#  include <netinet/in.h>
#endif
#ifdef HAVE_NETDB_H
#  include <netdb.h>
#endif
#ifdef HAVE_STRINGS_H
#  include <strings.h>
#endif

#include <assert.h>
#include <limits.h>

#include "ares.h"
#include "ares_private.h"

struct addrinfo_sort_elem
{
  struct ares_addrinfo_node *ai;
  int has_src_addr;
  ares_sockaddr src_addr;
  int original_order;
};

#define ARES_IPV6_ADDR_MC_SCOPE(a) ((a)->s6_addr[1] & 0x0f)

#define ARES_IPV6_ADDR_SCOPE_NODELOCAL       0x01
#define ARES_IPV6_ADDR_SCOPE_INTFACELOCAL    0x01
#define ARES_IPV6_ADDR_SCOPE_LINKLOCAL       0x02
#define ARES_IPV6_ADDR_SCOPE_SITELOCAL       0x05
#define ARES_IPV6_ADDR_SCOPE_ORGLOCAL        0x08
#define ARES_IPV6_ADDR_SCOPE_GLOBAL          0x0e

#define ARES_IN_LOOPBACK(a) ((((long int)(a)) & 0xff000000) == 0x7f000000)

/* RFC 4193. */
#define ARES_IN6_IS_ADDR_ULA(a) (((a)->s6_addr[0] & 0xfe) == 0xfc)

/* These macros are modelled after the ones in <netinet/in6.h>. */
/* RFC 4380, section 2.6 */
#define ARES_IN6_IS_ADDR_TEREDO(a)    \
        ((*(const unsigned int *)(const void *)(&(a)->s6_addr[0]) == ntohl(0x20010000)))
/* RFC 3056, section 2. */
#define ARES_IN6_IS_ADDR_6TO4(a)      \
        (((a)->s6_addr[0] == 0x20) && ((a)->s6_addr[1] == 0x02))
/* 6bone testing address area (3ffe::/16), deprecated in RFC 3701. */
#define ARES_IN6_IS_ADDR_6BONE(a)      \
        (((a)->s6_addr[0] == 0x3f) && ((a)->s6_addr[1] == 0xfe))


static int get_scope(const struct sockaddr *addr)
{
  if (addr->sa_family == AF_INET6)
    {
      const struct sockaddr_in6 *addr6 = CARES_INADDR_CAST(const struct sockaddr_in6 *, addr);
      if (IN6_IS_ADDR_MULTICAST(&addr6->sin6_addr))
        {
          return ARES_IPV6_ADDR_MC_SCOPE(&addr6->sin6_addr);
        }
      else if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr) ||
               IN6_IS_ADDR_LINKLOCAL(&addr6->sin6_addr))
        {
          /*
           * RFC 4291 section 2.5.3 says loopback is to be treated as having
           * link-local scope.
           */
          return ARES_IPV6_ADDR_SCOPE_LINKLOCAL;
        }
      else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr))
        {
          return ARES_IPV6_ADDR_SCOPE_SITELOCAL;
        }
      else
        {
          return ARES_IPV6_ADDR_SCOPE_GLOBAL;
        }
    }
  else if (addr->sa_family == AF_INET)
    {
      const struct sockaddr_in *addr4 = CARES_INADDR_CAST(const struct sockaddr_in *, addr);
      unsigned long int na = ntohl(addr4->sin_addr.s_addr);
      if (ARES_IN_LOOPBACK(na) || /* 127.0.0.0/8 */
          (na & 0xffff0000) == 0xa9fe0000) /* 169.254.0.0/16 */
        {
          return ARES_IPV6_ADDR_SCOPE_LINKLOCAL;
        }
      else
        {
          /*
           * RFC 6724 section 3.2. Other IPv4 addresses, including private
           * addresses and shared addresses (100.64.0.0/10), are assigned global
           * scope.
           */
          return ARES_IPV6_ADDR_SCOPE_GLOBAL;
        }
    }
  else
    {
      /*
       * This should never happen.
       * Return a scope with low priority as a last resort.
       */
      return ARES_IPV6_ADDR_SCOPE_NODELOCAL;
    }
}

static int get_label(const struct sockaddr *addr)
{
  if (addr->sa_family == AF_INET)
    {
      return 4;
    }
  else if (addr->sa_family == AF_INET6)
    {
      const struct sockaddr_in6 *addr6 = CARES_INADDR_CAST(const struct sockaddr_in6 *, addr);
      if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr))
        {
          return 0;
        }
      else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr))
        {
          return 4;
        }
      else if (ARES_IN6_IS_ADDR_6TO4(&addr6->sin6_addr))
        {
          return 2;
        }
      else if (ARES_IN6_IS_ADDR_TEREDO(&addr6->sin6_addr))
        {
          return 5;
        }
      else if (ARES_IN6_IS_ADDR_ULA(&addr6->sin6_addr))
        {
          return 13;
        }
      else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr))
        {
          return 3;
        }
      else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr))
        {
          return 11;
        }
      else if (ARES_IN6_IS_ADDR_6BONE(&addr6->sin6_addr))
        {
          return 12;
        }
      else
        {
          /* All other IPv6 addresses, including global unicast addresses. */
          return 1;
        }
    }
  else
    {
      /*
       * This should never happen.
       * Return a semi-random label as a last resort.
       */
      return 1;
    }
}

/*
 * Get the precedence for a given IPv4/IPv6 address.
 * RFC 6724, section 2.1.
 */
static int get_precedence(const struct sockaddr *addr)
{
  if (addr->sa_family == AF_INET)
    {
      return 35;
    }
  else if (addr->sa_family == AF_INET6)
    {
      const struct sockaddr_in6 *addr6 = CARES_INADDR_CAST(const struct sockaddr_in6 *, addr);
      if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr))
        {
          return 50;
        }
      else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr))
        {
          return 35;
        }
      else if (ARES_IN6_IS_ADDR_6TO4(&addr6->sin6_addr))
        {
          return 30;
        }
      else if (ARES_IN6_IS_ADDR_TEREDO(&addr6->sin6_addr))
        {
          return 5;
        }
      else if (ARES_IN6_IS_ADDR_ULA(&addr6->sin6_addr))
        {
          return 3;
        }
      else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr) ||
               IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr) ||
               ARES_IN6_IS_ADDR_6BONE(&addr6->sin6_addr))
        {
          return 1;
        }
      else
        {
          /* All other IPv6 addresses, including global unicast addresses. */
          return 40;
        }
    }
  else
    {
      return 1;
    }
}

/*
 * Find number of matching initial bits between the two addresses a1 and a2.
 */
static int common_prefix_len(const struct in6_addr *a1,
                             const struct in6_addr *a2)
{
  const char *p1 = (const char *)a1;
  const char *p2 = (const char *)a2;
  unsigned i;
  for (i = 0; i < sizeof(*a1); ++i)
    {
      int x, j;
      if (p1[i] == p2[i])
        {
          continue;
        }
      x = p1[i] ^ p2[i];
      for (j = 0; j < CHAR_BIT; ++j)
        {
          if (x & (1 << (CHAR_BIT - 1)))
            {
              return i * CHAR_BIT + j;
            }
          x <<= 1;
        }
    }
  return sizeof(*a1) * CHAR_BIT;
}

/*
 * Compare two source/destination address pairs.
 * RFC 6724, section 6.
 */
static int rfc6724_compare(const void *ptr1, const void *ptr2)
{
  const struct addrinfo_sort_elem *a1 = (const struct addrinfo_sort_elem *)ptr1;
  const struct addrinfo_sort_elem *a2 = (const struct addrinfo_sort_elem *)ptr2;
  int scope_src1, scope_dst1, scope_match1;
  int scope_src2, scope_dst2, scope_match2;
  int label_src1, label_dst1, label_match1;
  int label_src2, label_dst2, label_match2;
  int precedence1, precedence2;
  int prefixlen1, prefixlen2;

  /* Rule 1: Avoid unusable destinations. */
  if (a1->has_src_addr != a2->has_src_addr)
    {
      return a2->has_src_addr - a1->has_src_addr;
    }

  /* Rule 2: Prefer matching scope. */
  scope_src1 = ARES_IPV6_ADDR_SCOPE_NODELOCAL;
  if (a1->has_src_addr)
    scope_src1 = get_scope(&a1->src_addr.sa);
  scope_dst1 = get_scope(a1->ai->ai_addr);
  scope_match1 = (scope_src1 == scope_dst1);

  scope_src2 = ARES_IPV6_ADDR_SCOPE_NODELOCAL;
  if (a2->has_src_addr)
    scope_src2 = get_scope(&a2->src_addr.sa);
  scope_dst2 = get_scope(a2->ai->ai_addr);
  scope_match2 = (scope_src2 == scope_dst2);

  if (scope_match1 != scope_match2)
    {
      return scope_match2 - scope_match1;
    }

  /* Rule 3: Avoid deprecated addresses.  */

  /* Rule 4: Prefer home addresses.  */

  /* Rule 5: Prefer matching label. */
  label_src1 = 1;
  if (a1->has_src_addr)
    label_src1 = get_label(&a1->src_addr.sa);
  label_dst1 = get_label(a1->ai->ai_addr);
  label_match1 = (label_src1 == label_dst1);

  label_src2 = 1;
  if (a2->has_src_addr)
    label_src2 = get_label(&a2->src_addr.sa);
  label_dst2 = get_label(a2->ai->ai_addr);
  label_match2 = (label_src2 == label_dst2);

  if (label_match1 != label_match2)
    {
      return label_match2 - label_match1;
    }

  /* Rule 6: Prefer higher precedence. */
  precedence1 = get_precedence(a1->ai->ai_addr);
  precedence2 = get_precedence(a2->ai->ai_addr);
  if (precedence1 != precedence2)
    {
      return precedence2 - precedence1;
    }

  /* Rule 7: Prefer native transport.  */

  /* Rule 8: Prefer smaller scope. */
  if (scope_dst1 != scope_dst2)
    {
      return scope_dst1 - scope_dst2;
    }

  /* Rule 9: Use longest matching prefix. */
  if (a1->has_src_addr && a1->ai->ai_addr->sa_family == AF_INET6 &&
      a2->has_src_addr && a2->ai->ai_addr->sa_family == AF_INET6)
    {
      const struct sockaddr_in6 *a1_src = &a1->src_addr.sa6;
      const struct sockaddr_in6 *a1_dst =
          CARES_INADDR_CAST(const struct sockaddr_in6 *, a1->ai->ai_addr);
      const struct sockaddr_in6 *a2_src = &a2->src_addr.sa6;
      const struct sockaddr_in6 *a2_dst =
          CARES_INADDR_CAST(const struct sockaddr_in6 *, a2->ai->ai_addr);
      prefixlen1 = common_prefix_len(&a1_src->sin6_addr, &a1_dst->sin6_addr);
      prefixlen2 = common_prefix_len(&a2_src->sin6_addr, &a2_dst->sin6_addr);
      if (prefixlen1 != prefixlen2)
        {
          return prefixlen2 - prefixlen1;
        }
    }

  /*
   * Rule 10: Leave the order unchanged.
   * We need this since qsort() is not necessarily stable.
   */
  return a1->original_order - a2->original_order;
}

/*
 * Find the source address that will be used if trying to connect to the given
 * address.
 *
 * Returns 1 if a source address was found, 0 if the address is unreachable,
 * and -1 if a fatal error occurred. If 0 or 1, the contents of src_addr are
 * undefined.
 */
static int find_src_addr(ares_channel channel,
                         const struct sockaddr *addr,
                         struct sockaddr *src_addr)
{
  ares_socket_t sock;
  int ret;
  ares_socklen_t len;

  switch (addr->sa_family)
    {
    case AF_INET:
      len = sizeof(struct sockaddr_in);
      break;
    case AF_INET6:
      len = sizeof(struct sockaddr_in6);
      break;
    default:
      /* No known usable source address for non-INET families. */
      return 0;
    }

  sock = ares__open_socket(channel, addr->sa_family, SOCK_DGRAM, IPPROTO_UDP);
  if (sock == ARES_SOCKET_BAD)
    {
      if (errno == EAFNOSUPPORT)
        {
          return 0;
        }
      else
        {
          return -1;
        }
    }

  do
    {
      ret = ares__connect_socket(channel, sock, addr, len);
    }
  while (ret == -1 && errno == EINTR);

  if (ret == -1)
    {
      ares__close_socket(channel, sock);
      return 0;
    }

  if (getsockname(sock, src_addr, &len) != 0)
    {
      ares__close_socket(channel, sock);
      return -1;
    }
  ares__close_socket(channel, sock);
  return 1;
}

/*
 * Sort the linked list starting at sentinel->ai_next in RFC6724 order.
 * Will leave the list unchanged if an error occurs.
 */
int ares__sortaddrinfo(ares_channel channel, struct ares_addrinfo_node *list_sentinel)
{
  struct ares_addrinfo_node *cur;
  int nelem = 0, i;
  int has_src_addr;
  struct addrinfo_sort_elem *elems;

  cur = list_sentinel->ai_next;
  while (cur)
    {
      ++nelem;
      cur = cur->ai_next;
    }

  if (!nelem)
      return ARES_ENODATA;

  elems = (struct addrinfo_sort_elem *)ares_malloc(
      nelem * sizeof(struct addrinfo_sort_elem));
  if (!elems)
    {
      return ARES_ENOMEM;
    }

  /*
   * Convert the linked list to an array that also contains the candidate
   * source address for each destination address.
   */
  for (i = 0, cur = list_sentinel->ai_next; i < nelem; ++i, cur = cur->ai_next)
    {
      assert(cur != NULL);
      elems[i].ai = cur;
      elems[i].original_order = i;
      has_src_addr = find_src_addr(channel, cur->ai_addr, &elems[i].src_addr.sa);
      if (has_src_addr == -1)
        {
          ares_free(elems);
          return ARES_ENOTFOUND;
        }
      elems[i].has_src_addr = has_src_addr;
    }

  /* Sort the addresses, and rearrange the linked list so it matches the sorted
   * order. */
  qsort((void *)elems, nelem, sizeof(struct addrinfo_sort_elem),
        rfc6724_compare);

  list_sentinel->ai_next = elems[0].ai;
  for (i = 0; i < nelem - 1; ++i)
    {
      elems[i].ai->ai_next = elems[i + 1].ai;
    }
  elems[nelem - 1].ai->ai_next = NULL;

  ares_free(elems);
  return ARES_SUCCESS;
}