numa.qbk 13.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
[/
          Copyright Oliver Kowalke 2017.
 Distributed under the Boost Software License, Version 1.0.
    (See accompanying file LICENSE_1_0.txt or copy at
          http://www.boost.org/LICENSE_1_0.txt
]

[#numa]
[section:numa NUMA]

Modern micro-processors contain integrated memory controllers that are connected
via channels to the memory. Accessing the memory can be organized in two kinds:[br]
Uniform Memory Access (UMA) and Non-Uniform Memory Access (NUMA).

In contrast to UMA, that provides a centralized pool of memory (and thus does
not scale after a certain number of processors), a NUMA architecture divides the
memory into local and remote memory relative to the micro-processor.[br]
Local memory is directly attached to the processor's integrated memory controller.
Memory connected to the memory controller of another micro-processor (multi-socket
systems) is considered as remote memory. If a memory controller access remote memory
it has to traverse the interconnect[footnote On x86 the interconnection is implemented
by Intel's Quick Path Interconnect (QPI) and AMD's HyperTransport.] and
connect to the remote memory controller.[br]
Thus accessing remote memory adds additional latency overhead to local memory access.
Because of the different memory locations, a NUMA-system experiences ['non-uniform]
memory access time.[br]
As a consequence the best performance is achieved by keeping the memory access
local.

[$../../../../libs/fiber/doc/NUMA.png [align center]]


[heading NUMA support in Boost.Fiber]

Because only a subset of the NUMA-functionality is exposed by several operating systems,
Boost.Fiber provides only a minimalistic NUMA API.

[important In order to enable NUMA support, b2 property `numa=on` must be specified
and linked against additional library `libboost_fiber_numa.so`.]
[important MinGW using pthread implementation is not supported on Windows.]

[table Supported functionality/operating systems
    [
        []
        [AIX]
        [FreeBSD]
        [HP/UX]
        [Linux]
        [Solaris]
        [Windows]
    ]
    [
        [pin thread]
        [+]
        [+]
        [+]
        [+]
        [+]
        [+]
    ]
    [
        [logical CPUs/NUMA nodes]
        [+]
        [+]
        [+]
        [+]
        [+]
        [+[footnote Windows organizes logical cpus in groups of 64; boost.fiber maps
           {group-id,cpud-id} to a scalar equivalent to cpu ID of Linux (64 * group ID + cpu ID).]]
    ]
    [
        [NUMA node distance]
        [-]
        [-]
        [-]
        [+]
        [-]
        [-]
    ]
    [
        [tested on]
        [AIX 7.2]
        [FreeBSD 11]
        [-]
        [Arch Linux (4.10.13)]
        [OpenIndiana HIPSTER]
        [Windows 10]
    ]
]

In order to keep the memory access local as possible, the NUMA topology must be evaluated.

    std::vector< boost::fibers::numa::node > topo = boost::fibers::numa::topology();
    for ( auto n : topo) {
        std::cout << "node: " << n.id << " | ";
        std::cout << "cpus: ";
        for ( auto cpu_id : n.logical_cpus) {
            std::cout << cpu_id << " ";
        }
        std::cout << "| distance: ";
        for ( auto d : n.distance) {
            std::cout << d << " ";
        }
        std::cout << std::endl;
    }
    std::cout << "done" << std::endl;

    output:
        node: 0 | cpus: 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23 | distance: 10 21
        node: 1 | cpus: 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31 | distance: 21 10
        done

The example shows that the systems consits out of 2 NUMA-nodes, to each NUMA-node belong
16 logical cpus. The distance measures the costs to access the memory of another NUMA-node.
A NUMA-node has always a distance `10` to itself (lowest possible value).[br]
The position in the array corresponds with the NUMA-node ID.

Some work-loads benefit from pinning threads to a logical cpus. For instance scheduling
algorithm __numa_work_stealing__ pins the thread that runs the fiber scheduler to
a logical cpu. This prevents the operating system scheduler to move the thread to another
logical cpu that might run other fiber scheduler(s) or migrating the thread to a logical
cpu part of another NUMA-node.

        void thread( std::uint32_t cpu_id, std::uint32_t node_id, std::vector< boost::fibers::numa::node > const& topo) {
            // thread registers itself at work-stealing scheduler
            boost::fibers::use_scheduling_algorithm< boost::fibers::numa::algo::work_stealing >( cpu_id, node_id, topo);
            ...
        }

        // evaluate the NUMA topology
        std::vector< boost::fibers::numa::node > topo = boost::fibers::numa::topology();
        // start-thread runs on NUMA-node `0`
        auto node = topo[0];
        // start-thread is pinnded to first cpu ID in the list of logical cpus of NUMA-node `0`
        auto start_cpu_id = * node.logical_cpus.begin();
        // start worker-threads first
        std::vector< std::thread > threads;
        for ( auto & node : topo) {
            for ( std::uint32_t cpu_id : node.logical_cpus) {
                // exclude start-thread
                if ( start_cpu_id != cpu_id) {
                    // spawn thread
                    threads.emplace_back( thread, cpu_id, node.id, std::cref( topo) );
                }
            }
        }
        // start-thread registers itself on work-stealing scheduler
        boost::fibers::use_scheduling_algorithm< boost::fibers::numa::algo::work_stealing >( start_cpu_id, node.id, topo);
        ...

The example evaluates the NUMA topology with `boost::fibers::numa::topology()`
and spawns for each logical cpu a thread. Each spawned thread installs the
NUMA-aware work-stealing scheduler. The scheduler pins the thread to the
logical cpu that was specified at construction.[br]
If the local queue of one thread runs out of ready fibers, the thread tries to
steal a ready fiber from another thread running at logical cpu that belong to
the same NUMA-node (local memory access). If no fiber could be stolen, the
thread tries to steal fibers from logical cpus part of other NUMA-nodes (remote
memory access).


[heading Synopsis]

    #include <boost/fiber/numa/pin_thread.hpp>
    #include <boost/fiber/numa/topology.hpp>

    namespace boost {
    namespace fibers {
    namespace numa {

    struct node {
        std::uint32_t                   id;
        std::set< std::uint32_t >       logical_cpus;
        std::vector< std::uint32_t >    distance;
    };
    bool operator<( node const&, node const&) noexcept;

    std::vector< node > topology();

    void pin_thread( std::uint32_t);
    void pin_thread( std::uint32_t, std::thread::native_handle_type);

    }}}

    #include <boost/fiber/numa/algo/work_stealing.hpp>

    namespace boost {
    namespace fibers {
    namespace numa {
    namespace algo {

    class work_stealing;

    }}}


[ns_class_heading numa..node]

    #include <boost/fiber/numa/topology.hpp>

    namespace boost {
    namespace fibers {
    namespace numa {

    struct node {
        std::uint32_t                   id;
        std::set< std::uint32_t >       logical_cpus;
        std::vector< std::uint32_t >    distance;
    };
    bool operator<( node const&, node const&) noexcept;

    }}}

[ns_data_member_heading numa..node..id]

        std::uint32_t id;

[variablelist
[[Effects:] [ID of the NUMA-node]]
]

[ns_data_member_heading numa..node..logical_cpus]

        std::set< std::uint32_t > logical_cpus;

[variablelist
[[Effects:] [set of logical cpu IDs belonging to the NUMA-node]]
]

[ns_data_member_heading numa..node..distance]

        std::vector< std::uint32_t > distance;

[variablelist
[[Effects:] [The distance between NUMA-nodes describe the cots of accessing the
remote memory.]]
[[Note:] [A NUMA-node has a distance of `10` to itself, remote NUMA-nodes
have a distance > `10`. The index in the array corresponds to the ID `id`
of the NUMA-node. At the moment only Linux returns the correct distances,
for all other operating systems remote NUMA-nodes get a default value of
`20`.]]
]

[ns_operator_heading numa..node..operator_less..operator<]

        bool operator<( node const& lhs, node const& rhs) const noexcept;

[variablelist
[[Returns:] [`true` if `lhs != rhs` is true and the
implementation-defined total order of `node::id` values places `lhs` before
`rhs`, false otherwise.]]
[[Throws:] [Nothing.]]
]


[ns_function_heading numa..topology]

    #include <boost/fiber/numa/topology.hpp>

    namespace boost {
    namespace fibers {
    namespace numa {

    std::vector< node > topology();

    }}}

[variablelist
[[Effects:] [Evaluates the NUMA topology.]]
[[Returns:] [a vector of NUMA-nodes describing the NUMA architecture of the
system (each element represents a NUMA-node).]]
[[Throws:] [`system_error`]]
]


[ns_function_heading numa..pin_thread]

    #include <boost/fiber/numa/pin_thread.hpp>

    namespace boost {
    namespace fibers {
    namespace numa {

    void pin_thread( std::uint32_t cpu_id);
    void pin_thread( std::uint32_t cpu_id, std::thread::native_handle_type h);

    }}}

[variablelist
[[Effects:] [First version pins `this thread` to the logical cpu with ID `cpu_id`, e.g.
the operating system scheduler will not migrate the thread to another logical cpu.
The second variant pins the thread with the native ID `h` to logical cpu with ID `cpu_id`.]]
[[Throws:] [`system_error`]]
]


[ns_class_heading numa..work_stealing]

This class implements __algo__; the thread running this scheduler is pinned to the given
logical cpu. If the local ready-queue runs out of ready fibers, ready fibers are stolen
from other schedulers that run on logical cpus that belong to the same NUMA-node (local
memory access).[br]
If no ready fibers can be stolen from the local NUMA-node, the algorithm selects
schedulers running on other NUMA-nodes (remote memory access).[br]
The victim scheduler (from which a ready fiber is stolen) is selected at random.

        #include <boost/fiber/numa/algo/work_stealing.hpp>

        namespace boost {
        namespace fibers {
        namespace numa {
        namespace algo {

        class work_stealing : public algorithm {
        public:
            work_stealing( std::uint32_t cpu_id,
                           std::uint32_t node_id,
                           std::vector< boost::fibers::numa::node > const& topo,
                           bool suspend = false);

            work_stealing( work_stealing const&) = delete;
            work_stealing( work_stealing &&) = delete;

            work_stealing & operator=( work_stealing const&) = delete;
            work_stealing & operator=( work_stealing &&) = delete;

            virtual void awakened( context *) noexcept;

            virtual context * pick_next() noexcept;

            virtual bool has_ready_fibers() const noexcept;

            virtual void suspend_until( std::chrono::steady_clock::time_point const&) noexcept;

            virtual void notify() noexcept;
        };

        }}}}

[heading Constructor]

        work_stealing( std::uint32_t cpu_id, std::uint32_t node_id,
                       std::vector< boost::fibers::numa::node > const& topo,
                       bool suspend = false);

[variablelist
[[Effects:] [Constructs work-stealing scheduling algorithm. The thread is pinned to logical cpu with ID
`cpu_id`. If local ready-queue runs out of ready fibers, ready fibers are stolen from other schedulers
using `topology` (represents the NUMA-topology of the system).]]
[[Throws:] [`system_error`]]
[[Note:][If `suspend` is set to `true`, then the scheduler suspends if no ready fiber could be stolen.
The scheduler will by woken up if a sleeping fiber times out or it was notified from remote (other thread or
fiber scheduler).]]
]

[ns_member_heading numa..work_stealing..awakened]

        virtual void awakened( context * f) noexcept;

[variablelist
[[Effects:] [Enqueues fiber `f` onto the shared ready queue.]]
[[Throws:] [Nothing.]]
]

[ns_member_heading numa..work_stealing..pick_next]

        virtual context * pick_next() noexcept;

[variablelist
[[Returns:] [the fiber at the head of the ready queue, or `nullptr` if the
queue is empty.]]
[[Throws:] [Nothing.]]
[[Note:] [Placing ready fibers onto the tail of the sahred queue, and returning them
from the head of that queue, shares the thread between ready fibers in
round-robin fashion.]]
]

[ns_member_heading numa..work_stealing..has_ready_fibers]

        virtual bool has_ready_fibers() const noexcept;

[variablelist
[[Returns:] [`true` if scheduler has fibers ready to run.]]
[[Throws:] [Nothing.]]
]

[ns_member_heading numa..work_stealing..suspend_until]

        virtual void suspend_until( std::chrono::steady_clock::time_point const& abs_time) noexcept;

[variablelist
[[Effects:] [Informs `work_stealing` that no ready fiber will be available until
time-point `abs_time`. This implementation blocks in
[@http://en.cppreference.com/w/cpp/thread/condition_variable/wait_until
`std::condition_variable::wait_until()`].]]
[[Throws:] [Nothing.]]
]

[ns_member_heading numa..work_stealing..notify]

        virtual void notify() noexcept = 0;

[variablelist
[[Effects:] [Wake up a pending call to [member_link
work_stealing..suspend_until], some fibers might be ready. This implementation
wakes `suspend_until()` via
[@http://en.cppreference.com/w/cpp/thread/condition_variable/notify_all
`std::condition_variable::notify_all()`].]]
[[Throws:] [Nothing.]]
]

[endsect]