metafunctions.hpp 30.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
//
// Copyright 2005-2007 Adobe Systems Incorporated
// Copyright 2021 Pranam Lashkari <plashkari628@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#ifndef BOOST_GIL_METAFUNCTIONS_HPP
#define BOOST_GIL_METAFUNCTIONS_HPP

#include <boost/gil/channel.hpp>
#include <boost/gil/dynamic_step.hpp>
#include <boost/gil/concepts.hpp>
#include <boost/gil/concepts/detail/type_traits.hpp>
#include <boost/gil/detail/mp11.hpp>

#include <iterator>
#include <type_traits>

namespace boost { namespace gil {

// forward declarations
template <typename T, typename L> struct pixel;
template <typename BitField,typename ChannelRefs,typename Layout> struct packed_pixel;
template <typename T, typename C> struct planar_pixel_reference;
template <typename IC, typename C> struct planar_pixel_iterator;
template <typename I> class memory_based_step_iterator;
template <typename I> class memory_based_2d_locator;
template <typename L> class image_view;
template <typename Pixel, bool IsPlanar = false, typename Alloc=std::allocator<unsigned char> > class image;
template <typename T> struct channel_type;
template <typename T> struct color_space_type;
template <typename T> struct channel_mapping_type;
template <typename It> struct is_iterator_adaptor;
template <typename It> struct iterator_adaptor_get_base;
template <typename BitField, typename ChannelBitSizes, typename Layout, bool IsMutable> struct bit_aligned_pixel_reference;

//////////////////////////////////////////////////
///
///  TYPE ANALYSIS METAFUNCTIONS
///  Predicate metafunctions determining properties of GIL types
///
//////////////////////////////////////////////////


/// \defgroup GILIsBasic xxx_is_basic
/// \ingroup TypeAnalysis
/// \brief Determines if GIL constructs are basic.
///    Basic constructs are the ones that can be generated with the type
///    factory methods pixel_reference_type, iterator_type, locator_type, view_type and image_type
///    They can be mutable/immutable, planar/interleaved, step/nonstep. They must use GIL-provided models.

/// \brief Determines if a given pixel reference is basic
///    Basic references must use gil::pixel& (if interleaved), gil::planar_pixel_reference (if planar). They must use the standard constness rules.
/// \ingroup GILIsBasic
template <typename PixelRef>
struct pixel_reference_is_basic : public std::false_type {};

template <typename T, typename L>
struct pixel_reference_is_basic<pixel<T, L>&> : std::true_type {};

template <typename T, typename L>
struct pixel_reference_is_basic<const pixel<T, L>&> : std::true_type {};

template <typename TR, typename CS>
struct pixel_reference_is_basic<planar_pixel_reference<TR, CS>> : std::true_type {};

template <typename TR, typename CS>
struct pixel_reference_is_basic<const planar_pixel_reference<TR, CS>> : std::true_type {};

/// \brief Determines if a given pixel iterator is basic
///    Basic iterators must use gil::pixel (if interleaved), gil::planar_pixel_iterator (if planar) and gil::memory_based_step_iterator (if step). They must use the standard constness rules.
/// \ingroup GILIsBasic
template <typename Iterator>
struct iterator_is_basic : std::false_type {};

/// \tparam T mutable interleaved pixel type
template <typename T, typename L>
struct iterator_is_basic<pixel<T, L>*> : std::true_type {};

/// \tparam T immutable interleaved pixel type
template <typename T, typename L>
struct iterator_is_basic<pixel<T, L> const*> : std::true_type {};

/// \tparam T mutable planar pixel type
template <typename T, typename CS>
struct iterator_is_basic<planar_pixel_iterator<T*, CS>> : std::true_type {};

/// \tparam T immutable planar pixel type
template <typename T, typename CS>
struct iterator_is_basic<planar_pixel_iterator<T const*, CS>> : std::true_type {};

/// \tparam T mutable interleaved step
template <typename T, typename L>
struct iterator_is_basic<memory_based_step_iterator<pixel<T, L>*>> : std::true_type {};

/// \tparam T immutable interleaved step
template <typename T, typename L>
struct iterator_is_basic<memory_based_step_iterator<pixel<T, L> const*>> : std::true_type {};

/// \tparam T mutable planar step
template <typename T, typename CS>
struct iterator_is_basic<memory_based_step_iterator<planar_pixel_iterator<T*, CS>>>
    : std::true_type
{};

/// \tparam T immutable planar step
template <typename T, typename CS>
struct iterator_is_basic<memory_based_step_iterator<planar_pixel_iterator<T const*, CS>>>
    : std::true_type
{};


/// \ingroup GILIsBasic
/// \brief Determines if a given locator is basic. A basic locator is memory-based and has basic x_iterator and y_iterator
template <typename Loc>
struct locator_is_basic : std::false_type {};

template <typename Iterator>
struct locator_is_basic
    <
        memory_based_2d_locator<memory_based_step_iterator<Iterator>>
    > : iterator_is_basic<Iterator>
{};

/// \ingroup GILIsBasic
/// \brief Basic views must be over basic locators
template <typename View>
struct view_is_basic : std::false_type {};

template <typename Loc>
struct view_is_basic<image_view<Loc>> : locator_is_basic<Loc> {};

/// \ingroup GILIsBasic
/// \brief Basic images must use basic views and std::allocator
template <typename Img>
struct image_is_basic : std::false_type {};

template <typename Pixel, bool IsPlanar, typename Alloc>
struct image_is_basic<image<Pixel, IsPlanar, Alloc>> : std::true_type {};


/// \defgroup GILIsStep xxx_is_step
/// \ingroup TypeAnalysis
/// \brief Determines if the given iterator/locator/view has a step that could be set dynamically

template <typename I>
struct iterator_is_step;

namespace detail {

template <typename It, bool IsBase, bool EqualsStepType>
struct iterator_is_step_impl;

// iterator that has the same type as its dynamic_x_step_type must be a step iterator
template <typename It, bool IsBase>
struct iterator_is_step_impl<It, IsBase, true> : std::true_type {};

// base iterator can never be a step iterator
template <typename It>
struct iterator_is_step_impl<It, true, false> : std::false_type {};

// for an iterator adaptor, see if its base is step
template <typename It>
struct iterator_is_step_impl<It, false, false>
    : public iterator_is_step<typename iterator_adaptor_get_base<It>::type> {};

} // namespace detail

/// \ingroup GILIsStep
/// \brief Determines if the given iterator has a step that could be set dynamically
template <typename I>
struct iterator_is_step
    : detail::iterator_is_step_impl
    <
        I,
        !is_iterator_adaptor<I>::value,
        std::is_same<I, typename dynamic_x_step_type<I>::type
    >::value
>
{};

/// \ingroup GILIsStep
/// \brief Determines if the given locator has a horizontal step that could be set dynamically
template <typename L> struct locator_is_step_in_x : public iterator_is_step<typename L::x_iterator> {};

/// \ingroup GILIsStep
/// \brief Determines if the given locator has a vertical step that could be set dynamically
template <typename L> struct locator_is_step_in_y : public iterator_is_step<typename L::y_iterator> {};

/// \ingroup GILIsStep
/// \brief Determines if the given view has a horizontal step that could be set dynamically
template <typename V> struct view_is_step_in_x : public locator_is_step_in_x<typename V::xy_locator> {};

/// \ingroup GILIsStep
/// \brief Determines if the given view has a vertical step that could be set dynamically
template <typename V> struct view_is_step_in_y : public locator_is_step_in_y<typename V::xy_locator> {};

/// \brief Determines whether the given pixel reference is a proxy class or a native C++ reference
/// \ingroup TypeAnalysis
template <typename PixelReference>
struct pixel_reference_is_proxy
    : mp11::mp_not
    <
        std::is_same
        <
            typename detail::remove_const_and_reference<PixelReference>::type,
            typename detail::remove_const_and_reference<PixelReference>::type::value_type
        >
    >
{};

/// \brief Given a model of a pixel, determines whether the model represents a pixel reference (as opposed to pixel value)
/// \ingroup TypeAnalysis
template <typename Pixel>
struct pixel_is_reference
    : mp11::mp_or<is_reference<Pixel>, pixel_reference_is_proxy<Pixel>> {};

/// \defgroup GILIsMutable xxx_is_mutable
/// \ingroup TypeAnalysis
/// \brief Determines if the given pixel reference/iterator/locator/view is mutable (i.e. its pixels can be changed)

/// \ingroup GILIsMutable
/// \brief Determines if the given pixel reference is mutable (i.e. its channels can be changed)
///
/// Note that built-in C++ references obey the const qualifier but reference proxy classes do not.
template <typename R>
struct pixel_reference_is_mutable
    : std::integral_constant<bool, std::remove_reference<R>::type::is_mutable>
{};

template <typename R>
struct pixel_reference_is_mutable<R const&>
    : mp11::mp_and<pixel_reference_is_proxy<R>, pixel_reference_is_mutable<R>>
{};

/// \ingroup GILIsMutable
/// \brief Determines if the given locator is mutable (i.e. its pixels can be changed)
template <typename L> struct locator_is_mutable : public iterator_is_mutable<typename L::x_iterator> {};
/// \ingroup GILIsMutable
/// \brief Determines if the given view is mutable (i.e. its pixels can be changed)
template <typename V> struct view_is_mutable : public iterator_is_mutable<typename V::x_iterator> {};


//////////////////////////////////////////////////
///
///  TYPE FACTORY METAFUNCTIONS
///  Metafunctions returning GIL types from other GIL types
///
//////////////////////////////////////////////////

/// \defgroup TypeFactoryFromElements xxx_type
/// \ingroup TypeFactory
/// \brief Returns the type of a homogeneous GIL construct given its elements (channel, layout, whether it is planar, step, mutable, etc.)

/// \defgroup TypeFactoryFromPixel xxx_type_from_pixel
/// \ingroup TypeFactory
/// \brief Returns the type of a GIL construct given its pixel type, whether it is planar, step, mutable, etc.

/// \defgroup TypeFactoryDerived derived_xxx_type
/// \ingroup TypeFactory
/// \brief Returns the type of a homogeneous GIL construct given a related construct by changing some of its properties

/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a homogeneous pixel reference given the channel type, layout, whether it operates on planar data and whether it is mutable
template <typename T, typename L, bool IsPlanar=false, bool IsMutable=true> struct pixel_reference_type{};
template <typename T, typename L> struct pixel_reference_type<T,L,false,true > { using type = pixel<T,L>&; };
template <typename T, typename L> struct pixel_reference_type<T,L,false,false> { using type = pixel<T,L> const&; };
template <typename T, typename L> struct pixel_reference_type<T,L,true,true> { using type = planar_pixel_reference<typename channel_traits<T>::reference,typename color_space_type<L>::type> const; };       // TODO: Assert M=identity
template <typename T, typename L> struct pixel_reference_type<T,L,true,false> { using type = planar_pixel_reference<typename channel_traits<T>::const_reference,typename color_space_type<L>::type> const; };// TODO: Assert M=identity

/// \ingroup TypeFactoryFromPixel
/// \brief Returns the type of a pixel iterator given the pixel type, whether it operates on planar data, whether it is a step iterator, and whether it is mutable
template <typename Pixel, bool IsPlanar=false, bool IsStep=false, bool IsMutable=true> struct iterator_type_from_pixel{};
template <typename Pixel> struct iterator_type_from_pixel<Pixel,false,false,true > { using type = Pixel *; };
template <typename Pixel> struct iterator_type_from_pixel<Pixel,false,false,false> { using type = const Pixel *; };
template <typename Pixel> struct iterator_type_from_pixel<Pixel,true,false,true> {
    using type = planar_pixel_iterator<typename channel_traits<typename channel_type<Pixel>::type>::pointer,typename color_space_type<Pixel>::type>;
};
template <typename Pixel> struct iterator_type_from_pixel<Pixel,true,false,false> {
    using type = planar_pixel_iterator<typename channel_traits<typename channel_type<Pixel>::type>::const_pointer,typename color_space_type<Pixel>::type>;
};
template <typename Pixel, bool IsPlanar, bool IsMutable> struct iterator_type_from_pixel<Pixel,IsPlanar,true,IsMutable> {
    using type = memory_based_step_iterator<typename iterator_type_from_pixel<Pixel,IsPlanar,false,IsMutable>::type>;
};

/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a homogeneous iterator given the channel type, layout, whether it operates on planar data, whether it is a step iterator, and whether it is mutable
template <typename T, typename L, bool IsPlanar=false, bool IsStep=false, bool IsMutable=true> struct iterator_type{};
template <typename T, typename L> struct iterator_type<T,L,false,false,true > { using type = pixel<T,L>*; };
template <typename T, typename L> struct iterator_type<T,L,false,false,false> { using type = pixel<T,L> const*; };
template <typename T, typename L> struct iterator_type<T,L,true,false,true> { using type = planar_pixel_iterator<T*,typename L::color_space_t>; };               // TODO: Assert M=identity
template <typename T, typename L> struct iterator_type<T,L,true,false,false> { using type = planar_pixel_iterator<const T*,typename L::color_space_t>; };        // TODO: Assert M=identity
template <typename T, typename L, bool IsPlanar, bool IsMutable> struct iterator_type<T,L,IsPlanar,true,IsMutable> {
    using type = memory_based_step_iterator<typename iterator_type<T,L,IsPlanar,false,IsMutable>::type>;
};

/// \brief Given a pixel iterator defining access to pixels along a row, returns the types of the corresponding built-in step_iterator, xy_locator, image_view
/// \ingroup TypeFactory
template <typename XIterator>
struct type_from_x_iterator
{
    using step_iterator_t = memory_based_step_iterator<XIterator>;
    using xy_locator_t = memory_based_2d_locator<step_iterator_t>;
    using view_t = image_view<xy_locator_t>;
};

namespace detail {

template <typename BitField, typename FirstBit, typename NumBits>
struct packed_channel_reference_type
{
    using type = packed_channel_reference
        <
            BitField, FirstBit::value, NumBits::value, true
        > const;
};

template <typename BitField, typename ChannelBitSizes>
class packed_channel_references_vector_type
{
    template <typename FirstBit, typename NumBits>
    using reference_type = typename packed_channel_reference_type<BitField, FirstBit, NumBits>::type;

    // If ChannelBitSizesVector is mp11::mp_list_c<int,7,7,2>
    // Then first_bits_vector will be mp11::mp_list_c<int,0,7,14,16>
    using first_bit_list = mp11::mp_fold_q
        <
            ChannelBitSizes,
            mp11::mp_list<std::integral_constant<int, 0>>,
            mp11::mp_bind
            <
                mp11::mp_push_back,
                mp11::_1,
                mp11::mp_bind
                <
                    mp11::mp_plus,
                    mp11::mp_bind<mp_back, mp11::_1>,
                    mp11::_2
                >
            >
        >;

    static_assert(mp11::mp_at_c<first_bit_list, 0>::value == 0, "packed channel first bit must be 0");

public:
    using type = mp11::mp_transform
        <
            reference_type,
            mp_pop_back<first_bit_list>,
            ChannelBitSizes
        >;
};

} // namespace detail

/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a packed pixel given its bitfield type, the bit size of its channels and its layout.
///
/// A packed pixel has channels that cover bit ranges but itself is byte aligned. RGB565 pixel is an example.
///
/// The size of ChannelBitSizes must equal the number of channels in the given layout
/// The sum of bit sizes for all channels must be less than or equal to the number of bits in BitField (and cannot exceed 64).
///  If it is less than the number of bits in BitField, the last bits will be unused.
template <typename BitField, typename ChannelBitSizes, typename Layout>
struct packed_pixel_type
{
    using type = packed_pixel
        <
            BitField,
            typename detail::packed_channel_references_vector_type
            <
                BitField,
                ChannelBitSizes
            >::type,
        Layout>;
};

/// \defgroup TypeFactoryPacked packed_image_type,bit_aligned_image_type
/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of an image whose channels are not byte-aligned.
///
/// A packed image is an image whose pixels are byte aligned, such as "rgb565". <br>
/// A bit-aligned image is an image whose pixels are not byte aligned, such as "rgb222". <br>
///
/// The sum of the bit sizes of all channels cannot exceed 64.

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of an interleaved packed image: an image whose channels may not be byte-aligned, but whose pixels are byte aligned.
template <typename BitField, typename ChannelBitSizes, typename Layout, typename Alloc=std::allocator<unsigned char>>
struct packed_image_type
{
    using type = image<typename packed_pixel_type<BitField,ChannelBitSizes,Layout>::type,false,Alloc>;
};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a single-channel image given its bitfield type, the bit size of its channel and its layout
template <typename BitField, unsigned Size1, typename Layout, typename Alloc = std::allocator<unsigned char>>
struct packed_image1_type
    : packed_image_type<BitField, mp11::mp_list_c<unsigned, Size1>, Layout, Alloc>
{};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a two channel image given its bitfield type, the bit size of its channels and its layout
template <typename BitField, unsigned Size1, unsigned Size2, typename Layout, typename Alloc = std::allocator<unsigned char>>
struct packed_image2_type
    : packed_image_type<BitField, mp11::mp_list_c<unsigned, Size1, Size2>, Layout, Alloc>
{};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a three channel image given its bitfield type, the bit size of its channels and its layout
template <typename BitField, unsigned Size1, unsigned Size2, unsigned Size3, typename Layout, typename Alloc = std::allocator<unsigned char>>
struct packed_image3_type
    : packed_image_type<BitField, mp11::mp_list_c<unsigned, Size1, Size2, Size3>, Layout, Alloc>
{};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a four channel image given its bitfield type, the bit size of its channels and its layout
template <typename BitField, unsigned Size1, unsigned Size2, unsigned Size3, unsigned Size4, typename Layout, typename Alloc = std::allocator<unsigned char>>
struct packed_image4_type
    : packed_image_type<BitField, mp11::mp_list_c<unsigned, Size1, Size2, Size3, Size4>, Layout, Alloc>
{};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a five channel image given its bitfield type, the bit size of its channels and its layout
template <typename BitField, unsigned Size1, unsigned Size2, unsigned Size3, unsigned Size4, unsigned Size5, typename Layout, typename Alloc = std::allocator<unsigned char>>
struct packed_image5_type
    : packed_image_type<BitField, mp11::mp_list_c<unsigned, Size1, Size2, Size3, Size4, Size5>, Layout, Alloc> {};


/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a packed image whose pixels may not be byte aligned. For example, an "rgb222" image is bit-aligned because its pixel spans six bits.
///
/// Note that the alignment parameter in the constructor of bit-aligned images is in bit units. For example, if you want to construct a bit-aligned
/// image whose rows are byte-aligned, use 8 as the alignment parameter, not 1.
///
template
<
    typename ChannelBitSizes,
    typename Layout,
    typename Alloc = std::allocator<unsigned char>
>
struct bit_aligned_image_type
{
private:

    static constexpr int bit_size =
        mp11::mp_fold
        <
            ChannelBitSizes,
            std::integral_constant<int, 0>,
            mp11::mp_plus
        >::value;

    using bitfield_t = typename detail::min_fast_uint<bit_size + 7>::type;
    using bit_alignedref_t = bit_aligned_pixel_reference<bitfield_t, ChannelBitSizes, Layout, true> const;

public:
    using type = image<bit_alignedref_t,false,Alloc>;
};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a single-channel bit-aligned image given the bit size of its channel and its layout
template <unsigned Size1, typename Layout, typename Alloc = std::allocator<unsigned char>>
struct bit_aligned_image1_type : bit_aligned_image_type<mp11::mp_list_c<unsigned, Size1>, Layout, Alloc> {};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a two channel bit-aligned image given the bit size of its channels and its layout
template <unsigned Size1, unsigned Size2, typename Layout, typename Alloc = std::allocator<unsigned char>>
struct bit_aligned_image2_type : bit_aligned_image_type<mp11::mp_list_c<unsigned, Size1, Size2>, Layout, Alloc> {};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a three channel bit-aligned image given the bit size of its channels and its layout
template <unsigned Size1, unsigned Size2, unsigned Size3, typename Layout, typename Alloc = std::allocator<unsigned char>>
struct bit_aligned_image3_type : bit_aligned_image_type<mp11::mp_list_c<unsigned, Size1, Size2, Size3>, Layout, Alloc> {};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a four channel bit-aligned image given the bit size of its channels and its layout
template <unsigned Size1, unsigned Size2, unsigned Size3, unsigned Size4, typename Layout, typename Alloc = std::allocator<unsigned char>>
struct bit_aligned_image4_type : bit_aligned_image_type<mp11::mp_list_c<unsigned, Size1, Size2, Size3, Size4>, Layout, Alloc> {};

/// \ingroup TypeFactoryPacked
/// \brief Returns the type of a five channel bit-aligned image given the bit size of its channels and its layout
template <unsigned Size1, unsigned Size2, unsigned Size3, unsigned Size4, unsigned Size5, typename Layout, typename Alloc = std::allocator<unsigned char>>
struct bit_aligned_image5_type : bit_aligned_image_type<mp11::mp_list_c<unsigned, Size1, Size2, Size3, Size4, Size5>, Layout, Alloc> {};


/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a homogeneous pixel given the channel type and layout
template <typename Channel, typename Layout>
struct pixel_value_type
{
    // by default use gil::pixel. Specializations are provided for
    using type = pixel<Channel, Layout>;
};

// Specializations for packed channels
template <typename BitField, int NumBits, bool IsMutable, typename Layout>
struct pixel_value_type<packed_dynamic_channel_reference<BitField, NumBits, IsMutable>, Layout>
    : packed_pixel_type<BitField, mp11::mp_list_c<unsigned, NumBits>, Layout>
{};

template <typename BitField, int NumBits, bool IsMutable, typename Layout>
struct pixel_value_type<packed_dynamic_channel_reference<BitField, NumBits, IsMutable> const, Layout>
    : packed_pixel_type<BitField, mp11::mp_list_c<unsigned, NumBits>, Layout>
{};

template <typename BitField, int FirstBit, int NumBits, bool IsMutable, typename Layout>
struct pixel_value_type<packed_channel_reference<BitField, FirstBit, NumBits, IsMutable>, Layout>
    : packed_pixel_type<BitField, mp11::mp_list_c<unsigned, NumBits>, Layout>
{};

template <typename BitField, int FirstBit, int NumBits, bool IsMutable, typename Layout>
struct pixel_value_type<packed_channel_reference<BitField, FirstBit, NumBits, IsMutable> const, Layout>
    : packed_pixel_type<BitField, mp11::mp_list_c<unsigned, NumBits>, Layout>
{};

template <int NumBits, typename Layout>
struct pixel_value_type<packed_channel_value<NumBits>, Layout>
    : packed_pixel_type<typename detail::min_fast_uint<NumBits>::type, mp11::mp_list_c<unsigned, NumBits>, Layout>
{};

/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a homogeneous locator given the channel type, layout, whether it operates on planar data and whether it has a step horizontally
template <typename T, typename L, bool IsPlanar = false, bool IsStepX = false, bool IsMutable = true>
struct locator_type
{
    using type = typename type_from_x_iterator
        <
            typename iterator_type<T, L, IsPlanar, IsStepX, IsMutable>::type
        >::xy_locator_type;
};

/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a homogeneous view given the channel type, layout, whether it operates on planar data and whether it has a step horizontally
template <typename T, typename L, bool IsPlanar = false, bool IsStepX = false, bool IsMutable = true>
struct view_type
{
    using type = typename type_from_x_iterator
        <
            typename iterator_type<T, L, IsPlanar, IsStepX, IsMutable>::type
        >::view_t;
};

/// \ingroup TypeFactoryFromElements
/// \brief Returns the type of a homogeneous image given the channel type, layout, and whether it operates on planar data
template <typename T, typename L, bool IsPlanar = false, typename Alloc = std::allocator<unsigned char>>
struct image_type
{
    using type = image<pixel<T, L>, IsPlanar, Alloc>;
};

/// \ingroup TypeFactoryFromPixel
/// \brief Returns the type of a view the pixel type, whether it operates on planar data and whether it has a step horizontally
template <typename Pixel, bool IsPlanar=false, bool IsStepX=false, bool IsMutable=true>
struct view_type_from_pixel {
    using type = typename type_from_x_iterator<typename iterator_type_from_pixel<Pixel,IsPlanar,IsStepX,IsMutable>::type>::view_t;
};


/// \brief Constructs a pixel reference type from a source pixel reference type by changing some of the properties.
/// \ingroup TypeFactoryDerived
///  Use use_default for the properties of the source view that you want to keep
template
<
        typename Ref,
        typename T = use_default,
        typename L = use_default,
        typename IsPlanar = use_default,
        typename IsMutable = use_default>
class derived_pixel_reference_type
{
    using pixel_t = typename std::remove_reference<Ref>::type;

    using channel_t = typename mp11::mp_if
        <
            std::is_same<T, use_default>,
            typename channel_type<pixel_t>::type,
            T
        >::type;

    using layout_t = typename  mp11::mp_if
        <
            std::is_same<L, use_default>,
            layout
            <
                typename color_space_type<pixel_t>::type,
                typename channel_mapping_type<pixel_t>::type
            >,
            L
        >::type;

    static bool const mut = mp11::mp_if
        <
            std::is_same<IsMutable, use_default>,
            pixel_reference_is_mutable<Ref>,
            IsMutable
        >::value;

    static bool const planar = mp11::mp_if
        <
            std::is_same<IsPlanar, use_default>,
            is_planar<pixel_t>,
            IsPlanar
        >::value;

public:
    using type = typename pixel_reference_type<channel_t, layout_t, planar, mut>::type;
};

/// \brief Constructs a pixel iterator type from a source pixel iterator type by changing some of the properties.
/// \ingroup TypeFactoryDerived
///  Use use_default for the properties of the source view that you want to keep
template
<
    typename Iterator,
    typename T = use_default,
    typename L = use_default,
    typename IsPlanar = use_default,
    typename IsStep = use_default,
    typename IsMutable = use_default
>
class derived_iterator_type
{
    using channel_t = typename mp11::mp_if
        <
            std::is_same<T, use_default>,
            typename channel_type<Iterator>::type,
            T
        >::type;

    using layout_t = typename mp11::mp_if
        <
            std::is_same<L, use_default>,
            layout
            <
                typename color_space_type<Iterator>::type,
                typename channel_mapping_type<Iterator>::type
            >,
            L
        >::type;

    static const bool mut = mp11::mp_if
        <
            std::is_same<IsMutable, use_default>,
            iterator_is_mutable<Iterator>,
            IsMutable
        >::value;

    static bool const planar = mp11::mp_if
        <
            std::is_same<IsPlanar, use_default>,
            is_planar<Iterator>,
            IsPlanar
        >::value;

    static bool const step = mp11::mp_if
        <
            std::is_same<IsStep, use_default>,
            iterator_is_step<Iterator>,
            IsStep
        >::type::value;

public:
    using type = typename iterator_type<channel_t, layout_t, planar, step, mut>::type;
};

/// \brief Constructs an image view type from a source view type by changing some of the properties.
/// \ingroup TypeFactoryDerived
///  Use use_default for the properties of the source view that you want to keep
template <typename View, typename T = use_default, typename L = use_default, typename IsPlanar = use_default, typename StepX = use_default, typename IsMutable = use_default>
class derived_view_type
{
    using channel_t = typename mp11::mp_if
        <
            std::is_same<T, use_default>,
            typename channel_type<View>::type,
            T
        >;

    using layout_t = typename mp11::mp_if
        <
            std::is_same<L, use_default>,
            layout
            <
                typename color_space_type<View>::type,
                typename channel_mapping_type<View>::type
            >,
            L
        >;

    static bool const mut = mp11::mp_if
        <
            std::is_same<IsMutable, use_default>,
            view_is_mutable<View>,
            IsMutable
        >::value;

    static bool const planar = mp11::mp_if
        <
            std::is_same<IsPlanar, use_default>,
            is_planar<View>,
            IsPlanar
        >::value;

    static bool const step = mp11::mp_if
        <
            std::is_same<StepX, use_default>,
            view_is_step_in_x<View>,
            StepX
        >::value;

public:
    using type = typename view_type<channel_t, layout_t, planar, step, mut>::type;
};

/// \brief Constructs a homogeneous image type from a source image type by changing some of the properties.
/// \ingroup TypeFactoryDerived
///  Use use_default for the properties of the source image that you want to keep
template <typename Image, typename T = use_default, typename L = use_default, typename IsPlanar = use_default>
class derived_image_type
{
    using channel_t = typename mp11::mp_if
        <
            std::is_same<T, use_default>,
            typename channel_type<Image>::type,
            T
        >::type;

    using layout_t = typename mp11::mp_if
        <
            std::is_same<L, use_default>,
            layout
            <
                typename color_space_type<Image>::type,
                typename channel_mapping_type<Image>::type>,
                L
            >::type;

    static bool const planar = mp11::mp_if
        <
            std::is_same<IsPlanar, use_default>,
            is_planar<Image>,
            IsPlanar
        >::value;

public:
    using type = typename image_type<channel_t, layout_t, planar>::type;
};

}}  // namespace boost::gil

#endif