Blame view

3rdparty/opencv-4.5.4/modules/dnn/test/pascal_semsegm_test_fcn.py 8.5 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
  from __future__ import print_function
  from abc import ABCMeta, abstractmethod
  import numpy as np
  import sys
  import argparse
  import time
  
  from imagenet_cls_test_alexnet import CaffeModel, DnnCaffeModel
  try:
      import cv2 as cv
  except ImportError:
      raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
                        'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
  
  
  def get_metrics(conf_mat):
      pix_accuracy = np.trace(conf_mat) / np.sum(conf_mat)
      t = np.sum(conf_mat, 1)
      num_cl = np.count_nonzero(t)
      assert num_cl
      mean_accuracy = np.sum(np.nan_to_num(np.divide(np.diagonal(conf_mat), t))) / num_cl
      col_sum = np.sum(conf_mat, 0)
      mean_iou = np.sum(
          np.nan_to_num(np.divide(np.diagonal(conf_mat), (t + col_sum - np.diagonal(conf_mat))))) / num_cl
      return pix_accuracy, mean_accuracy, mean_iou
  
  
  def eval_segm_result(net_out):
      assert type(net_out) is np.ndarray
      assert len(net_out.shape) == 4
  
      channels_dim = 1
      y_dim = channels_dim + 1
      x_dim = y_dim + 1
      res = np.zeros(net_out.shape).astype(np.int)
      for i in range(net_out.shape[y_dim]):
          for j in range(net_out.shape[x_dim]):
              max_ch = np.argmax(net_out[..., i, j])
              res[0, max_ch, i, j] = 1
      return res
  
  
  def get_conf_mat(gt, prob):
      assert type(gt) is np.ndarray
      assert type(prob) is np.ndarray
  
      conf_mat = np.zeros((gt.shape[0], gt.shape[0]))
      for ch_gt in range(conf_mat.shape[0]):
          gt_channel = gt[ch_gt, ...]
          for ch_pr in range(conf_mat.shape[1]):
              prob_channel = prob[ch_pr, ...]
              conf_mat[ch_gt][ch_pr] = np.count_nonzero(np.multiply(gt_channel, prob_channel))
      return conf_mat
  
  
  class MeanChannelsPreproc:
      def __init__(self):
          pass
  
      @staticmethod
      def process(img):
          image_data = np.array(img).transpose(2, 0, 1).astype(np.float32)
          mean = np.ones(image_data.shape)
          mean[0] *= 104
          mean[1] *= 117
          mean[2] *= 123
          image_data -= mean
          image_data = np.expand_dims(image_data, 0)
          return image_data
  
  
  class DatasetImageFetch(object):
      __metaclass__ = ABCMeta
      data_prepoc = object
  
      @abstractmethod
      def __iter__(self):
          pass
  
      @abstractmethod
      def next(self):
          pass
  
      @staticmethod
      def pix_to_c(pix):
          return pix[0] * 256 * 256 + pix[1] * 256 + pix[2]
  
      @staticmethod
      def color_to_gt(color_img, colors):
          num_classes = len(colors)
          gt = np.zeros((num_classes, color_img.shape[0], color_img.shape[1])).astype(np.int)
          for img_y in range(color_img.shape[0]):
              for img_x in range(color_img.shape[1]):
                  c = DatasetImageFetch.pix_to_c(color_img[img_y][img_x])
                  if c in colors:
                      cls = colors.index(c)
                      gt[cls][img_y][img_x] = 1
          return gt
  
  
  class PASCALDataFetch(DatasetImageFetch):
      img_dir = ''
      segm_dir = ''
      names = []
      colors = []
      i = 0
  
      def __init__(self, img_dir, segm_dir, names_file, segm_cls_colors_file, preproc):
          self.img_dir = img_dir
          self.segm_dir = segm_dir
          self.colors = self.read_colors(segm_cls_colors_file)
          self.data_prepoc = preproc
          self.i = 0
  
          with open(names_file) as f:
              for l in f.readlines():
                  self.names.append(l.rstrip())
  
      @staticmethod
      def read_colors(img_classes_file):
          result = []
          with open(img_classes_file) as f:
              for l in f.readlines():
                  color = np.array(map(int, l.split()[1:]))
                  result.append(DatasetImageFetch.pix_to_c(color))
          return result
  
      def __iter__(self):
          return self
  
      def next(self):
          if self.i < len(self.names):
              name = self.names[self.i]
              self.i += 1
              segm_file = self.segm_dir + name + ".png"
              img_file = self.img_dir + name + ".jpg"
              gt = self.color_to_gt(cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1], self.colors)
              img = self.data_prepoc.process(cv.imread(img_file, cv.IMREAD_COLOR)[:, :, ::-1])
              return img, gt
          else:
              self.i = 0
              raise StopIteration
  
      def get_num_classes(self):
          return len(self.colors)
  
  
  class SemSegmEvaluation:
      log = sys.stdout
  
      def __init__(self, log_path,):
          self.log = open(log_path, 'w')
  
      def process(self, frameworks, data_fetcher):
          samples_handled = 0
  
          conf_mats = [np.zeros((data_fetcher.get_num_classes(), data_fetcher.get_num_classes())) for i in range(len(frameworks))]
          blobs_l1_diff = [0] * len(frameworks)
          blobs_l1_diff_count = [0] * len(frameworks)
          blobs_l_inf_diff = [sys.float_info.min] * len(frameworks)
          inference_time = [0.0] * len(frameworks)
  
          for in_blob, gt in data_fetcher:
              frameworks_out = []
              samples_handled += 1
              for i in range(len(frameworks)):
                  start = time.time()
                  out = frameworks[i].get_output(in_blob)
                  end = time.time()
                  segm = eval_segm_result(out)
                  conf_mats[i] += get_conf_mat(gt, segm[0])
                  frameworks_out.append(out)
                  inference_time[i] += end - start
  
                  pix_acc, mean_acc, miou = get_metrics(conf_mats[i])
  
                  name = frameworks[i].get_name()
                  print(samples_handled, 'Pixel accuracy, %s:' % name, 100 * pix_acc, file=self.log)
                  print(samples_handled, 'Mean accuracy, %s:' % name, 100 * mean_acc, file=self.log)
                  print(samples_handled, 'Mean IOU, %s:' % name, 100 * miou, file=self.log)
                  print("Inference time, ms ", \
                      frameworks[i].get_name(), inference_time[i] / samples_handled * 1000, file=self.log)
  
              for i in range(1, len(frameworks)):
                  log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
                  diff = np.abs(frameworks_out[0] - frameworks_out[i])
                  l1_diff = np.sum(diff) / diff.size
                  print(samples_handled, "L1 difference", log_str, l1_diff, file=self.log)
                  blobs_l1_diff[i] += l1_diff
                  blobs_l1_diff_count[i] += 1
                  if np.max(diff) > blobs_l_inf_diff[i]:
                      blobs_l_inf_diff[i] = np.max(diff)
                  print(samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i], file=self.log)
  
              self.log.flush()
  
          for i in range(1, len(blobs_l1_diff)):
              log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
              print('Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i], file=self.log)
  
  if __name__ == "__main__":
      parser = argparse.ArgumentParser()
      parser.add_argument("--imgs_dir", help="path to PASCAL VOC 2012 images dir, data/VOC2012/JPEGImages")
      parser.add_argument("--segm_dir", help="path to PASCAL VOC 2012 segmentation dir, data/VOC2012/SegmentationClass/")
      parser.add_argument("--val_names", help="path to file with validation set image names, download it here: "
                          "https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/data/pascal/seg11valid.txt")
      parser.add_argument("--cls_file", help="path to file with colors for classes, download it here: "
                          "https://github.com/opencv/opencv/blob/master/samples/data/dnn/pascal-classes.txt")
      parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: "
                          "https://github.com/opencv/opencv/blob/master/samples/data/dnn/fcn8s-heavy-pascal.prototxt")
      parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: "
                                               "http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel")
      parser.add_argument("--log", help="path to logging file")
      parser.add_argument("--in_blob", help="name for input blob", default='data')
      parser.add_argument("--out_blob", help="name for output blob", default='score')
      args = parser.parse_args()
  
      prep = MeanChannelsPreproc()
      df = PASCALDataFetch(args.imgs_dir, args.segm_dir, args.val_names, args.cls_file, prep)
  
      fw = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob, True),
            DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)]
  
      segm_eval = SemSegmEvaluation(args.log)
      segm_eval.process(fw, df)