Blame view

3rdparty/opencv-4.5.4/modules/gapi/samples/infer_single_roi.cpp 9.58 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
  #include <algorithm>
  #include <iostream>
  #include <sstream>
  
  #include <opencv2/imgproc.hpp>
  #include <opencv2/imgcodecs.hpp>
  #include <opencv2/gapi.hpp>
  #include <opencv2/gapi/core.hpp>
  #include <opencv2/gapi/imgproc.hpp>
  #include <opencv2/gapi/infer.hpp>
  #include <opencv2/gapi/render.hpp>
  #include <opencv2/gapi/infer/ie.hpp>
  #include <opencv2/gapi/cpu/gcpukernel.hpp>
  #include <opencv2/gapi/streaming/cap.hpp>
  #include <opencv2/highgui.hpp>
  
  const std::string keys =
      "{ h help |                              | Print this help message }"
      "{ input  |                              | Path to the input video file }"
      "{ facem  | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
      "{ faced  | CPU                          | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }"
      "{ r roi  | -1,-1,-1,-1                  | Region of interest (ROI) to use for inference. Identified automatically when not set }";
  
  namespace {
  
  std::string weights_path(const std::string &model_path) {
      const auto EXT_LEN = 4u;
      const auto sz = model_path.size();
      CV_Assert(sz > EXT_LEN);
  
      auto ext = model_path.substr(sz - EXT_LEN);
      std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
              return static_cast<unsigned char>(std::tolower(c));
          });
      CV_Assert(ext == ".xml");
      return model_path.substr(0u, sz - EXT_LEN) + ".bin";
  }
  
  cv::util::optional<cv::Rect> parse_roi(const std::string &rc) {
      cv::Rect rv;
      char delim[3];
  
      std::stringstream is(rc);
      is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height;
      if (is.bad()) {
          return cv::util::optional<cv::Rect>(); // empty value
      }
      const auto is_delim = [](char c) {
          return c == ',';
      };
      if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) {
          return cv::util::optional<cv::Rect>(); // empty value
  
      }
      if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) {
          return cv::util::optional<cv::Rect>(); // empty value
      }
      return cv::util::make_optional(std::move(rv));
  }
  
  } // namespace
  
  namespace custom {
  
  G_API_NET(FaceDetector,   <cv::GMat(cv::GMat)>, "face-detector");
  
  using GDetections = cv::GArray<cv::Rect>;
  using GRect       = cv::GOpaque<cv::Rect>;
  using GSize       = cv::GOpaque<cv::Size>;
  using GPrims      = cv::GArray<cv::gapi::wip::draw::Prim>;
  
  G_API_OP(GetSize, <GSize(cv::GMat)>, "sample.custom.get-size") {
      static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) {
          return cv::empty_gopaque_desc();
      }
  };
  
  G_API_OP(LocateROI, <GRect(cv::GMat)>, "sample.custom.locate-roi") {
      static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) {
          return cv::empty_gopaque_desc();
      }
  };
  
  G_API_OP(ParseSSD, <GDetections(cv::GMat, GRect, GSize)>, "sample.custom.parse-ssd") {
      static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &, const cv::GOpaqueDesc &) {
          return cv::empty_array_desc();
      }
  };
  
  G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") {
      static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) {
          return cv::empty_array_desc();
      }
  };
  
  GAPI_OCV_KERNEL(OCVGetSize, GetSize) {
      static void run(const cv::Mat &in, cv::Size &out) {
          out = {in.cols, in.rows};
      }
  };
  
  GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) {
      // This is the place where we can run extra analytics
      // on the input image frame and select the ROI (region
      // of interest) where we want to detect our objects (or
      // run any other inference).
      //
      // Currently it doesn't do anything intelligent,
      // but only crops the input image to square (this is
      // the most convenient aspect ratio for detectors to use)
  
      static void run(const cv::Mat &in_mat, cv::Rect &out_rect) {
  
          // Identify the central point & square size (- some padding)
          const auto center = cv::Point{in_mat.cols/2, in_mat.rows/2};
          auto sqside = std::min(in_mat.cols, in_mat.rows);
  
          // Now build the central square ROI
          out_rect = cv::Rect{ center.x - sqside/2
                             , center.y - sqside/2
                             , sqside
                             , sqside
                             };
      }
  };
  
  GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
      static void run(const cv::Mat &in_ssd_result,
                      const cv::Rect &in_roi,
                      const cv::Size &in_parent_size,
                      std::vector<cv::Rect> &out_objects) {
          const auto &in_ssd_dims = in_ssd_result.size;
          CV_Assert(in_ssd_dims.dims() == 4u);
  
          const int MAX_PROPOSALS = in_ssd_dims[2];
          const int OBJECT_SIZE   = in_ssd_dims[3];
          CV_Assert(OBJECT_SIZE  == 7); // fixed SSD object size
  
          const cv::Size up_roi = in_roi.size();
          const cv::Rect surface({0,0}, in_parent_size);
  
          out_objects.clear();
  
          const float *data = in_ssd_result.ptr<float>();
          for (int i = 0; i < MAX_PROPOSALS; i++) {
              const float image_id   = data[i * OBJECT_SIZE + 0];
              const float label      = data[i * OBJECT_SIZE + 1];
              const float confidence = data[i * OBJECT_SIZE + 2];
              const float rc_left    = data[i * OBJECT_SIZE + 3];
              const float rc_top     = data[i * OBJECT_SIZE + 4];
              const float rc_right   = data[i * OBJECT_SIZE + 5];
              const float rc_bottom  = data[i * OBJECT_SIZE + 6];
              (void) label; // unused
  
              if (image_id < 0.f) {
                  break;    // marks end-of-detections
              }
              if (confidence < 0.5f) {
                  continue; // skip objects with low confidence
              }
  
              // map relative coordinates to the original image scale
              // taking the ROI into account
              cv::Rect rc;
              rc.x      = static_cast<int>(rc_left   * up_roi.width);
              rc.y      = static_cast<int>(rc_top    * up_roi.height);
              rc.width  = static_cast<int>(rc_right  * up_roi.width)  - rc.x;
              rc.height = static_cast<int>(rc_bottom * up_roi.height) - rc.y;
              rc.x += in_roi.x;
              rc.y += in_roi.y;
              out_objects.emplace_back(rc & surface);
          }
      }
  };
  
  GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
      // This kernel converts the rectangles into G-API's
      // rendering primitives
      static void run(const std::vector<cv::Rect> &in_face_rcs,
                      const             cv::Rect  &in_roi,
                            std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
          out_prims.clear();
          const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
              return cv::gapi::wip::draw::Rect(rc, clr, 2);
          };
          out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan
          for (auto &&rc : in_face_rcs) {
              out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0)));   // green
          }
      }
  };
  
  } // namespace custom
  
  int main(int argc, char *argv[])
  {
      cv::CommandLineParser cmd(argc, argv, keys);
      if (cmd.has("help")) {
          cmd.printMessage();
          return 0;
      }
  
      // Prepare parameters first
      const std::string input = cmd.get<std::string>("input");
      const auto opt_roi = parse_roi(cmd.get<std::string>("roi"));
  
      const auto face_model_path = cmd.get<std::string>("facem");
      auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
          face_model_path,                 // path to topology IR
          weights_path(face_model_path),   // path to weights
          cmd.get<std::string>("faced"),   // device specifier
      };
      auto kernels = cv::gapi::kernels
          < custom::OCVGetSize
          , custom::OCVLocateROI
          , custom::OCVParseSSD
          , custom::OCVBBoxes>();
      auto networks = cv::gapi::networks(face_net);
  
      // Now build the graph. The graph structure may vary
      // pased on the input parameters
      cv::GStreamingCompiled pipeline;
      auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
  
      if (opt_roi.has_value()) {
          // Use the value provided by user
          std::cout << "Will run inference for static region "
                    << opt_roi.value()
                    << " only"
                    << std::endl;
          cv::GMat in;
          cv::GOpaque<cv::Rect> in_roi;
          auto blob = cv::gapi::infer<custom::FaceDetector>(in_roi, in);
          auto  rcs = custom::ParseSSD::on(blob, in_roi, custom::GetSize::on(in));
          auto  out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, in_roi));
          pipeline  = cv::GComputation(cv::GIn(in, in_roi), cv::GOut(out))
              .compileStreaming(cv::compile_args(kernels, networks));
  
          // Since the ROI to detect is manual, make it part of the input vector
          inputs.push_back(cv::gin(opt_roi.value())[0]);
      } else {
          // Automatically detect ROI to infer. Make it output parameter
          std::cout << "ROI is not set or invalid. Locating it automatically"
                    << std::endl;
          cv::GMat in;
          cv::GOpaque<cv::Rect> roi = custom::LocateROI::on(in);
          auto blob = cv::gapi::infer<custom::FaceDetector>(roi, in);
          auto  rcs = custom::ParseSSD::on(blob, roi, custom::GetSize::on(in));
          auto  out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, roi));
          pipeline  = cv::GComputation(cv::GIn(in), cv::GOut(out))
              .compileStreaming(cv::compile_args(kernels, networks));
      }
  
      // The execution part
      pipeline.setSource(std::move(inputs));
      pipeline.start();
  
      cv::Mat out;
      while (pipeline.pull(cv::gout(out))) {
          cv::imshow("Out", out);
          cv::waitKey(1);
      }
      return 0;
  }