Blame view

3rdparty/opencv-4.5.4/modules/gapi/test/gapi_gcomputation_tests.cpp 6.2 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
  // This file is part of OpenCV project.
  // It is subject to the license terms in the LICENSE file found in the top-level directory
  // of this distribution and at http://opencv.org/license.html.
  //
  // Copyright (C) 2018 Intel Corporation
  
  
  #include "test_precomp.hpp"
  
  #include <opencv2/gapi/s11n.hpp>
  
  #include <opencv2/gapi/cpu/gcpukernel.hpp>
  #include <ade/util/zip_range.hpp>
  
  namespace opencv_test
  {
  
    namespace
    {
        G_TYPED_KERNEL(CustomResize, <cv::GMat(cv::GMat, cv::Size, double, double, int)>, "org.opencv.customk.resize")
        {
            static cv::GMatDesc outMeta(cv::GMatDesc in, cv::Size sz, double fx, double fy, int) {
                if (sz.width != 0 && sz.height != 0)
                {
                    return in.withSize(sz);
                }
                else
                {
                    GAPI_Assert(fx != 0. && fy != 0.);
                    return in.withSize
                      (cv::Size(static_cast<int>(std::round(in.size.width  * fx)),
                                           static_cast<int>(std::round(in.size.height * fy))));
                }
            }
        };
  
        GAPI_OCV_KERNEL(CustomResizeImpl, CustomResize)
        {
            static void run(const cv::Mat& in, cv::Size sz, double fx, double fy, int interp, cv::Mat &out)
            {
                cv::resize(in, out, sz, fx, fy, interp);
            }
        };
  
        struct GComputationApplyTest: public ::testing::Test
        {
            cv::GMat in;
            cv::Mat  in_mat;
            cv::Mat  out_mat;
            cv::GComputation m_c;
  
            GComputationApplyTest() : in_mat(300, 300, CV_8UC1),
                                      m_c(cv::GIn(in), cv::GOut(CustomResize::on(in, cv::Size(100, 100),
                                                                                 0.0, 0.0, cv::INTER_LINEAR)))
            {
            }
        };
  
        struct GComputationVectorMatsAsOutput: public ::testing::Test
        {
            cv::Mat  in_mat;
            cv::GComputation m_c;
            std::vector<cv::Mat> ref_mats;
  
            GComputationVectorMatsAsOutput() : in_mat(300, 300, CV_8UC3),
            m_c([&](){
                        cv::GMat in;
                        cv::GMat out[3];
                        std::tie(out[0], out[1], out[2]) = cv::gapi::split3(in);
                        return cv::GComputation({in}, {out[0], out[1], out[2]});
                    })
            {
                cv::randu(in_mat, cv::Scalar::all(0), cv::Scalar::all(255));
                cv::split(in_mat, ref_mats);
            }
  
            void run(std::vector<cv::Mat>& out_mats)
            {
                m_c.apply({in_mat}, out_mats);
            }
  
            void check(const std::vector<cv::Mat>& out_mats)
            {
                for (const auto it : ade::util::zip(ref_mats, out_mats))
                {
                    const auto& ref_mat = std::get<0>(it);
                    const auto& out_mat = std::get<1>(it);
  
                    EXPECT_EQ(0, cvtest::norm(ref_mat, out_mat, NORM_INF));
                }
            }
        };
  
        struct GComputationPythonApplyTest: public ::testing::Test
        {
            cv::Size sz;
            MatType type;
            cv::Mat in_mat1, in_mat2, out_mat_ocv;
            cv::GComputation m_c;
  
            GComputationPythonApplyTest() : sz(cv::Size(300,300)), type(CV_8UC1),
            in_mat1(sz, type), in_mat2(sz, type), out_mat_ocv(sz, type),
            m_c([&](){
                    cv::GMat in1, in2;
                    cv::GMat out = in1 + in2;
                    return cv::GComputation(cv::GIn(in1, in2), cv::GOut(out));
                    })
            {
                cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
                cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255));
                out_mat_ocv = in_mat1 + in_mat2;
            }
        };
    }
  
    TEST_F(GComputationPythonApplyTest, WithoutSerialization)
    {
        auto output = m_c.apply(cv::detail::ExtractArgsCallback{[this](const cv::GTypesInfo& info)
                                    {
                                        GAPI_Assert(info[0].shape == cv::GShape::GMAT);
                                        GAPI_Assert(info[1].shape == cv::GShape::GMAT);
                                        return cv::GRunArgs{in_mat1, in_mat2};
                                    }
                                });
  
        EXPECT_EQ(1u, output.size());
  
        const auto& out_mat_gapi = cv::util::get<cv::Mat>(output[0]);
        EXPECT_EQ(0, cvtest::norm(out_mat_ocv, out_mat_gapi, NORM_INF));
    }
  
    TEST_F(GComputationPythonApplyTest, WithSerialization)
    {
        auto p = cv::gapi::serialize(m_c);
        auto c = cv::gapi::deserialize<cv::GComputation>(p);
  
        auto output = c.apply(cv::detail::ExtractArgsCallback{[this](const cv::GTypesInfo& info)
                                    {
                                        GAPI_Assert(info[0].shape == cv::GShape::GMAT);
                                        GAPI_Assert(info[1].shape == cv::GShape::GMAT);
                                        return cv::GRunArgs{in_mat1, in_mat2};
                                    }
                                });
  
        EXPECT_EQ(1u, output.size());
  
        const auto& out_mat_gapi = cv::util::get<cv::Mat>(output[0]);
        EXPECT_EQ(0, cvtest::norm(out_mat_ocv, out_mat_gapi, NORM_INF));
    }
  
    TEST_F(GComputationApplyTest, ThrowDontPassCustomKernel)
    {
        EXPECT_THROW(m_c.apply(in_mat, out_mat), std::logic_error);
    }
  
    TEST_F(GComputationApplyTest, NoThrowPassCustomKernel)
    {
        const auto pkg = cv::gapi::kernels<CustomResizeImpl>();
  
        ASSERT_NO_THROW(m_c.apply(in_mat, out_mat, cv::compile_args(pkg)));
    }
  
    TEST_F(GComputationVectorMatsAsOutput, OutputAllocated)
    {
        std::vector<cv::Mat> out_mats(3);
        for (auto& out_mat : out_mats)
        {
            out_mat.create(in_mat.size(), CV_8UC1);
        }
  
        run(out_mats);
        check(out_mats);
    }
  
    TEST_F(GComputationVectorMatsAsOutput, OutputNotAllocated)
    {
        std::vector<cv::Mat> out_mats(3);
  
        run(out_mats);
        check(out_mats);
    }
  
    TEST_F(GComputationVectorMatsAsOutput, OutputAllocatedWithInvalidMeta)
    {
        std::vector<cv::Mat> out_mats(3);
  
        for (auto& out_mat : out_mats)
        {
            out_mat.create(in_mat.size() / 2, CV_8UC1);
        }
  
        run(out_mats);
        check(out_mats);
    }
  
  } // namespace opencv_test