f4334277
Hu Chunming
提交3rdparty
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#include "test_precomp.hpp"
#include <stdexcept>
#include <ade/util/iota_range.hpp>
#include "logger.hpp"
#include <opencv2/gapi/core.hpp>
namespace opencv_test
{
namespace
{
G_TYPED_KERNEL(GInvalidResize, <GMat(GMat,Size,double,double,int)>, "org.opencv.test.invalid_resize")
{
static GMatDesc outMeta(GMatDesc in, Size, double, double, int) { return in; }
};
GAPI_OCV_KERNEL(GOCVInvalidResize, GInvalidResize)
{
static void run(const cv::Mat& in, cv::Size sz, double fx, double fy, int interp, cv::Mat &out)
{
cv::resize(in, out, sz, fx, fy, interp);
}
};
G_TYPED_KERNEL(GReallocatingCopy, <GMat(GMat)>, "org.opencv.test.reallocating_copy")
{
static GMatDesc outMeta(GMatDesc in) { return in; }
};
GAPI_OCV_KERNEL(GOCVReallocatingCopy, GReallocatingCopy)
{
static void run(const cv::Mat& in, cv::Mat &out)
{
out = in.clone();
}
};
G_TYPED_KERNEL(GCustom, <GMat(GMat)>, "org.opencv.test.custom")
{
static GMatDesc outMeta(GMatDesc in) { return in; }
};
// These definitons test the correct macro work if the kernel has multiple output values
G_TYPED_KERNEL(GRetGArrayTupleOfGMat2Kernel, <GArray<std::tuple<GMat, GMat>>(GMat, Scalar)>, "org.opencv.test.retarrayoftupleofgmat2kernel") {};
G_TYPED_KERNEL(GRetGArraTupleyOfGMat3Kernel, <GArray<std::tuple<GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat3kernel") {};
G_TYPED_KERNEL(GRetGArraTupleyOfGMat4Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat4kernel") {};
G_TYPED_KERNEL(GRetGArraTupleyOfGMat5Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat5kernel") {};
G_TYPED_KERNEL(GRetGArraTupleyOfGMat6Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat6kernel") {};
G_TYPED_KERNEL(GRetGArraTupleyOfGMat7Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat7kernel") {};
G_TYPED_KERNEL(GRetGArraTupleyOfGMat8Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat8kernel") {};
G_TYPED_KERNEL(GRetGArraTupleyOfGMat9Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat9kernel") {};
G_TYPED_KERNEL(GRetGArraTupleyOfGMat10Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat10kernel") {};
G_TYPED_KERNEL_M(GRetGMat2Kernel, <std::tuple<GMat, GMat>(GMat, GMat, GMat)>, "org.opencv.test.retgmat2kernel") {};
G_TYPED_KERNEL_M(GRetGMat3Kernel, <std::tuple<GMat, GMat, GMat>(GMat, GScalar)>, "org.opencv.test.retgmat3kernel") {};
G_TYPED_KERNEL_M(GRetGMat4Kernel, <std::tuple<GMat, GMat, GMat, GMat>(GMat, GArray<int>, GScalar)>, "org.opencv.test.retgmat4kernel") {};
G_TYPED_KERNEL_M(GRetGMat5Kernel, <std::tuple<GMat, GMat, GMat, GMat, GMat>(GMat)>, "org.opencv.test.retgmat5kernel") {};
G_TYPED_KERNEL_M(GRetGMat6Kernel, <std::tuple<GMat, GMat, GMat, GMat, GMat, GMat>(GMat)>, "org.opencv.test.retgmat6kernel") {};
G_TYPED_KERNEL_M(GRetGMat7Kernel, <std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat>(GMat)>, "org.opencv.test.retgmat7kernel") {};
G_TYPED_KERNEL_M(GRetGMat8Kernel, <std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat>(GMat)>, "org.opencv.test.retgmat8kernel") {};
G_TYPED_KERNEL_M(GRetGMat9Kernel, <std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat>(GMat)>, "org.opencv.test.retgmat9kernel") {};
G_TYPED_KERNEL_M(GRetGMat10Kernel, <std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat>(GMat)>, "org.opencv.test.retgmat10kernel") {};
}
TEST(GAPI_Pipeline, OverloadUnary_MatMat)
{
cv::GMat in;
cv::GComputation comp(in, cv::gapi::bitwise_not(in));
cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1);
cv::Mat ref_mat = ~in_mat;
cv::Mat out_mat;
comp.apply(in_mat, out_mat);
EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF));
out_mat = cv::Mat();
auto cc = comp.compile(cv::descr_of(in_mat));
cc(in_mat, out_mat);
EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF));
}
TEST(GAPI_Pipeline, OverloadUnary_MatScalar)
{
cv::GMat in;
cv::GComputation comp(in, cv::gapi::sum(in));
cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1);
cv::Scalar ref_scl = cv::sum(in_mat);
cv::Scalar out_scl;
comp.apply(in_mat, out_scl);
EXPECT_EQ(out_scl, ref_scl);
out_scl = cv::Scalar();
auto cc = comp.compile(cv::descr_of(in_mat));
cc(in_mat, out_scl);
EXPECT_EQ(out_scl, ref_scl);
}
TEST(GAPI_Pipeline, OverloadBinary_Mat)
{
cv::GMat a, b;
cv::GComputation comp(a, b, cv::gapi::add(a, b));
cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1);
cv::Mat ref_mat = (in_mat+in_mat);
cv::Mat out_mat;
comp.apply(in_mat, in_mat, out_mat);
EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF));
out_mat = cv::Mat();
auto cc = comp.compile(cv::descr_of(in_mat), cv::descr_of(in_mat));
cc(in_mat, in_mat, out_mat);
EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF));
}
TEST(GAPI_Pipeline, OverloadBinary_Scalar)
{
cv::GMat a, b;
cv::GComputation comp(a, b, cv::gapi::sum(a + b));
cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1);
cv::Scalar ref_scl = cv::sum(in_mat+in_mat);
cv::Scalar out_scl;
comp.apply(in_mat, in_mat, out_scl);
EXPECT_EQ(out_scl, ref_scl);
out_scl = cv::Scalar();
auto cc = comp.compile(cv::descr_of(in_mat), cv::descr_of(in_mat));
cc(in_mat, in_mat, out_scl);
EXPECT_EQ(out_scl, ref_scl);
}
TEST(GAPI_Pipeline, Sharpen)
{
const cv::Size sz_in (1280, 720);
const cv::Size sz_out( 640, 480);
cv::Mat in_mat (sz_in, CV_8UC3);
in_mat = cv::Scalar(128, 33, 53);
cv::Mat out_mat(sz_out, CV_8UC3);
cv::Mat out_mat_y;
cv::Mat out_mat_ocv(sz_out, CV_8UC3);
float sharpen_coeffs[] = {
0.0f, -1.f, 0.0f,
-1.0f, 5.f, -1.0f,
0.0f, -1.f, 0.0f
};
cv::Mat sharpen_kernel(3, 3, CV_32F, sharpen_coeffs);
// G-API code //////////////////////////////////////////////////////////////
cv::GMat in;
auto vga = cv::gapi::resize(in, sz_out);
auto yuv = cv::gapi::RGB2YUV(vga);
auto yuv_p = cv::gapi::split3(yuv);
auto y_sharp = cv::gapi::filter2D(std::get<0>(yuv_p), -1, sharpen_kernel);
auto yuv_new = cv::gapi::merge3(y_sharp, std::get<1>(yuv_p), std::get<2>(yuv_p));
auto out = cv::gapi::YUV2RGB(yuv_new);
cv::GComputation c(cv::GIn(in), cv::GOut(y_sharp, out));
c.apply(cv::gin(in_mat), cv::gout(out_mat_y, out_mat));
// OpenCV code /////////////////////////////////////////////////////////////
{
cv::Mat smaller;
cv::resize(in_mat, smaller, sz_out);
cv::Mat yuv_mat;
cv::cvtColor(smaller, yuv_mat, cv::COLOR_RGB2YUV);
std::vector<cv::Mat> yuv_planar(3);
cv::split(yuv_mat, yuv_planar);
cv::filter2D(yuv_planar[0], yuv_planar[0], -1, sharpen_kernel);
cv::merge(yuv_planar, yuv_mat);
cv::cvtColor(yuv_mat, out_mat_ocv, cv::COLOR_YUV2RGB);
}
// Comparison //////////////////////////////////////////////////////////////
{
cv::Mat diff = out_mat_ocv != out_mat;
std::vector<cv::Mat> diffBGR(3);
cv::split(diff, diffBGR);
EXPECT_EQ(0, cvtest::norm(diffBGR[0], NORM_INF));
EXPECT_EQ(0, cvtest::norm(diffBGR[1], NORM_INF));
EXPECT_EQ(0, cvtest::norm(diffBGR[2], NORM_INF));
}
// Metadata check /////////////////////////////////////////////////////////
{
auto cc = c.compile(cv::descr_of(in_mat));
auto metas = cc.outMetas();
ASSERT_EQ(2u, metas.size());
auto out_y_meta = cv::util::get<cv::GMatDesc>(metas[0]);
auto out_meta = cv::util::get<cv::GMatDesc>(metas[1]);
// Y-output
EXPECT_EQ(CV_8U, out_y_meta.depth);
EXPECT_EQ(1, out_y_meta.chan);
EXPECT_EQ(640, out_y_meta.size.width);
EXPECT_EQ(480, out_y_meta.size.height);
// Final output
EXPECT_EQ(CV_8U, out_meta.depth);
EXPECT_EQ(3, out_meta.chan);
EXPECT_EQ(640, out_meta.size.width);
EXPECT_EQ(480, out_meta.size.height);
}
}
TEST(GAPI_Pipeline, CustomRGB2YUV)
{
const cv::Size sz(1280, 720);
// BEWARE:
//
// std::vector<cv::Mat> out_mats_cv(3, cv::Mat(sz, CV_8U))
//
// creates a vector of 3 elements pointing to the same Mat!
// FIXME: Make a G-API check for that
const int INS = 3;
std::vector<cv::Mat> in_mats(INS);
for (auto i : ade::util::iota(INS))
{
in_mats[i].create(sz, CV_8U);
cv::randu(in_mats[i], cv::Scalar::all(0), cv::Scalar::all(255));
}
const int OUTS = 3;
std::vector<cv::Mat> out_mats_cv(OUTS);
std::vector<cv::Mat> out_mats_gapi(OUTS);
for (auto i : ade::util::iota(OUTS))
{
out_mats_cv [i].create(sz, CV_8U);
out_mats_gapi[i].create(sz, CV_8U);
}
// G-API code //////////////////////////////////////////////////////////////
{
cv::GMat r, g, b;
cv::GMat y = 0.299f*r + 0.587f*g + 0.114f*b;
cv::GMat u = 0.492f*(b - y);
cv::GMat v = 0.877f*(r - y);
cv::GComputation customCvt({r, g, b}, {y, u, v});
customCvt.apply(in_mats, out_mats_gapi);
}
// OpenCV code /////////////////////////////////////////////////////////////
{
cv::Mat r = in_mats[0], g = in_mats[1], b = in_mats[2];
cv::Mat y = 0.299f*r + 0.587f*g + 0.114f*b;
cv::Mat u = 0.492f*(b - y);
cv::Mat v = 0.877f*(r - y);
out_mats_cv[0] = y;
out_mats_cv[1] = u;
out_mats_cv[2] = v;
}
// Comparison //////////////////////////////////////////////////////////////
{
const auto diff = [](cv::Mat m1, cv::Mat m2, int t) {
return cv::abs(m1-m2) > t;
};
// FIXME: Not bit-accurate even now!
cv::Mat
diff_y = diff(out_mats_cv[0], out_mats_gapi[0], 2),
diff_u = diff(out_mats_cv[1], out_mats_gapi[1], 2),
diff_v = diff(out_mats_cv[2], out_mats_gapi[2], 2);
EXPECT_EQ(0, cvtest::norm(diff_y, NORM_INF));
EXPECT_EQ(0, cvtest::norm(diff_u, NORM_INF));
EXPECT_EQ(0, cvtest::norm(diff_v, NORM_INF));
}
}
TEST(GAPI_Pipeline, PipelineWithInvalidKernel)
{
cv::GMat in, out;
cv::Mat in_mat(500, 500, CV_8UC1), out_mat;
out = GInvalidResize::on(in, cv::Size(300, 300), 0.0, 0.0, cv::INTER_LINEAR);
const auto pkg = cv::gapi::kernels<GOCVInvalidResize>();
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
EXPECT_THROW(comp.apply(in_mat, out_mat, cv::compile_args(pkg)), std::logic_error);
}
TEST(GAPI_Pipeline, InvalidOutputComputation)
{
cv::GMat in1, out1, out2, out3;
std::tie(out1, out2, out2) = cv::gapi::split3(in1);
cv::GComputation c({in1}, {out1, out2, out3});
cv::Mat in_mat;
cv::Mat out_mat1, out_mat2, out_mat3, out_mat4;
std::vector<cv::Mat> u_outs = {out_mat1, out_mat2, out_mat3, out_mat4};
std::vector<cv::Mat> u_ins = {in_mat};
EXPECT_THROW(c.apply(u_ins, u_outs), std::logic_error);
}
TEST(GAPI_Pipeline, PipelineAllocatingKernel)
{
cv::GMat in, out;
cv::Mat in_mat(500, 500, CV_8UC1), out_mat;
out = GReallocatingCopy::on(in);
const auto pkg = cv::gapi::kernels<GOCVReallocatingCopy>();
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
EXPECT_THROW(comp.apply(in_mat, out_mat, cv::compile_args(pkg)), std::logic_error);
}
TEST(GAPI_Pipeline, CreateKernelImplFromLambda)
{
cv::Size size(300, 300);
int type = CV_8UC3;
cv::Mat in_mat(size, type);
cv::randu(in_mat, cv::Scalar::all(0), cv::Scalar::all(255));
int value = 5;
cv::GMat in;
cv::GMat out = GCustom::on(in);
cv::GComputation comp(in, out);
// OpenCV //////////////////////////////////////////////////////////////////////////
auto ref_mat = in_mat + value;
// G-API //////////////////////////////////////////////////////////////////////////
auto impl = cv::gapi::cpu::ocv_kernel<GCustom>([&value](const cv::Mat& src, cv::Mat& dst)
{
dst = src + value;
});
cv::Mat out_mat;
auto pkg = cv::gapi::kernels(impl);
comp.apply(in_mat, out_mat, cv::compile_args(pkg));
EXPECT_EQ(0, cv::norm(out_mat, ref_mat));
}
TEST(GAPI_Pipeline, ReplaceDefaultByLambda)
{
cv::Size size(300, 300);
int type = CV_8UC3;
cv::Mat in_mat1(size, type);
cv::Mat in_mat2(size, type);
cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255));
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
cv::GMat in1, in2;
cv::GMat out = cv::gapi::add(in1, in2);
cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out));
// OpenCV //////////////////////////////////////////////////////////////////////////
cv::Mat ref_mat = in_mat1 + in_mat2;
// G-API //////////////////////////////////////////////////////////////////////////
bool is_called = false;
auto impl = cv::gapi::cpu::ocv_kernel<cv::gapi::core::GAdd>([&is_called]
(const cv::Mat& src1, const cv::Mat& src2, int, cv::Mat& dst)
{
is_called = true;
dst = src1 + src2;
});
cv::Mat out_mat;
auto pkg = cv::gapi::kernels(impl);
comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(out_mat), cv::compile_args(pkg));
EXPECT_EQ(0, cv::norm(out_mat, ref_mat));
EXPECT_TRUE(is_called);
}
struct AddImpl
{
void operator()(const cv::Mat& in1, const cv::Mat& in2, int, cv::Mat& out)
{
out = in1 + in2;
is_called = true;
}
bool is_called = false;
};
TEST(GAPI_Pipeline, ReplaceDefaultByFunctor)
{
cv::Size size(300, 300);
int type = CV_8UC3;
cv::Mat in_mat1(size, type);
cv::Mat in_mat2(size, type);
cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255));
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
cv::GMat in1, in2;
cv::GMat out = cv::gapi::add(in1, in2);
cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out));
// OpenCV //////////////////////////////////////////////////////////////////////////
cv::Mat ref_mat = in_mat1 + in_mat2;
// G-API ///////////////////////////////////////////////////////////////////////////
AddImpl f;
EXPECT_FALSE(f.is_called);
auto impl = cv::gapi::cpu::ocv_kernel<cv::gapi::core::GAdd>(f);
cv::Mat out_mat;
auto pkg = cv::gapi::kernels(impl);
comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(out_mat), cv::compile_args(pkg));
EXPECT_EQ(0, cv::norm(out_mat, ref_mat));
EXPECT_TRUE(f.is_called);
}
} // namespace opencv_test
|