Blame view

3rdparty/opencv-4.5.4/modules/imgproc/test/test_templmatchmask.cpp 9.51 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  // This file is part of OpenCV project.
  // It is subject to the license terms in the LICENSE file found in the top-level directory
  // of this distribution and at http://opencv.org/license.html.
  
  #include "test_precomp.hpp"
  
  namespace opencv_test { namespace {
  
  CV_ENUM(MatchTemplType, CV_TM_CCORR,  CV_TM_CCORR_NORMED,
                          CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED,
                          CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED)
  
  class Imgproc_MatchTemplateWithMask : public TestWithParam<std::tuple<MatType,MatType>>
  {
  protected:
      // Member functions inherited from ::testing::Test
      void SetUp() override;
  
      // Matrices for test calculations (always CV_32)
      Mat img_;
      Mat templ_;
      Mat mask_;
      Mat templ_masked_;
      Mat img_roi_masked_;
      // Matrices for call to matchTemplate (have test type)
      Mat img_testtype_;
      Mat templ_testtype_;
      Mat mask_testtype_;
      Mat result_;
  
      // Constants
      static const Size IMG_SIZE;
      static const Size TEMPL_SIZE;
      static const Point TEST_POINT;
  };
  
  // Arbitraryly chosen test constants
  const Size  Imgproc_MatchTemplateWithMask::IMG_SIZE(160, 100);
  const Size  Imgproc_MatchTemplateWithMask::TEMPL_SIZE(21, 13);
  const Point Imgproc_MatchTemplateWithMask::TEST_POINT(8, 9);
  
  void Imgproc_MatchTemplateWithMask::SetUp()
  {
      int type = std::get<0>(GetParam());
      int type_mask = std::get<1>(GetParam());
  
      // Matrices are created with the depth to test (for the call to matchTemplate()), but are also
      // converted to CV_32 for the test calculations, because matchTemplate() also only operates on
      // and returns CV_32.
      img_testtype_.create(IMG_SIZE, type);
      templ_testtype_.create(TEMPL_SIZE, type);
      mask_testtype_.create(TEMPL_SIZE, type_mask);
  
      randu(img_testtype_, 0, 10);
      randu(templ_testtype_, 0, 10);
      randu(mask_testtype_, 0, 5);
  
      img_testtype_.convertTo(img_, CV_32F);
      templ_testtype_.convertTo(templ_, CV_32F);
      mask_testtype_.convertTo(mask_, CV_32F);
      if (CV_MAT_DEPTH(type_mask) == CV_8U)
      {
          // CV_8U masks are interpreted as binary masks
          mask_.setTo(Scalar::all(1), mask_ != 0);
      }
      if (mask_.channels() != templ_.channels())
      {
          std::vector<Mat> mask_channels(templ_.channels(), mask_);
          merge(mask_channels.data(), templ_.channels(), mask_);
      }
  
      Rect roi(TEST_POINT, TEMPL_SIZE);
      img_roi_masked_ = img_(roi).mul(mask_);
      templ_masked_ = templ_.mul(mask_);
  }
  
  TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplSQDIFF)
  {
      matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_SQDIFF, mask_testtype_);
      // Naive implementation for one point
      Mat temp = img_roi_masked_ - templ_masked_;
      Scalar temp_s = sum(temp.mul(temp));
      double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
  
      EXPECT_NEAR(val, result_.at<float>(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON);
  }
  
  TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplSQDIFF_NORMED)
  {
      matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_SQDIFF_NORMED, mask_testtype_);
      // Naive implementation for one point
      Mat temp = img_roi_masked_ - templ_masked_;
      Scalar temp_s = sum(temp.mul(temp));
      double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
  
      // Normalization
      temp_s = sum(templ_masked_.mul(templ_masked_));
      double norm = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
      temp_s = sum(img_roi_masked_.mul(img_roi_masked_));
      norm *= temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
      norm = sqrt(norm);
      val /= norm;
  
      EXPECT_NEAR(val, result_.at<float>(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON);
  }
  
  TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCORR)
  {
      matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCORR, mask_testtype_);
      // Naive implementation for one point
      Scalar temp_s = sum(templ_masked_.mul(img_roi_masked_));
      double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
  
      EXPECT_NEAR(val, result_.at<float>(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON);
  }
  
  TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCORR_NORMED)
  {
      matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCORR_NORMED, mask_testtype_);
      // Naive implementation for one point
      Scalar temp_s = sum(templ_masked_.mul(img_roi_masked_));
      double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
  
      // Normalization
      temp_s = sum(templ_masked_.mul(templ_masked_));
      double norm = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
      temp_s = sum(img_roi_masked_.mul(img_roi_masked_));
      norm *= temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
      norm = sqrt(norm);
      val /= norm;
  
      EXPECT_NEAR(val, result_.at<float>(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON);
  }
  
  TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCOEFF)
  {
      matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCOEFF, mask_testtype_);
      // Naive implementation for one point
      Scalar temp_s = sum(mask_);
      for (int i = 0; i < 4; i++)
      {
          if (temp_s[i] != 0.0)
              temp_s[i] = 1.0 / temp_s[i];
          else
              temp_s[i] = 1.0;
      }
      Mat temp = mask_.clone(); temp = temp_s; // Workaround to multiply Mat by Scalar
      Mat temp2 = mask_.clone(); temp2 = sum(templ_masked_); // Workaround to multiply Mat by Scalar
      Mat templx = templ_masked_ - mask_.mul(temp).mul(temp2);
      temp2 = sum(img_roi_masked_); // Workaround to multiply Mat by Scalar
      Mat imgx = img_roi_masked_ - mask_.mul(temp).mul(temp2);
      temp_s = sum(templx.mul(imgx));
      double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
  
      EXPECT_NEAR(val, result_.at<float>(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON);
  }
  
  TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCOEFF_NORMED)
  {
      matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCOEFF_NORMED, mask_testtype_);
      // Naive implementation for one point
      Scalar temp_s = sum(mask_);
      for (int i = 0; i < 4; i++)
      {
          if (temp_s[i] != 0.0)
              temp_s[i] = 1.0 / temp_s[i];
          else
              temp_s[i] = 1.0;
      }
      Mat temp = mask_.clone(); temp = temp_s; // Workaround to multiply Mat by Scalar
      Mat temp2 = mask_.clone(); temp2 = sum(templ_masked_); // Workaround to multiply Mat by Scalar
      Mat templx = templ_masked_ - mask_.mul(temp).mul(temp2);
      temp2 = sum(img_roi_masked_); // Workaround to multiply Mat by Scalar
      Mat imgx = img_roi_masked_ - mask_.mul(temp).mul(temp2);
      temp_s = sum(templx.mul(imgx));
      double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
  
      // Normalization
      temp_s = sum(templx.mul(templx));
      double norm = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
      temp_s = sum(imgx.mul(imgx));
      norm *= temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
      norm = sqrt(norm);
      val /= norm;
  
      EXPECT_NEAR(val, result_.at<float>(TEST_POINT), TEMPL_SIZE.area()*abs(val)*FLT_EPSILON);
  }
  
  INSTANTIATE_TEST_CASE_P(SingleChannelMask, Imgproc_MatchTemplateWithMask,
      Combine(
          Values(CV_32FC1, CV_32FC3, CV_8UC1, CV_8UC3),
          Values(CV_32FC1, CV_8UC1)));
  
  INSTANTIATE_TEST_CASE_P(MultiChannelMask, Imgproc_MatchTemplateWithMask,
      Combine(
          Values(CV_32FC3, CV_8UC3),
          Values(CV_32FC3, CV_8UC3)));
  
  class Imgproc_MatchTemplateWithMask2 : public TestWithParam<std::tuple<MatType,MatType,
                                                                         MatchTemplType>>
  {
  protected:
      // Member functions inherited from ::testing::Test
      void SetUp() override;
  
      // Data members
      Mat img_;
      Mat templ_;
      Mat mask_;
      Mat result_withoutmask_;
      Mat result_withmask_;
  
      // Constants
      static const Size IMG_SIZE;
      static const Size TEMPL_SIZE;
  };
  
  // Arbitraryly chosen test constants
  const Size  Imgproc_MatchTemplateWithMask2::IMG_SIZE(160, 100);
  const Size  Imgproc_MatchTemplateWithMask2::TEMPL_SIZE(21, 13);
  
  void Imgproc_MatchTemplateWithMask2::SetUp()
  {
      int type = std::get<0>(GetParam());
      int type_mask = std::get<1>(GetParam());
  
      img_.create(IMG_SIZE, type);
      templ_.create(TEMPL_SIZE, type);
      mask_.create(TEMPL_SIZE, type_mask);
  
      randu(img_, 0, 100);
      randu(templ_, 0, 100);
  
      if (CV_MAT_DEPTH(type_mask) == CV_8U)
      {
          // CV_8U implies binary mask, so all nonzero values should work
          randu(mask_, 1, 255);
      }
      else
      {
          mask_ = Scalar(1, 1, 1, 1);
      }
  }
  
  TEST_P(Imgproc_MatchTemplateWithMask2, CompareWithAndWithoutMask)
  {
      int method = std::get<2>(GetParam());
  
      matchTemplate(img_, templ_, result_withmask_, method, mask_);
      matchTemplate(img_, templ_, result_withoutmask_, method);
  
      // Get maximum result for relative error calculation
      double min_val, max_val;
      minMaxLoc(abs(result_withmask_), &min_val, &max_val);
  
      // Get maximum of absolute diff for comparison
      double mindiff, maxdiff;
      minMaxLoc(abs(result_withmask_ - result_withoutmask_), &mindiff, &maxdiff);
  
      EXPECT_LT(maxdiff, max_val*TEMPL_SIZE.area()*FLT_EPSILON);
  }
  
  
  INSTANTIATE_TEST_CASE_P(SingleChannelMask, Imgproc_MatchTemplateWithMask2,
      Combine(
          Values(CV_32FC1, CV_32FC3, CV_8UC1, CV_8UC3),
          Values(CV_32FC1, CV_8UC1),
          Values(CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCORR, CV_TM_CCORR_NORMED,
                 CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED)));
  
  INSTANTIATE_TEST_CASE_P(MultiChannelMask, Imgproc_MatchTemplateWithMask2,
      Combine(
          Values(CV_32FC3, CV_8UC3),
          Values(CV_32FC3, CV_8UC3),
          Values(CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCORR, CV_TM_CCORR_NORMED,
                 CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED)));
  
  }} // namespace