f4334277
Hu Chunming
提交3rdparty
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
|
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
//#include <math.h>
#include "precomp.hpp"
#include "opencl_kernels_video.hpp"
namespace cv
{
/*!
The class implements the following algorithm:
"Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction"
Z.Zivkovic, F. van der Heijden
Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006
http://www.zoranz.net/Publications/zivkovicPRL2006.pdf
*/
// default parameters of gaussian background detection algorithm
static const int defaultHistory2 = 500; // Learning rate; alpha = 1/defaultHistory2
static const int defaultNsamples = 7; // number of samples saved in memory
static const float defaultDist2Threshold = 20.0f*20.0f;//threshold on distance from the sample
// additional parameters
static const unsigned char defaultnShadowDetection2 = (unsigned char)127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
static const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation
class BackgroundSubtractorKNNImpl CV_FINAL : public BackgroundSubtractorKNN
{
public:
//! the default constructor
BackgroundSubtractorKNNImpl()
{
frameSize = Size(0,0);
frameType = 0;
nframes = 0;
history = defaultHistory2;
//set parameters
// N - the number of samples stored in memory per model
nN = defaultNsamples;
//kNN - k nearest neighbour - number on NN for detecting background - default K=[0.1*nN]
nkNN=MAX(1,cvRound(0.1*nN*3+0.40));
//Tb - Threshold Tb*kernelwidth
fTb = defaultDist2Threshold;
// Shadow detection
bShadowDetection = 1;//turn on
nShadowDetection = defaultnShadowDetection2;
fTau = defaultfTau;// Tau - shadow threshold
name_ = "BackgroundSubtractor.KNN";
nLongCounter = 0;
nMidCounter = 0;
nShortCounter = 0;
#ifdef HAVE_OPENCL
opencl_ON = true;
#endif
}
//! the full constructor that takes the length of the history,
// the number of gaussian mixtures, the background ratio parameter and the noise strength
BackgroundSubtractorKNNImpl(int _history, float _dist2Threshold, bool _bShadowDetection=true)
{
frameSize = Size(0,0);
frameType = 0;
nframes = 0;
history = _history > 0 ? _history : defaultHistory2;
//set parameters
// N - the number of samples stored in memory per model
nN = defaultNsamples;
//kNN - k nearest neighbour - number on NN for detecting background - default K=[0.1*nN]
nkNN=MAX(1,cvRound(0.1*nN*3+0.40));
//Tb - Threshold Tb*kernelwidth
fTb = _dist2Threshold>0? _dist2Threshold : defaultDist2Threshold;
bShadowDetection = _bShadowDetection;
nShadowDetection = defaultnShadowDetection2;
fTau = defaultfTau;
name_ = "BackgroundSubtractor.KNN";
nLongCounter = 0;
nMidCounter = 0;
nShortCounter = 0;
#ifdef HAVE_OPENCL
opencl_ON = true;
#endif
}
//! the destructor
~BackgroundSubtractorKNNImpl() CV_OVERRIDE {}
//! the update operator
void apply(InputArray image, OutputArray fgmask, double learningRate) CV_OVERRIDE;
//! computes a background image which are the mean of all background gaussians
virtual void getBackgroundImage(OutputArray backgroundImage) const CV_OVERRIDE;
//! re-initialization method
void initialize(Size _frameSize, int _frameType)
{
frameSize = _frameSize;
frameType = _frameType;
nframes = 0;
int nchannels = CV_MAT_CN(frameType);
CV_Assert( nchannels <= CV_CN_MAX );
// Reserve memory for the model
int size=frameSize.height*frameSize.width;
//Reset counters
nShortCounter = 0;
nMidCounter = 0;
nLongCounter = 0;
#ifdef HAVE_OPENCL
if (ocl::isOpenCLActivated() && opencl_ON)
{
create_ocl_apply_kernel();
kernel_getBg.create("getBackgroundImage2_kernel", ocl::video::bgfg_knn_oclsrc, format( "-D CN=%d -D NSAMPLES=%d", nchannels, nN));
if (kernel_apply.empty() || kernel_getBg.empty())
opencl_ON = false;
}
else opencl_ON = false;
if (opencl_ON)
{
u_flag.create(frameSize.height * nN * 3, frameSize.width, CV_8UC1);
u_flag.setTo(Scalar::all(0));
if (nchannels==3)
nchannels=4;
u_sample.create(frameSize.height * nN * 3, frameSize.width, CV_32FC(nchannels));
u_sample.setTo(Scalar::all(0));
u_aModelIndexShort.create(frameSize.height, frameSize.width, CV_8UC1);
u_aModelIndexShort.setTo(Scalar::all(0));
u_aModelIndexMid.create(frameSize.height, frameSize.width, CV_8UC1);
u_aModelIndexMid.setTo(Scalar::all(0));
u_aModelIndexLong.create(frameSize.height, frameSize.width, CV_8UC1);
u_aModelIndexLong.setTo(Scalar::all(0));
u_nNextShortUpdate.create(frameSize.height, frameSize.width, CV_8UC1);
u_nNextShortUpdate.setTo(Scalar::all(0));
u_nNextMidUpdate.create(frameSize.height, frameSize.width, CV_8UC1);
u_nNextMidUpdate.setTo(Scalar::all(0));
u_nNextLongUpdate.create(frameSize.height, frameSize.width, CV_8UC1);
u_nNextLongUpdate.setTo(Scalar::all(0));
}
else
#endif
{
// for each sample of 3 speed pixel models each pixel bg model we store ...
// values + flag (nchannels+1 values)
bgmodel.create( 1,(nN * 3) * (nchannels+1)* size,CV_8U);
bgmodel = Scalar::all(0);
//index through the three circular lists
aModelIndexShort.create(1,size,CV_8U);
aModelIndexMid.create(1,size,CV_8U);
aModelIndexLong.create(1,size,CV_8U);
//when to update next
nNextShortUpdate.create(1,size,CV_8U);
nNextMidUpdate.create(1,size,CV_8U);
nNextLongUpdate.create(1,size,CV_8U);
aModelIndexShort = Scalar::all(0);//random? //((m_nN)*rand())/(RAND_MAX+1);//0...m_nN-1
aModelIndexMid = Scalar::all(0);
aModelIndexLong = Scalar::all(0);
nNextShortUpdate = Scalar::all(0);
nNextMidUpdate = Scalar::all(0);
nNextLongUpdate = Scalar::all(0);
}
}
virtual int getHistory() const CV_OVERRIDE { return history; }
virtual void setHistory(int _nframes) CV_OVERRIDE { history = _nframes; }
virtual int getNSamples() const CV_OVERRIDE { return nN; }
virtual void setNSamples(int _nN) CV_OVERRIDE { nN = _nN; }//needs reinitialization!
virtual int getkNNSamples() const CV_OVERRIDE { return nkNN; }
virtual void setkNNSamples(int _nkNN) CV_OVERRIDE { nkNN = _nkNN; }
virtual double getDist2Threshold() const CV_OVERRIDE { return fTb; }
virtual void setDist2Threshold(double _dist2Threshold) CV_OVERRIDE { fTb = (float)_dist2Threshold; }
virtual bool getDetectShadows() const CV_OVERRIDE { return bShadowDetection; }
virtual void setDetectShadows(bool detectshadows) CV_OVERRIDE
{
if (bShadowDetection == detectshadows)
return;
bShadowDetection = detectshadows;
#ifdef HAVE_OPENCL
if (!kernel_apply.empty())
{
create_ocl_apply_kernel();
CV_Assert( !kernel_apply.empty() );
}
#endif
}
virtual int getShadowValue() const CV_OVERRIDE { return nShadowDetection; }
virtual void setShadowValue(int value) CV_OVERRIDE { nShadowDetection = (uchar)value; }
virtual double getShadowThreshold() const CV_OVERRIDE { return fTau; }
virtual void setShadowThreshold(double value) CV_OVERRIDE { fTau = (float)value; }
virtual void write(FileStorage& fs) const CV_OVERRIDE
{
writeFormat(fs);
fs << "name" << name_
<< "history" << history
<< "nsamples" << nN
<< "nKNN" << nkNN
<< "dist2Threshold" << fTb
<< "detectShadows" << (int)bShadowDetection
<< "shadowValue" << (int)nShadowDetection
<< "shadowThreshold" << fTau;
}
virtual void read(const FileNode& fn) CV_OVERRIDE
{
CV_Assert( (String)fn["name"] == name_ );
history = (int)fn["history"];
nN = (int)fn["nsamples"];
nkNN = (int)fn["nKNN"];
fTb = (float)fn["dist2Threshold"];
bShadowDetection = (int)fn["detectShadows"] != 0;
nShadowDetection = saturate_cast<uchar>((int)fn["shadowValue"]);
fTau = (float)fn["shadowThreshold"];
}
protected:
Size frameSize;
int frameType;
int nframes;
/////////////////////////
//very important parameters - things you will change
////////////////////////
int history;
//alpha=1/history - speed of update - if the time interval you want to average over is T
//set alpha=1/history. It is also useful at start to make T slowly increase
//from 1 until the desired T
float fTb;
//Tb - threshold on the squared distance from the sample used to decide if it is well described
//by the background model or not. A typical value could be 2 sigma
//and that is Tb=2*2*10*10 =400; where we take typical pixel level sigma=10
/////////////////////////
//less important parameters - things you might change but be careful
////////////////////////
int nN;//totlal number of samples
int nkNN;//number on NN for detecting background - default K=[0.1*nN]
//shadow detection parameters
bool bShadowDetection;//default 1 - do shadow detection
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value
float fTau;
// Tau - shadow threshold. The shadow is detected if the pixel is darker
//version of the background. Tau is a threshold on how much darker the shadow can be.
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
//See: Prati,Mikic,Trivedi,Cucchiara,"Detecting Moving Shadows...",IEEE PAMI,2003.
//model data
int nLongCounter;//circular counter
int nMidCounter;
int nShortCounter;
Mat bgmodel; // model data pixel values
Mat aModelIndexShort;// index into the models
Mat aModelIndexMid;
Mat aModelIndexLong;
Mat nNextShortUpdate;//random update points per model
Mat nNextMidUpdate;
Mat nNextLongUpdate;
#ifdef HAVE_OPENCL
mutable bool opencl_ON;
UMat u_flag;
UMat u_sample;
UMat u_aModelIndexShort;
UMat u_aModelIndexMid;
UMat u_aModelIndexLong;
UMat u_nNextShortUpdate;
UMat u_nNextMidUpdate;
UMat u_nNextLongUpdate;
mutable ocl::Kernel kernel_apply;
mutable ocl::Kernel kernel_getBg;
#endif
String name_;
#ifdef HAVE_OPENCL
bool ocl_getBackgroundImage(OutputArray backgroundImage) const;
bool ocl_apply(InputArray _image, OutputArray _fgmask, double learningRate=-1);
void create_ocl_apply_kernel();
#endif
};
CV_INLINE void
_cvUpdatePixelBackgroundNP(int x_idx, const uchar* data, int nchannels, int m_nN,
uchar* m_aModel,
uchar* m_nNextLongUpdate,
uchar* m_nNextMidUpdate,
uchar* m_nNextShortUpdate,
uchar* m_aModelIndexLong,
uchar* m_aModelIndexMid,
uchar* m_aModelIndexShort,
int m_nLongCounter,
int m_nMidCounter,
int m_nShortCounter,
uchar include
)
{
// hold the offset
int ndata=1+nchannels;
long offsetLong = ndata * (m_aModelIndexLong[x_idx] + m_nN * 2);
long offsetMid = ndata * (m_aModelIndexMid[x_idx] + m_nN * 1);
long offsetShort = ndata * (m_aModelIndexShort[x_idx]);
// Long update?
if (m_nNextLongUpdate[x_idx] == m_nLongCounter)
{
// add the oldest pixel from Mid to the list of values (for each color)
memcpy(&m_aModel[offsetLong],&m_aModel[offsetMid],ndata*sizeof(unsigned char));
// increase the index
m_aModelIndexLong[x_idx] = (m_aModelIndexLong[x_idx] >= (m_nN-1)) ? 0 : (m_aModelIndexLong[x_idx] + 1);
};
// Mid update?
if (m_nNextMidUpdate[x_idx] == m_nMidCounter)
{
// add this pixel to the list of values (for each color)
memcpy(&m_aModel[offsetMid],&m_aModel[offsetShort],ndata*sizeof(unsigned char));
// increase the index
m_aModelIndexMid[x_idx] = (m_aModelIndexMid[x_idx] >= (m_nN-1)) ? 0 : (m_aModelIndexMid[x_idx] + 1);
};
// Short update?
if (m_nNextShortUpdate[x_idx] == m_nShortCounter)
{
// add this pixel to the list of values (for each color)
memcpy(&m_aModel[offsetShort],data,nchannels*sizeof(unsigned char));
//set the include flag
m_aModel[offsetShort+nchannels]=include;
// increase the index
m_aModelIndexShort[x_idx] = (m_aModelIndexShort[x_idx] >= (m_nN-1)) ? 0 : (m_aModelIndexShort[x_idx] + 1);
};
}
CV_INLINE int
_cvCheckPixelBackgroundNP(const uchar* data, int nchannels,
int m_nN,
uchar* m_aModel,
float m_fTb,
int m_nkNN,
float tau,
bool m_bShadowDetection,
uchar& include)
{
int Pbf = 0; // the total probability that this pixel is background
int Pb = 0; //background model probability
float dData[CV_CN_MAX];
//uchar& include=data[nchannels];
include=0;//do we include this pixel into background model?
int ndata=nchannels+1;
// now increase the probability for each pixel
for (int n = 0; n < m_nN*3; n++)
{
uchar* mean_m = &m_aModel[n*ndata];
//calculate difference and distance
float dist2;
if( nchannels == 3 )
{
dData[0] = (float)mean_m[0] - data[0];
dData[1] = (float)mean_m[1] - data[1];
dData[2] = (float)mean_m[2] - data[2];
dist2 = dData[0]*dData[0] + dData[1]*dData[1] + dData[2]*dData[2];
}
else
{
dist2 = 0.f;
for( int c = 0; c < nchannels; c++ )
{
dData[c] = (float)mean_m[c] - data[c];
dist2 += dData[c]*dData[c];
}
}
if (dist2<m_fTb)
{
Pbf++;//all
//background only
//if(m_aModel[subPosPixel + nchannels])//indicator
if(mean_m[nchannels])//indicator
{
Pb++;
if (Pb >= m_nkNN)//Tb
{
include=1;//include
return 1;//background ->exit
};
}
};
};
//include?
if (Pbf>=m_nkNN)//m_nTbf)
{
include=1;
}
int Ps = 0; // the total probability that this pixel is background shadow
// Detected as moving object, perform shadow detection
if (m_bShadowDetection)
{
for (int n = 0; n < m_nN*3; n++)
{
//long subPosPixel = posPixel + n*ndata;
uchar* mean_m = &m_aModel[n*ndata];
if(mean_m[nchannels])//check only background
{
float numerator = 0.0f;
float denominator = 0.0f;
for( int c = 0; c < nchannels; c++ )
{
numerator += (float)data[c] * mean_m[c];
denominator += (float)mean_m[c] * mean_m[c];
}
// no division by zero allowed
if( denominator == 0 )
return 0;
// if tau < a < 1 then also check the color distortion
if( numerator <= denominator && numerator >= tau*denominator )
{
float a = numerator / denominator;
float dist2a = 0.0f;
for( int c = 0; c < nchannels; c++ )
{
float dD= a*mean_m[c] - data[c];
dist2a += dD*dD;
}
if (dist2a<m_fTb*a*a)
{
Ps++;
if (Ps >= m_nkNN)//shadow
return 2;
};
};
};
};
}
return 0;
}
class KNNInvoker : public ParallelLoopBody
{
public:
KNNInvoker(const Mat& _src, Mat& _dst,
uchar* _bgmodel,
uchar* _nNextLongUpdate,
uchar* _nNextMidUpdate,
uchar* _nNextShortUpdate,
uchar* _aModelIndexLong,
uchar* _aModelIndexMid,
uchar* _aModelIndexShort,
int _nLongCounter,
int _nMidCounter,
int _nShortCounter,
int _nN,
float _fTb,
int _nkNN,
float _fTau,
bool _bShadowDetection,
uchar _nShadowDetection)
{
src = &_src;
dst = &_dst;
m_aModel0 = _bgmodel;
m_nNextLongUpdate0 = _nNextLongUpdate;
m_nNextMidUpdate0 = _nNextMidUpdate;
m_nNextShortUpdate0 = _nNextShortUpdate;
m_aModelIndexLong0 = _aModelIndexLong;
m_aModelIndexMid0 = _aModelIndexMid;
m_aModelIndexShort0 = _aModelIndexShort;
m_nLongCounter = _nLongCounter;
m_nMidCounter = _nMidCounter;
m_nShortCounter = _nShortCounter;
m_nN = _nN;
m_fTb = _fTb;
m_fTau = _fTau;
m_nkNN = _nkNN;
m_bShadowDetection = _bShadowDetection;
m_nShadowDetection = _nShadowDetection;
}
void operator()(const Range& range) const CV_OVERRIDE
{
int y0 = range.start, y1 = range.end;
int ncols = src->cols, nchannels = src->channels();
int ndata=nchannels+1;
for ( int y = y0; y < y1; y++ )
{
const uchar* data = src->ptr(y);
uchar* m_aModel = m_aModel0 + ncols*m_nN*3*ndata*y;
uchar* m_nNextLongUpdate = m_nNextLongUpdate0 + ncols*y;
uchar* m_nNextMidUpdate = m_nNextMidUpdate0 + ncols*y;
uchar* m_nNextShortUpdate = m_nNextShortUpdate0 + ncols*y;
uchar* m_aModelIndexLong = m_aModelIndexLong0 + ncols*y;
uchar* m_aModelIndexMid = m_aModelIndexMid0 + ncols*y;
uchar* m_aModelIndexShort = m_aModelIndexShort0 + ncols*y;
uchar* mask = dst->ptr(y);
for ( int x = 0; x < ncols; x++ )
{
//update model+ background subtract
uchar include=0;
int result= _cvCheckPixelBackgroundNP(data, nchannels,
m_nN, m_aModel, m_fTb,m_nkNN, m_fTau,m_bShadowDetection,include);
_cvUpdatePixelBackgroundNP(x,data,nchannels,
m_nN, m_aModel,
m_nNextLongUpdate,
m_nNextMidUpdate,
m_nNextShortUpdate,
m_aModelIndexLong,
m_aModelIndexMid,
m_aModelIndexShort,
m_nLongCounter,
m_nMidCounter,
m_nShortCounter,
include
);
switch (result)
{
case 0:
//foreground
mask[x] = 255;
break;
case 1:
//background
mask[x] = 0;
break;
case 2:
//shadow
mask[x] = m_nShadowDetection;
break;
}
data += nchannels;
m_aModel += m_nN*3*ndata;
}
}
}
const Mat* src;
Mat* dst;
uchar* m_aModel0;
uchar* m_nNextLongUpdate0;
uchar* m_nNextMidUpdate0;
uchar* m_nNextShortUpdate0;
uchar* m_aModelIndexLong0;
uchar* m_aModelIndexMid0;
uchar* m_aModelIndexShort0;
int m_nLongCounter;
int m_nMidCounter;
int m_nShortCounter;
int m_nN;
float m_fTb;
float m_fTau;
int m_nkNN;
bool m_bShadowDetection;
uchar m_nShadowDetection;
};
#ifdef HAVE_OPENCL
bool BackgroundSubtractorKNNImpl::ocl_apply(InputArray _image, OutputArray _fgmask, double learningRate)
{
bool needToInitialize = nframes == 0 || learningRate >= 1 || _image.size() != frameSize || _image.type() != frameType;
if( needToInitialize )
initialize(_image.size(), _image.type());
++nframes;
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
CV_Assert(learningRate >= 0);
_fgmask.create(_image.size(), CV_8U);
UMat fgmask = _fgmask.getUMat();
UMat frame = _image.getUMat();
//recalculate update rates - in case alpha is changed
// calculate update parameters (using alpha)
int Kshort,Kmid,Klong;
//approximate exponential learning curve
Kshort=(int)(log(0.7)/log(1-learningRate))+1;//Kshort
Kmid=(int)(log(0.4)/log(1-learningRate))-Kshort+1;//Kmid
Klong=(int)(log(0.1)/log(1-learningRate))-Kshort-Kmid+1;//Klong
//refresh rates
int nShortUpdate = (Kshort/nN)+1;
int nMidUpdate = (Kmid/nN)+1;
int nLongUpdate = (Klong/nN)+1;
int idxArg = 0;
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadOnly(frame));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadOnly(u_nNextLongUpdate));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadOnly(u_nNextMidUpdate));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadOnly(u_nNextShortUpdate));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_aModelIndexLong));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_aModelIndexMid));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_aModelIndexShort));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_flag));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_sample));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::WriteOnlyNoSize(fgmask));
idxArg = kernel_apply.set(idxArg, nLongCounter);
idxArg = kernel_apply.set(idxArg, nMidCounter);
idxArg = kernel_apply.set(idxArg, nShortCounter);
idxArg = kernel_apply.set(idxArg, fTb);
idxArg = kernel_apply.set(idxArg, nkNN);
idxArg = kernel_apply.set(idxArg, fTau);
if (bShadowDetection)
kernel_apply.set(idxArg, nShadowDetection);
size_t globalsize[2] = {(size_t)frame.cols, (size_t)frame.rows};
if(!kernel_apply.run(2, globalsize, NULL, true))
return false;
nShortCounter++;//0,1,...,nShortUpdate-1
nMidCounter++;
nLongCounter++;
if (nShortCounter >= nShortUpdate)
{
nShortCounter = 0;
randu(u_nNextShortUpdate, Scalar::all(0), Scalar::all(nShortUpdate));
}
if (nMidCounter >= nMidUpdate)
{
nMidCounter = 0;
randu(u_nNextMidUpdate, Scalar::all(0), Scalar::all(nMidUpdate));
}
if (nLongCounter >= nLongUpdate)
{
nLongCounter = 0;
randu(u_nNextLongUpdate, Scalar::all(0), Scalar::all(nLongUpdate));
}
return true;
}
bool BackgroundSubtractorKNNImpl::ocl_getBackgroundImage(OutputArray _backgroundImage) const
{
_backgroundImage.create(frameSize, frameType);
UMat dst = _backgroundImage.getUMat();
int idxArg = 0;
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::PtrReadOnly(u_flag));
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::PtrReadOnly(u_sample));
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::WriteOnly(dst));
size_t globalsize[2] = {(size_t)dst.cols, (size_t)dst.rows};
return kernel_getBg.run(2, globalsize, NULL, false);
}
void BackgroundSubtractorKNNImpl::create_ocl_apply_kernel()
{
int nchannels = CV_MAT_CN(frameType);
String opts = format("-D CN=%d -D NSAMPLES=%d%s", nchannels, nN, bShadowDetection ? " -D SHADOW_DETECT" : "");
kernel_apply.create("knn_kernel", ocl::video::bgfg_knn_oclsrc, opts);
}
#endif
void BackgroundSubtractorKNNImpl::apply(InputArray _image, OutputArray _fgmask, double learningRate)
{
CV_INSTRUMENT_REGION();
#ifdef HAVE_OPENCL
if (opencl_ON)
{
#ifndef __APPLE__
CV_OCL_RUN(_fgmask.isUMat() && OCL_PERFORMANCE_CHECK(!ocl::Device::getDefault().isIntel() || _image.channels() == 1),
ocl_apply(_image, _fgmask, learningRate))
#else
CV_OCL_RUN(_fgmask.isUMat() && OCL_PERFORMANCE_CHECK(!ocl::Device::getDefault().isIntel()),
ocl_apply(_image, _fgmask, learningRate))
#endif
opencl_ON = false;
nframes = 0;
}
#endif
bool needToInitialize = nframes == 0 || learningRate >= 1 || _image.size() != frameSize || _image.type() != frameType;
if( needToInitialize )
initialize(_image.size(), _image.type());
Mat image = _image.getMat();
_fgmask.create( image.size(), CV_8U );
Mat fgmask = _fgmask.getMat();
++nframes;
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
CV_Assert(learningRate >= 0);
//recalculate update rates - in case alpha is changed
// calculate update parameters (using alpha)
int Kshort,Kmid,Klong;
//approximate exponential learning curve
Kshort=(int)(log(0.7)/log(1-learningRate))+1;//Kshort
Kmid=(int)(log(0.4)/log(1-learningRate))-Kshort+1;//Kmid
Klong=(int)(log(0.1)/log(1-learningRate))-Kshort-Kmid+1;//Klong
//refresh rates
int nShortUpdate = (Kshort/nN)+1;
int nMidUpdate = (Kmid/nN)+1;
int nLongUpdate = (Klong/nN)+1;
parallel_for_(Range(0, image.rows),
KNNInvoker(image, fgmask,
bgmodel.ptr(),
nNextLongUpdate.ptr(),
nNextMidUpdate.ptr(),
nNextShortUpdate.ptr(),
aModelIndexLong.ptr(),
aModelIndexMid.ptr(),
aModelIndexShort.ptr(),
nLongCounter,
nMidCounter,
nShortCounter,
nN,
fTb,
nkNN,
fTau,
bShadowDetection,
nShadowDetection),
image.total()/(double)(1 << 16));
nShortCounter++;//0,1,...,nShortUpdate-1
nMidCounter++;
nLongCounter++;
if (nShortCounter >= nShortUpdate)
{
nShortCounter = 0;
randu(nNextShortUpdate, Scalar::all(0), Scalar::all(nShortUpdate));
}
if (nMidCounter >= nMidUpdate)
{
nMidCounter = 0;
randu(nNextMidUpdate, Scalar::all(0), Scalar::all(nMidUpdate));
}
if (nLongCounter >= nLongUpdate)
{
nLongCounter = 0;
randu(nNextLongUpdate, Scalar::all(0), Scalar::all(nLongUpdate));
}
}
void BackgroundSubtractorKNNImpl::getBackgroundImage(OutputArray backgroundImage) const
{
CV_INSTRUMENT_REGION();
#ifdef HAVE_OPENCL
if (opencl_ON)
{
CV_OCL_RUN(opencl_ON, ocl_getBackgroundImage(backgroundImage))
opencl_ON = false;
}
#endif
int nchannels = CV_MAT_CN(frameType);
//CV_Assert( nchannels == 3 );
Mat meanBackground(frameSize, CV_8UC3, Scalar::all(0));
int ndata=nchannels+1;
int modelstep=(ndata * nN * 3);
const uchar* pbgmodel=bgmodel.ptr(0);
for(int row=0; row<meanBackground.rows; row++)
{
for(int col=0; col<meanBackground.cols; col++)
{
for (int n = 0; n < nN*3; n++)
{
const uchar* mean_m = &pbgmodel[n*ndata];
if (mean_m[nchannels])
{
meanBackground.at<Vec3b>(row, col) = Vec3b(mean_m);
break;
}
}
pbgmodel=pbgmodel+modelstep;
}
}
switch(CV_MAT_CN(frameType))
{
case 1:
{
std::vector<Mat> channels;
split(meanBackground, channels);
channels[0].copyTo(backgroundImage);
break;
}
case 3:
{
meanBackground.copyTo(backgroundImage);
break;
}
default:
CV_Error(Error::StsUnsupportedFormat, "");
}
}
Ptr<BackgroundSubtractorKNN> createBackgroundSubtractorKNN(int _history, double _threshold2,
bool _bShadowDetection)
{
return makePtr<BackgroundSubtractorKNNImpl>(_history, (float)_threshold2, _bShadowDetection);
}
}
/* End of file. */
|