Blame view

3rdparty/opencv-4.5.4/modules/features2d/src/kaze/AKAZEFeatures.h 3.73 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
  /**
   * @file AKAZE.h
   * @brief Main class for detecting and computing binary descriptors in an
   * accelerated nonlinear scale space
   * @date Mar 27, 2013
   * @author Pablo F. Alcantarilla, Jesus Nuevo
   */
  
  #ifndef __OPENCV_FEATURES_2D_AKAZE_FEATURES_H__
  #define __OPENCV_FEATURES_2D_AKAZE_FEATURES_H__
  
  /* ************************************************************************* */
  // Includes
  #include "AKAZEConfig.h"
  
  namespace cv
  {
  
  /// A-KAZE nonlinear diffusion filtering evolution
  template <typename MatType>
  struct Evolution
  {
    Evolution() {
      etime = 0.0f;
      esigma = 0.0f;
      octave = 0;
      sublevel = 0;
      sigma_size = 0;
      octave_ratio = 0.0f;
      border = 0;
    }
  
    template <typename T>
    explicit Evolution(const Evolution<T> &other) {
      size = other.size;
      etime = other.etime;
      esigma = other.esigma;
      octave = other.octave;
      sublevel = other.sublevel;
      sigma_size = other.sigma_size;
      octave_ratio = other.octave_ratio;
      border = other.border;
  
      other.Lx.copyTo(Lx);
      other.Ly.copyTo(Ly);
      other.Lt.copyTo(Lt);
      other.Lsmooth.copyTo(Lsmooth);
      other.Ldet.copyTo(Ldet);
    }
  
    MatType Lx, Ly;           ///< First order spatial derivatives
    MatType Lt;               ///< Evolution image
    MatType Lsmooth;          ///< Smoothed image, used only for computing determinant, released afterwards
    MatType Ldet;             ///< Detector response
  
    Size size;                ///< Size of the layer
    float etime;              ///< Evolution time
    float esigma;             ///< Evolution sigma. For linear diffusion t = sigma^2 / 2
    int octave;               ///< Image octave
    int sublevel;             ///< Image sublevel in each octave
    int sigma_size;           ///< Integer esigma. For computing the feature detector responses
    float octave_ratio;       ///< Scaling ratio of this octave. ratio = 2^octave
    int border;               ///< Width of border where descriptors cannot be computed
  };
  
  typedef Evolution<Mat> MEvolution;
  typedef Evolution<UMat> UEvolution;
  typedef std::vector<MEvolution> Pyramid;
  typedef std::vector<UEvolution> UMatPyramid;
  
  /* ************************************************************************* */
  // AKAZE Class Declaration
  class AKAZEFeatures {
  
  private:
  
    AKAZEOptions options_;                ///< Configuration options for AKAZE
    Pyramid evolution_;        ///< Vector of nonlinear diffusion evolution
  
    /// FED parameters
    int ncycles_;                  ///< Number of cycles
    bool reordering_;              ///< Flag for reordering time steps
    std::vector<std::vector<float > > tsteps_;  ///< Vector of FED dynamic time steps
    std::vector<int> nsteps_;      ///< Vector of number of steps per cycle
  
    /// Matrices for the M-LDB descriptor computation
    cv::Mat descriptorSamples_;  // List of positions in the grids to sample LDB bits from.
    cv::Mat descriptorBits_;
    cv::Mat bitMask_;
  
    /// Scale Space methods
    void Allocate_Memory_Evolution();
    void Find_Scale_Space_Extrema(std::vector<Mat>& keypoints_by_layers);
    void Do_Subpixel_Refinement(std::vector<Mat>& keypoints_by_layers,
      std::vector<KeyPoint>& kpts);
  
    /// Feature description methods
    void Compute_Keypoints_Orientation(std::vector<cv::KeyPoint>& kpts) const;
  
  public:
    /// Constructor with input arguments
    AKAZEFeatures(const AKAZEOptions& options);
    void Create_Nonlinear_Scale_Space(InputArray img);
    void Feature_Detection(std::vector<cv::KeyPoint>& kpts);
    void Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, OutputArray desc);
  };
  
  /* ************************************************************************* */
  /// Inline functions
  void generateDescriptorSubsample(cv::Mat& sampleList, cv::Mat& comparisons,
                                   int nbits, int pattern_size, int nchannels);
  
  }
  
  #endif