Blame view

3rdparty/opencv-4.5.4/samples/cpp/em.cpp 1.95 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  #include "opencv2/highgui.hpp"
  #include "opencv2/imgproc.hpp"
  #include "opencv2/ml.hpp"
  
  using namespace cv;
  using namespace cv::ml;
  
  int main( int /*argc*/, char** /*argv*/ )
  {
      const int N = 4;
      const int N1 = (int)sqrt((double)N);
      const Scalar colors[] =
      {
          Scalar(0,0,255), Scalar(0,255,0),
          Scalar(0,255,255),Scalar(255,255,0)
      };
  
      int i, j;
      int nsamples = 100;
      Mat samples( nsamples, 2, CV_32FC1 );
      Mat labels;
      Mat img = Mat::zeros( Size( 500, 500 ), CV_8UC3 );
      Mat sample( 1, 2, CV_32FC1 );
  
      samples = samples.reshape(2, 0);
      for( i = 0; i < N; i++ )
      {
          // form the training samples
          Mat samples_part = samples.rowRange(i*nsamples/N, (i+1)*nsamples/N );
  
          Scalar mean(((i%N1)+1)*img.rows/(N1+1),
                      ((i/N1)+1)*img.rows/(N1+1));
          Scalar sigma(30,30);
          randn( samples_part, mean, sigma );
      }
      samples = samples.reshape(1, 0);
  
      // cluster the data
      Ptr<EM> em_model = EM::create();
      em_model->setClustersNumber(N);
      em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL);
      em_model->setTermCriteria(TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 300, 0.1));
      em_model->trainEM( samples, noArray(), labels, noArray() );
  
      // classify every image pixel
      for( i = 0; i < img.rows; i++ )
      {
          for( j = 0; j < img.cols; j++ )
          {
              sample.at<float>(0) = (float)j;
              sample.at<float>(1) = (float)i;
              int response = cvRound(em_model->predict2( sample, noArray() )[1]);
              Scalar c = colors[response];
  
              circle( img, Point(j, i), 1, c*0.75, FILLED );
          }
      }
  
      //draw the clustered samples
      for( i = 0; i < nsamples; i++ )
      {
          Point pt(cvRound(samples.at<float>(i, 0)), cvRound(samples.at<float>(i, 1)));
          circle( img, pt, 1, colors[labels.at<int>(i)], FILLED );
      }
  
      imshow( "EM-clustering result", img );
      waitKey(0);
  
      return 0;
  }