Blame view

3rdparty/opencv-4.5.4/samples/dnn/models.yml 5.56 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
  %YAML 1.0
  ---
  ################################################################################
  # Object detection models.
  ################################################################################
  
  # OpenCV's face detection network
  opencv_fd:
    load_info:
      url: "https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel"
      sha1: "15aa726b4d46d9f023526d85537db81cbc8dd566"
    model: "opencv_face_detector.caffemodel"
    config: "opencv_face_detector.prototxt"
    mean: [104, 177, 123]
    scale: 1.0
    width: 300
    height: 300
    rgb: false
    sample: "object_detection"
  
  # YOLO4 object detection family from Darknet (https://github.com/AlexeyAB/darknet)
  # YOLO object detection family from Darknet (https://pjreddie.com/darknet/yolo/)
  # Might be used for all YOLOv2, TinyYolov2, YOLOv3, YOLOv4 and TinyYolov4
  yolo:
    load_info:
      url: "https://pjreddie.com/media/files/yolov3.weights"
      sha1: "520878f12e97cf820529daea502acca380f1cb8e"
    model: "yolov3.weights"
    config: "yolov3.cfg"
    mean: [0, 0, 0]
    scale: 0.00392
    width: 416
    height: 416
    rgb: true
    classes: "object_detection_classes_yolov3.txt"
    sample: "object_detection"
  
  tiny-yolo-voc:
    load_info:
      url: "https://pjreddie.com/media/files/yolov2-tiny-voc.weights"
      sha1: "24b4bd049fc4fa5f5e95f684a8967e65c625dff9"
    model: "tiny-yolo-voc.weights"
    config: "tiny-yolo-voc.cfg"
    mean: [0, 0, 0]
    scale: 0.00392
    width: 416
    height: 416
    rgb: true
    classes: "object_detection_classes_pascal_voc.txt"
    sample: "object_detection"
  
  # Caffe implementation of SSD model from https://github.com/chuanqi305/MobileNet-SSD
  ssd_caffe:
    load_info:
      url: "https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc"
      sha1: "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a"
    model: "MobileNetSSD_deploy.caffemodel"
    config: "MobileNetSSD_deploy.prototxt"
    mean: [127.5, 127.5, 127.5]
    scale: 0.007843
    width: 300
    height: 300
    rgb: false
    classes: "object_detection_classes_pascal_voc.txt"
    sample: "object_detection"
  
  # TensorFlow implementation of SSD model from https://github.com/tensorflow/models/tree/master/research/object_detection
  ssd_tf:
    load_info:
      url: "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2017_11_17.tar.gz"
      sha1: "9e4bcdd98f4c6572747679e4ce570de4f03a70e2"
      download_sha: "6157ddb6da55db2da89dd561eceb7f944928e317"
      download_name: "ssd_mobilenet_v1_coco_2017_11_17.tar.gz"
      member: "ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb"
    model: "ssd_mobilenet_v1_coco_2017_11_17.pb"
    config: "ssd_mobilenet_v1_coco_2017_11_17.pbtxt"
    mean: [0, 0, 0]
    scale: 1.0
    width: 300
    height: 300
    rgb: true
    classes: "object_detection_classes_coco.txt"
    sample: "object_detection"
  
  # TensorFlow implementation of Faster-RCNN model from https://github.com/tensorflow/models/tree/master/research/object_detection
  faster_rcnn_tf:
    load_info:
      url: "http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz"
      sha1: "f2e4bf386b9bb3e25ddfcbbd382c20f417e444f3"
      download_sha: "c710f25e5c6a3ce85fe793d5bf266d581ab1c230"
      download_name: "faster_rcnn_inception_v2_coco_2018_01_28.tar.gz"
      member: "faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb"
    model: "faster_rcnn_inception_v2_coco_2018_01_28.pb"
    config: "faster_rcnn_inception_v2_coco_2018_01_28.pbtxt"
    mean: [0, 0, 0]
    scale: 1.0
    width: 800
    height: 600
    rgb: true
    sample: "object_detection"
  
  ################################################################################
  # Image classification models.
  ################################################################################
  
  # SqueezeNet v1.1 from https://github.com/DeepScale/SqueezeNet
  squeezenet:
    load_info:
      url: "https://raw.githubusercontent.com/DeepScale/SqueezeNet/b5c3f1a23713c8b3fd7b801d229f6b04c64374a5/SqueezeNet_v1.1/squeezenet_v1.1.caffemodel"
      sha1: "3397f026368a45ae236403ccc81cfcbe8ebe1bd0"
    model: "squeezenet_v1.1.caffemodel"
    config: "squeezenet_v1.1.prototxt"
    mean: [0, 0, 0]
    scale: 1.0
    width: 227
    height: 227
    rgb: false
    classes: "classification_classes_ILSVRC2012.txt"
    sample: "classification"
  
  # Googlenet from https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
  googlenet:
    load_info:
      url: "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel"
      sha1: "405fc5acd08a3bb12de8ee5e23a96bec22f08204"
    model: "bvlc_googlenet.caffemodel"
    config: "bvlc_googlenet.prototxt"
    mean: [104, 117, 123]
    scale: 1.0
    width: 224
    height: 224
    rgb: false
    classes: "classification_classes_ILSVRC2012.txt"
    sample: "classification"
  
  ################################################################################
  # Semantic segmentation models.
  ################################################################################
  
  # ENet road scene segmentation network from https://github.com/e-lab/ENet-training
  # Works fine for different input sizes.
  enet:
    load_info:
      url: "https://www.dropbox.com/s/tdde0mawbi5dugq/Enet-model-best.net?dl=1"
      sha1: "b4123a73bf464b9ebe9cfc4ab9c2d5c72b161315"
    model: "Enet-model-best.net"
    mean: [0, 0, 0]
    scale: 0.00392
    width: 512
    height: 256
    rgb: true
    classes: "enet-classes.txt"
    sample: "segmentation"
  
  fcn8s:
    load_info:
      url: "http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel"
      sha1: "c449ea74dd7d83751d1357d6a8c323fcf4038962"
    model: "fcn8s-heavy-pascal.caffemodel"
    config: "fcn8s-heavy-pascal.prototxt"
    mean: [0, 0, 0]
    scale: 1.0
    width: 500
    height: 500
    rgb: false
    sample: "segmentation"