Blame view

3rdparty/opencv-4.5.4/doc/pattern_tools/svgfig.py 148 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
  # svgfig.py copyright (C) 2008 Jim Pivarski <jpivarski@gmail.com>
  #
  # This program is free software; you can redistribute it and/or
  # modify it under the terms of the GNU General Public License
  # as published by the Free Software Foundation; either version 2
  # of the License, or (at your option) any later version.
  #
  # This program is distributed in the hope that it will be useful,
  # but WITHOUT ANY WARRANTY; without even the implied warranty of
  # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  # GNU General Public License for more details.
  #
  # You should have received a copy of the GNU General Public License
  # along with this program; if not, write to the Free Software
  # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
  #
  # Full licence is in the file COPYING and at http://www.gnu.org/copyleft/gpl.html
  
  import re, codecs, os, platform, copy, itertools, math, cmath, random, sys, copy
  _epsilon = 1e-5
  
  if sys.version_info >= (3,0):
    long = int
    basestring = (str,bytes)
  
  # Fix Python 2.x.
  try:
      UNICODE_EXISTS = bool(type(unicode))
  except NameError:
      unicode = lambda s: str(s)
  
  try:
      xrange          # Python 2
  except NameError:
      xrange = range  # Python 3
  
  
  if re.search("windows", platform.system(), re.I):
      try:
          import _winreg
          _default_directory = _winreg.QueryValueEx(_winreg.OpenKey(_winreg.HKEY_CURRENT_USER,
                               r"Software\Microsoft\Windows\Current Version\Explorer\Shell Folders"), "Desktop")[0]
  #   tmpdir = _winreg.QueryValueEx(_winreg.OpenKey(_winreg.HKEY_CURRENT_USER, "Environment"), "TEMP")[0]
  #   if tmpdir[0:13] != "%USERPROFILE%":
  #     tmpdir = os.path.expanduser("~") + tmpdir[13:]
      except:
          _default_directory = os.path.expanduser("~") + os.sep + "Desktop"
  
  _default_fileName = "tmp.svg"
  
  _hacks = {}
  _hacks["inkscape-text-vertical-shift"] = False
  
  
  def rgb(r, g, b, maximum=1.):
      """Create an SVG color string "#xxyyzz" from r, g, and b.
  
      r,g,b = 0 is black and r,g,b = maximum is white.
      """
      return "#%02x%02x%02x" % (max(0, min(r*255./maximum, 255)),
                                max(0, min(g*255./maximum, 255)),
                                max(0, min(b*255./maximum, 255)))
  
  def attr_preprocess(attr):
      attrCopy = attr.copy()
      for name in attr.keys():
          name_colon = re.sub("__", ":", name)
          if name_colon != name:
              attrCopy[name_colon] = attrCopy[name]
              del attrCopy[name]
              name = name_colon
  
          name_dash = re.sub("_", "-", name)
          if name_dash != name:
              attrCopy[name_dash] = attrCopy[name]
              del attrCopy[name]
              name = name_dash
  
      return attrCopy
  
  
  class SVG:
      """A tree representation of an SVG image or image fragment.
  
      SVG(t, sub, sub, sub..., attribute=value)
  
      t                       required             SVG type name
      sub                     optional list        nested SVG elements or text/Unicode
      attribute=value pairs   optional keywords    SVG attributes
  
      In attribute names, "__" becomes ":" and "_" becomes "-".
  
      SVG in XML
  
      <g id="mygroup" fill="blue">
          <rect x="1" y="1" width="2" height="2" />
          <rect x="3" y="3" width="2" height="2" />
      </g>
  
      SVG in Python
  
      >>> svg = SVG("g", SVG("rect", x=1, y=1, width=2, height=2), \
      ...                SVG("rect", x=3, y=3, width=2, height=2), \
      ...           id="mygroup", fill="blue")
  
      Sub-elements and attributes may be accessed through tree-indexing:
  
      >>> svg = SVG("text", SVG("tspan", "hello there"), stroke="none", fill="black")
      >>> svg[0]
      <tspan (1 sub) />
      >>> svg[0, 0]
      'hello there'
      >>> svg["fill"]
      'black'
  
      Iteration is depth-first:
  
      >>> svg = SVG("g", SVG("g", SVG("line", x1=0, y1=0, x2=1, y2=1)), \
      ...                SVG("text", SVG("tspan", "hello again")))
      ...
      >>> for ti, s in svg:
      ...     print ti, repr(s)
      ...
      (0,) <g (1 sub) />
      (0, 0) <line x2=1 y1=0 x1=0 y2=1 />
      (0, 0, 'x2') 1
      (0, 0, 'y1') 0
      (0, 0, 'x1') 0
      (0, 0, 'y2') 1
      (1,) <text (1 sub) />
      (1, 0) <tspan (1 sub) />
      (1, 0, 0) 'hello again'
  
      Use "print" to navigate:
  
      >>> print svg
      None                 <g (2 sub) />
      [0]                      <g (1 sub) />
      [0, 0]                       <line x2=1 y1=0 x1=0 y2=1 />
      [1]                      <text (1 sub) />
      [1, 0]                       <tspan (1 sub) />
      """
      def __init__(self, *t_sub, **attr):
          if len(t_sub) == 0:
              raise TypeError( "SVG element must have a t (SVG type)")
  
          # first argument is t (SVG type)
          self.t = t_sub[0]
          # the rest are sub-elements
          self.sub = list(t_sub[1:])
  
          # keyword arguments are attributes
          # need to preprocess to handle differences between SVG and Python syntax
          self.attr = attr_preprocess(attr)
  
      def __getitem__(self, ti):
          """Index is a list that descends tree, returning a sub-element if
          it ends with a number and an attribute if it ends with a string."""
          obj = self
          if isinstance(ti, (list, tuple)):
              for i in ti[:-1]:
                  obj = obj[i]
              ti = ti[-1]
  
          if isinstance(ti, (int, long, slice)):
              return obj.sub[ti]
          else:
              return obj.attr[ti]
  
      def __setitem__(self, ti, value):
          """Index is a list that descends tree, returning a sub-element if
          it ends with a number and an attribute if it ends with a string."""
          obj = self
          if isinstance(ti, (list, tuple)):
              for i in ti[:-1]:
                  obj = obj[i]
              ti = ti[-1]
  
          if isinstance(ti, (int, long, slice)):
              obj.sub[ti] = value
          else:
              obj.attr[ti] = value
  
      def __delitem__(self, ti):
          """Index is a list that descends tree, returning a sub-element if
          it ends with a number and an attribute if it ends with a string."""
          obj = self
          if isinstance(ti, (list, tuple)):
              for i in ti[:-1]:
                  obj = obj[i]
              ti = ti[-1]
  
          if isinstance(ti, (int, long, slice)):
              del obj.sub[ti]
          else:
              del obj.attr[ti]
  
      def __contains__(self, value):
          """x in svg == True iff x is an attribute in svg."""
          return value in self.attr
  
      def __eq__(self, other):
          """x == y iff x represents the same SVG as y."""
          if id(self) == id(other):
              return True
          return (isinstance(other, SVG) and
                  self.t == other.t and self.sub == other.sub and self.attr == other.attr)
  
      def __ne__(self, other):
          """x != y iff x does not represent the same SVG as y."""
          return not (self == other)
  
      def append(self, x):
          """Appends x to the list of sub-elements (drawn last, overlaps
          other primitives)."""
          self.sub.append(x)
  
      def prepend(self, x):
          """Prepends x to the list of sub-elements (drawn first may be
          overlapped by other primitives)."""
          self.sub[0:0] = [x]
  
      def extend(self, x):
          """Extends list of sub-elements by a list x."""
          self.sub.extend(x)
  
      def clone(self, shallow=False):
          """Deep copy of SVG tree.  Set shallow=True for a shallow copy."""
          if shallow:
              return copy.copy(self)
          else:
              return copy.deepcopy(self)
  
      ### nested class
      class SVGDepthIterator:
          """Manages SVG iteration."""
  
          def __init__(self, svg, ti, depth_limit):
              self.svg = svg
              self.ti = ti
              self.shown = False
              self.depth_limit = depth_limit
  
          def __iter__(self):
              return self
  
          def next(self):
              if not self.shown:
                  self.shown = True
                  if self.ti != ():
                      return self.ti, self.svg
  
              if not isinstance(self.svg, SVG):
                  raise StopIteration
              if self.depth_limit is not None and len(self.ti) >= self.depth_limit:
                  raise StopIteration
  
              if "iterators" not in self.__dict__:
                  self.iterators = []
                  for i, s in enumerate(self.svg.sub):
                      self.iterators.append(self.__class__(s, self.ti + (i,), self.depth_limit))
                  for k, s in self.svg.attr.items():
                      self.iterators.append(self.__class__(s, self.ti + (k,), self.depth_limit))
                  self.iterators = itertools.chain(*self.iterators)
  
              return self.iterators.next()
      ### end nested class
  
      def depth_first(self, depth_limit=None):
          """Returns a depth-first generator over the SVG.  If depth_limit
          is a number, stop recursion at that depth."""
          return self.SVGDepthIterator(self, (), depth_limit)
  
      def breadth_first(self, depth_limit=None):
          """Not implemented yet.  Any ideas on how to do it?
  
          Returns a breadth-first generator over the SVG.  If depth_limit
          is a number, stop recursion at that depth."""
          raise NotImplementedError( "Got an algorithm for breadth-first searching a tree without effectively copying the tree?")
  
      def __iter__(self):
          return self.depth_first()
  
      def items(self, sub=True, attr=True, text=True):
          """Get a recursively-generated list of tree-index, sub-element/attribute pairs.
  
          If sub == False, do not show sub-elements.
          If attr == False, do not show attributes.
          If text == False, do not show text/Unicode sub-elements.
          """
          output = []
          for ti, s in self:
              show = False
              if isinstance(ti[-1], (int, long)):
                  if isinstance(s, basestring):
                      show = text
                  else:
                      show = sub
              else:
                  show = attr
  
              if show:
                  output.append((ti, s))
          return output
  
      def keys(self, sub=True, attr=True, text=True):
          """Get a recursively-generated list of tree-indexes.
  
          If sub == False, do not show sub-elements.
          If attr == False, do not show attributes.
          If text == False, do not show text/Unicode sub-elements.
          """
          return [ti for ti, s in self.items(sub, attr, text)]
  
      def values(self, sub=True, attr=True, text=True):
          """Get a recursively-generated list of sub-elements and attributes.
  
          If sub == False, do not show sub-elements.
          If attr == False, do not show attributes.
          If text == False, do not show text/Unicode sub-elements.
          """
          return [s for ti, s in self.items(sub, attr, text)]
  
      def __repr__(self):
          return self.xml(depth_limit=0)
  
      def __str__(self):
          """Print (actually, return a string of) the tree in a form useful for browsing."""
          return self.tree(sub=True, attr=False, text=False)
  
      def tree(self, depth_limit=None, sub=True, attr=True, text=True, tree_width=20, obj_width=80):
          """Print (actually, return a string of) the tree in a form useful for browsing.
  
          If depth_limit == a number, stop recursion at that depth.
          If sub == False, do not show sub-elements.
          If attr == False, do not show attributes.
          If text == False, do not show text/Unicode sub-elements.
          tree_width is the number of characters reserved for printing tree indexes.
          obj_width is the number of characters reserved for printing sub-elements/attributes.
          """
          output = []
  
          line = "%s %s" % (("%%-%ds" % tree_width) % repr(None),
                            ("%%-%ds" % obj_width) % (repr(self))[0:obj_width])
          output.append(line)
  
          for ti, s in self.depth_first(depth_limit):
              show = False
              if isinstance(ti[-1], (int, long)):
                  if isinstance(s, basestring):
                      show = text
                  else:
                      show = sub
              else:
                  show = attr
  
              if show:
                  line = "%s %s" % (("%%-%ds" % tree_width) % repr(list(ti)),
                                    ("%%-%ds" % obj_width) % ("    "*len(ti) + repr(s))[0:obj_width])
                  output.append(line)
  
          return "\n".join(output)
  
      def xml(self, indent=u"    ", newl=u"\n", depth_limit=None, depth=0):
          """Get an XML representation of the SVG.
  
          indent      string used for indenting
          newl        string used for newlines
          If depth_limit == a number, stop recursion at that depth.
          depth       starting depth (not useful for users)
  
          print svg.xml()
          """
          attrstr = []
          for n, v in self.attr.items():
              if isinstance(v, dict):
                  v = u"; ".join([u"%s:%s" % (ni, vi) for ni, vi in v.items()])
              elif isinstance(v, (list, tuple)):
                  v = u", ".join(v)
              attrstr.append(u" %s=%s" % (n, repr(v)))
          attrstr = u"".join(attrstr)
  
          if len(self.sub) == 0:
              return u"%s<%s%s />" % (indent * depth, self.t, attrstr)
  
          if depth_limit is None or depth_limit > depth:
              substr = []
              for s in self.sub:
                  if isinstance(s, SVG):
                      substr.append(s.xml(indent, newl, depth_limit, depth + 1) + newl)
                  elif isinstance(s, basestring):
                      substr.append(u"%s%s%s" % (indent * (depth + 1), s, newl))
                  else:
                      substr.append("%s%s%s" % (indent * (depth + 1), repr(s), newl))
              substr = u"".join(substr)
  
              return u"%s<%s%s>%s%s%s</%s>" % (indent * depth, self.t, attrstr, newl, substr, indent * depth, self.t)
  
          else:
              return u"%s<%s (%d sub)%s />" % (indent * depth, self.t, len(self.sub), attrstr)
  
      def standalone_xml(self, indent=u"    ", newl=u"\n", encoding=u"utf-8"):
          """Get an XML representation of the SVG that can be saved/rendered.
  
          indent      string used for indenting
          newl        string used for newlines
          """
  
          if self.t == "svg":
              top = self
          else:
              top = canvas(self)
          return u"""\
  <?xml version="1.0" encoding="%s" standalone="no"?>
  <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
  
  """ % encoding + (u"".join(top.__standalone_xml(indent, newl)))  # end of return statement
  
      def __standalone_xml(self, indent, newl):
          output = [u"<%s" % self.t]
  
          for n, v in self.attr.items():
              if isinstance(v, dict):
                  v = u"; ".join([u"%s:%s" % (ni, vi) for ni, vi in v.items()])
              elif isinstance(v, (list, tuple)):
                  v = u", ".join(v)
              output.append(u' %s="%s"' % (n, v))
  
          if len(self.sub) == 0:
              output.append(u" />%s%s" % (newl, newl))
              return output
  
          elif self.t == "text" or self.t == "tspan" or self.t == "style":
              output.append(u">")
  
          else:
              output.append(u">%s%s" % (newl, newl))
  
          for s in self.sub:
              if isinstance(s, SVG):
                  output.extend(s.__standalone_xml(indent, newl))
              else:
                  output.append(unicode(s))
  
          if self.t == "tspan":
              output.append(u"</%s>" % self.t)
          else:
              output.append(u"</%s>%s%s" % (self.t, newl, newl))
  
          return output
  
      def interpret_fileName(self, fileName=None):
          if fileName is None:
              fileName = _default_fileName
          if re.search("windows", platform.system(), re.I) and not os.path.isabs(fileName):
              fileName = _default_directory + os.sep + fileName
          return fileName
  
      def save(self, fileName=None, encoding="utf-8", compresslevel=None):
          """Save to a file for viewing.  Note that svg.save() overwrites the file named _default_fileName.
  
          fileName        default=None            note that _default_fileName will be overwritten if
                                                  no fileName is specified. If the extension
                                                  is ".svgz" or ".gz", the output will be gzipped
          encoding        default="utf-8"         file encoding
          compresslevel   default=None            if a number, the output will be gzipped with that
                                                  compression level (1-9, 1 being fastest and 9 most
                                                  thorough)
          """
          fileName = self.interpret_fileName(fileName)
  
          if compresslevel is not None or re.search(r"\.svgz$", fileName, re.I) or re.search(r"\.gz$", fileName, re.I):
              import gzip
              if compresslevel is None:
                  f = gzip.GzipFile(fileName, "w")
              else:
                  f = gzip.GzipFile(fileName, "w", compresslevel)
  
              f = codecs.EncodedFile(f, "utf-8", encoding)
              f.write(self.standalone_xml(encoding=encoding))
              f.close()
  
          else:
              f = codecs.open(fileName, "w", encoding=encoding)
              f.write(self.standalone_xml(encoding=encoding))
              f.close()
  
      def inkview(self, fileName=None, encoding="utf-8"):
          """View in "inkview", assuming that program is available on your system.
  
          fileName        default=None            note that any file named _default_fileName will be
                                                  overwritten if no fileName is specified. If the extension
                                                  is ".svgz" or ".gz", the output will be gzipped
          encoding        default="utf-8"         file encoding
          """
          fileName = self.interpret_fileName(fileName)
          self.save(fileName, encoding)
          os.spawnvp(os.P_NOWAIT, "inkview", ("inkview", fileName))
  
      def inkscape(self, fileName=None, encoding="utf-8"):
          """View in "inkscape", assuming that program is available on your system.
  
          fileName        default=None            note that any file named _default_fileName will be
                                                  overwritten if no fileName is specified. If the extension
                                                  is ".svgz" or ".gz", the output will be gzipped
          encoding        default="utf-8"         file encoding
          """
          fileName = self.interpret_fileName(fileName)
          self.save(fileName, encoding)
          os.spawnvp(os.P_NOWAIT, "inkscape", ("inkscape", fileName))
  
      def firefox(self, fileName=None, encoding="utf-8"):
          """View in "firefox", assuming that program is available on your system.
  
          fileName        default=None            note that any file named _default_fileName will be
                                                  overwritten if no fileName is specified. If the extension
                                                  is ".svgz" or ".gz", the output will be gzipped
          encoding        default="utf-8"         file encoding
          """
          fileName = self.interpret_fileName(fileName)
          self.save(fileName, encoding)
          os.spawnvp(os.P_NOWAIT, "firefox", ("firefox", fileName))
  
  ######################################################################
  
  _canvas_defaults = {"width": "400px",
                      "height": "400px",
                      "viewBox": "0 0 100 100",
                      "xmlns": "http://www.w3.org/2000/svg",
                      "xmlns:xlink": "http://www.w3.org/1999/xlink",
                      "version": "1.1",
                      "style": {"stroke": "black",
                                "fill": "none",
                                "stroke-width": "0.5pt",
                                "stroke-linejoin": "round",
                                "text-anchor": "middle",
                               },
                      "font-family": ["Helvetica", "Arial", "FreeSans", "Sans", "sans", "sans-serif"],
                     }
  
  def canvas(*sub, **attr):
      """Creates a top-level SVG object, allowing the user to control the
      image size and aspect ratio.
  
      canvas(sub, sub, sub..., attribute=value)
  
      sub                     optional list       nested SVG elements or text/Unicode
      attribute=value pairs   optional keywords   SVG attributes
  
      Default attribute values:
  
      width           "400px"
      height          "400px"
      viewBox         "0 0 100 100"
      xmlns           "http://www.w3.org/2000/svg"
      xmlns:xlink     "http://www.w3.org/1999/xlink"
      version         "1.1"
      style           "stroke:black; fill:none; stroke-width:0.5pt; stroke-linejoin:round; text-anchor:middle"
      font-family     "Helvetica,Arial,FreeSans?,Sans,sans,sans-serif"
      """
      attributes = dict(_canvas_defaults)
      attributes.update(attr)
  
      if sub is None or sub == ():
          return SVG("svg", **attributes)
      else:
          return SVG("svg", *sub, **attributes)
  
  def canvas_outline(*sub, **attr):
      """Same as canvas(), but draws an outline around the drawable area,
      so that you know how close your image is to the edges."""
      svg = canvas(*sub, **attr)
      match = re.match(r"[, \t]*([0-9e.+\-]+)[, \t]+([0-9e.+\-]+)[, \t]+([0-9e.+\-]+)[, \t]+([0-9e.+\-]+)[, \t]*", svg["viewBox"])
      if match is None:
          raise ValueError( "canvas viewBox is incorrectly formatted")
      x, y, width, height = [float(x) for x in match.groups()]
      svg.prepend(SVG("rect", x=x, y=y, width=width, height=height, stroke="none", fill="cornsilk"))
      svg.append(SVG("rect", x=x, y=y, width=width, height=height, stroke="black", fill="none"))
      return svg
  
  def template(fileName, svg, replaceme="REPLACEME"):
      """Loads an SVG image from a file, replacing instances of
      <REPLACEME /> with a given svg object.
  
      fileName         required                name of the template SVG
      svg              required                SVG object for replacement
      replaceme        default="REPLACEME"     fake SVG element to be replaced by the given object
  
      >>> print load("template.svg")
      None                 <svg (2 sub) style=u'stroke:black; fill:none; stroke-width:0.5pt; stroke-linejoi
      [0]                      <rect height=u'100' width=u'100' stroke=u'none' y=u'0' x=u'0' fill=u'yellow'
      [1]                      <REPLACEME />
      >>>
      >>> print template("template.svg", SVG("circle", cx=50, cy=50, r=30))
      None                 <svg (2 sub) style=u'stroke:black; fill:none; stroke-width:0.5pt; stroke-linejoi
      [0]                      <rect height=u'100' width=u'100' stroke=u'none' y=u'0' x=u'0' fill=u'yellow'
      [1]                      <circle cy=50 cx=50 r=30 />
      """
      output = load(fileName)
      for ti, s in output:
          if isinstance(s, SVG) and s.t == replaceme:
              output[ti] = svg
      return output
  
  ######################################################################
  
  def load(fileName):
      """Loads an SVG image from a file."""
      return load_stream(open(fileName))
  
  def load_stream(stream):
      """Loads an SVG image from a stream (can be a string or a file object)."""
  
      from xml.sax import handler, make_parser
      from xml.sax.handler import feature_namespaces, feature_external_ges, feature_external_pes
  
      class ContentHandler(handler.ContentHandler):
          def __init__(self):
              self.stack = []
              self.output = None
              self.all_whitespace = re.compile(r"^\s*$")
  
          def startElement(self, name, attr):
              s = SVG(name)
              s.attr = dict(attr.items())
              if len(self.stack) > 0:
                  last = self.stack[-1]
                  last.sub.append(s)
              self.stack.append(s)
  
          def characters(self, ch):
              if not isinstance(ch, basestring) or self.all_whitespace.match(ch) is None:
                  if len(self.stack) > 0:
                      last = self.stack[-1]
                      if len(last.sub) > 0 and isinstance(last.sub[-1], basestring):
                          last.sub[-1] = last.sub[-1] + "\n" + ch
                      else:
                          last.sub.append(ch)
  
          def endElement(self, name):
              if len(self.stack) > 0:
                  last = self.stack[-1]
                  if (isinstance(last, SVG) and last.t == "style" and
                      "type" in last.attr and last.attr["type"] == "text/css" and
                      len(last.sub) == 1 and isinstance(last.sub[0], basestring)):
                      last.sub[0] = "<![CDATA[\n" + last.sub[0] + "]]>"
  
              self.output = self.stack.pop()
  
      ch = ContentHandler()
      parser = make_parser()
      parser.setContentHandler(ch)
      parser.setFeature(feature_namespaces, 0)
      parser.setFeature(feature_external_ges, 0)
      parser.parse(stream)
      return ch.output
  
  ######################################################################
  def set_func_name(f, name):
      """try to patch the function name string into a function object"""
      try:
          f.func_name = name
      except TypeError:
          # py 2.3 raises: TypeError: readonly attribute
          pass
  
  def totrans(expr, vars=("x", "y"), globals=None, locals=None):
      """Converts to a coordinate transformation (a function that accepts
      two arguments and returns two values).
  
      expr       required                  a string expression or a function
                                           of two real or one complex value
      vars       default=("x", "y")        independent variable names; a singleton
                                           ("z",) is interpreted as complex
      globals    default=None              dict of global variables
      locals     default=None              dict of local variables
      """
      if locals is None:
          locals = {}  # python 2.3's eval() won't accept None
  
      if callable(expr):
          if expr.func_code.co_argcount == 2:
              return expr
  
          elif expr.func_code.co_argcount == 1:
              split = lambda z: (z.real, z.imag)
              output = lambda x, y: split(expr(x + y*1j))
              set_func_name(output, expr.func_name)
              return output
  
          else:
              raise TypeError( "must be a function of 2 or 1 variables")
  
      if len(vars) == 2:
          g = math.__dict__
          if globals is not None:
              g.update(globals)
          output = eval("lambda %s, %s: (%s)" % (vars[0], vars[1], expr), g, locals)
          set_func_name(output, "%s,%s -> %s" % (vars[0], vars[1], expr))
          return output
  
      elif len(vars) == 1:
          g = cmath.__dict__
          if globals is not None:
              g.update(globals)
          output = eval("lambda %s: (%s)" % (vars[0], expr), g, locals)
          split = lambda z: (z.real, z.imag)
          output2 = lambda x, y: split(output(x + y*1j))
          set_func_name(output2, "%s -> %s" % (vars[0], expr))
          return output2
  
      else:
          raise TypeError( "vars must have 2 or 1 elements")
  
  
  def window(xmin, xmax, ymin, ymax, x=0, y=0, width=100, height=100,
             xlogbase=None, ylogbase=None, minusInfinity=-1000, flipx=False, flipy=True):
      """Creates and returns a coordinate transformation (a function that
      accepts two arguments and returns two values) that transforms from
          (xmin, ymin), (xmax, ymax)
      to
          (x, y), (x + width, y + height).
  
      xlogbase, ylogbase    default=None, None     if a number, transform
                                                   logarithmically with given base
      minusInfinity         default=-1000          what to return if
                                                   log(0 or negative) is attempted
      flipx                 default=False          if true, reverse the direction of x
      flipy                 default=True           if true, reverse the direction of y
  
      (When composing windows, be sure to set flipy=False.)
      """
  
      if flipx:
          ox1 = x + width
          ox2 = x
      else:
          ox1 = x
          ox2 = x + width
      if flipy:
          oy1 = y + height
          oy2 = y
      else:
          oy1 = y
          oy2 = y + height
      ix1 = xmin
      iy1 = ymin
      ix2 = xmax
      iy2 = ymax
  
      if xlogbase is not None and (ix1 <= 0. or ix2 <= 0.):
          raise ValueError ("x range incompatible with log scaling: (%g, %g)" % (ix1, ix2))
  
      if ylogbase is not None and (iy1 <= 0. or iy2 <= 0.):
          raise ValueError ("y range incompatible with log scaling: (%g, %g)" % (iy1, iy2))
  
      def maybelog(t, it1, it2, ot1, ot2, logbase):
          if t <= 0.:
              return minusInfinity
          else:
              return ot1 + 1.*(math.log(t, logbase) - math.log(it1, logbase))/(math.log(it2, logbase) - math.log(it1, logbase)) * (ot2 - ot1)
  
      xlogstr, ylogstr = "", ""
  
      if xlogbase is None:
          xfunc = lambda x: ox1 + 1.*(x - ix1)/(ix2 - ix1) * (ox2 - ox1)
      else:
          xfunc = lambda x: maybelog(x, ix1, ix2, ox1, ox2, xlogbase)
          xlogstr = " xlog=%g" % xlogbase
  
      if ylogbase is None:
          yfunc = lambda y: oy1 + 1.*(y - iy1)/(iy2 - iy1) * (oy2 - oy1)
      else:
          yfunc = lambda y: maybelog(y, iy1, iy2, oy1, oy2, ylogbase)
          ylogstr = " ylog=%g" % ylogbase
  
      output = lambda x, y: (xfunc(x), yfunc(y))
  
      set_func_name(output, "(%g, %g), (%g, %g) -> (%g, %g), (%g, %g)%s%s" % (
                            ix1, ix2, iy1, iy2, ox1, ox2, oy1, oy2, xlogstr, ylogstr))
      return output
  
  
  def rotate(angle, cx=0, cy=0):
      """Creates and returns a coordinate transformation which rotates
      around (cx,cy) by "angle" degrees."""
      angle *= math.pi/180.
      return lambda x, y: (cx + math.cos(angle)*(x - cx) - math.sin(angle)*(y - cy), cy + math.sin(angle)*(x - cx) + math.cos(angle)*(y - cy))
  
  
  class Fig:
      """Stores graphics primitive objects and applies a single coordinate
      transformation to them. To compose coordinate systems, nest Fig
      objects.
  
      Fig(obj, obj, obj..., trans=function)
  
      obj     optional list    a list of drawing primitives
      trans   default=None     a coordinate transformation function
  
      >>> fig = Fig(Line(0,0,1,1), Rect(0.2,0.2,0.8,0.8), trans="2*x, 2*y")
      >>> print fig.SVG().xml()
      <g>
          <path d='M0 0L2 2' />
          <path d='M0.4 0.4L1.6 0.4ZL1.6 1.6ZL0.4 1.6ZL0.4 0.4ZZ' />
      </g>
      >>> print Fig(fig, trans="x/2., y/2.").SVG().xml()
      <g>
          <path d='M0 0L1 1' />
          <path d='M0.2 0.2L0.8 0.2ZL0.8 0.8ZL0.2 0.8ZL0.2 0.2ZZ' />
      </g>
      """
  
      def __repr__(self):
          if self.trans is None:
              return "<Fig (%d items)>" % len(self.d)
          elif isinstance(self.trans, basestring):
              return "<Fig (%d items) x,y -> %s>" % (len(self.d), self.trans)
          else:
              return "<Fig (%d items) %s>" % (len(self.d), self.trans.func_name)
  
      def __init__(self, *d, **kwds):
          self.d = list(d)
          defaults = {"trans": None, }
          defaults.update(kwds)
          kwds = defaults
  
          self.trans = kwds["trans"]; del kwds["trans"]
          if len(kwds) != 0:
              raise TypeError ("Fig() got unexpected keyword arguments %s" % kwds.keys())
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object.
  
          Coordinate transformations in nested Figs will be composed.
          """
  
          if trans is None:
              trans = self.trans
          if isinstance(trans, basestring):
              trans = totrans(trans)
  
          output = SVG("g")
          for s in self.d:
              if isinstance(s, SVG):
                  output.append(s)
  
              elif isinstance(s, Fig):
                  strans = s.trans
                  if isinstance(strans, basestring):
                      strans = totrans(strans)
  
                  if trans is None:
                      subtrans = strans
                  elif strans is None:
                      subtrans = trans
                  else:
                      subtrans = lambda x, y: trans(*strans(x, y))
  
                  output.sub += s.SVG(subtrans).sub
  
              elif s is None:
                  pass
  
              else:
                  output.append(s.SVG(trans))
  
          return output
  
  
  class Plot:
      """Acts like Fig, but draws a coordinate axis. You also need to supply plot ranges.
  
      Plot(xmin, xmax, ymin, ymax, obj, obj, obj..., keyword options...)
  
      xmin, xmax      required        minimum and maximum x values (in the objs' coordinates)
      ymin, ymax      required        minimum and maximum y values (in the objs' coordinates)
      obj             optional list   drawing primitives
      keyword options keyword list    options defined below
  
      The following are keyword options, with their default values:
  
      trans           None          transformation function
      x, y            5, 5          upper-left corner of the Plot in SVG coordinates
      width, height   90, 90        width and height of the Plot in SVG coordinates
      flipx, flipy    False, True   flip the sign of the coordinate axis
      minusInfinity   -1000         if an axis is logarithmic and an object is plotted at 0 or
                                    a negative value, -1000 will be used as a stand-in for NaN
      atx, aty        0, 0          the place where the coordinate axes cross
      xticks          -10           request ticks according to the standard tick specification
                                    (see help(Ticks))
      xminiticks      True          request miniticks according to the standard minitick
                                    specification
      xlabels         True          request tick labels according to the standard tick label
                                    specification
      xlogbase        None          if a number, the axis and transformation are logarithmic
                                    with ticks at the given base (10 being the most common)
      (same for y)
      arrows          None          if a new identifier, create arrow markers and draw them
                                    at the ends of the coordinate axes
      text_attr       {}            a dictionary of attributes for label text
      axis_attr       {}            a dictionary of attributes for the axis lines
      """
  
      def __repr__(self):
          if self.trans is None:
              return "<Plot (%d items)>" % len(self.d)
          else:
              return "<Plot (%d items) %s>" % (len(self.d), self.trans.func_name)
  
      def __init__(self, xmin, xmax, ymin, ymax, *d, **kwds):
          self.xmin, self.xmax, self.ymin, self.ymax = xmin, xmax, ymin, ymax
          self.d = list(d)
          defaults = {"trans": None,
                      "x": 5, "y": 5, "width": 90, "height": 90,
                      "flipx": False, "flipy": True,
                      "minusInfinity": -1000,
                      "atx": 0, "xticks": -10, "xminiticks": True, "xlabels": True, "xlogbase": None,
                      "aty": 0, "yticks": -10, "yminiticks": True, "ylabels": True, "ylogbase": None,
                      "arrows": None,
                      "text_attr": {}, "axis_attr": {},
                     }
          defaults.update(kwds)
          kwds = defaults
  
          self.trans = kwds["trans"]; del kwds["trans"]
          self.x = kwds["x"]; del kwds["x"]
          self.y = kwds["y"]; del kwds["y"]
          self.width = kwds["width"]; del kwds["width"]
          self.height = kwds["height"]; del kwds["height"]
          self.flipx = kwds["flipx"]; del kwds["flipx"]
          self.flipy = kwds["flipy"]; del kwds["flipy"]
          self.minusInfinity = kwds["minusInfinity"]; del kwds["minusInfinity"]
          self.atx = kwds["atx"]; del kwds["atx"]
          self.xticks = kwds["xticks"]; del kwds["xticks"]
          self.xminiticks = kwds["xminiticks"]; del kwds["xminiticks"]
          self.xlabels = kwds["xlabels"]; del kwds["xlabels"]
          self.xlogbase = kwds["xlogbase"]; del kwds["xlogbase"]
          self.aty = kwds["aty"]; del kwds["aty"]
          self.yticks = kwds["yticks"]; del kwds["yticks"]
          self.yminiticks = kwds["yminiticks"]; del kwds["yminiticks"]
          self.ylabels = kwds["ylabels"]; del kwds["ylabels"]
          self.ylogbase = kwds["ylogbase"]; del kwds["ylogbase"]
          self.arrows = kwds["arrows"]; del kwds["arrows"]
          self.text_attr = kwds["text_attr"]; del kwds["text_attr"]
          self.axis_attr = kwds["axis_attr"]; del kwds["axis_attr"]
          if len(kwds) != 0:
              raise TypeError ("Plot() got unexpected keyword arguments %s" % kwds.keys())
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          if trans is None:
              trans = self.trans
          if isinstance(trans, basestring):
              trans = totrans(trans)
  
          self.last_window = window(self.xmin, self.xmax, self.ymin, self.ymax,
                                    x=self.x, y=self.y, width=self.width, height=self.height,
                                    xlogbase=self.xlogbase, ylogbase=self.ylogbase,
                                    minusInfinity=self.minusInfinity, flipx=self.flipx, flipy=self.flipy)
  
          d = ([Axes(self.xmin, self.xmax, self.ymin, self.ymax, self.atx, self.aty,
                     self.xticks, self.xminiticks, self.xlabels, self.xlogbase,
                     self.yticks, self.yminiticks, self.ylabels, self.ylogbase,
                     self.arrows, self.text_attr, **self.axis_attr)]
               + self.d)
  
          return Fig(Fig(*d, **{"trans": trans})).SVG(self.last_window)
  
  
  class Frame:
      text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, }
      axis_defaults = {}
  
      tick_length = 1.5
      minitick_length = 0.75
      text_xaxis_offset = 1.
      text_yaxis_offset = 2.
      text_xtitle_offset = 6.
      text_ytitle_offset = 12.
  
      def __repr__(self):
          return "<Frame (%d items)>" % len(self.d)
  
      def __init__(self, xmin, xmax, ymin, ymax, *d, **kwds):
          """Acts like Fig, but draws a coordinate frame around the data. You also need to supply plot ranges.
  
          Frame(xmin, xmax, ymin, ymax, obj, obj, obj..., keyword options...)
  
          xmin, xmax      required        minimum and maximum x values (in the objs' coordinates)
          ymin, ymax      required        minimum and maximum y values (in the objs' coordinates)
          obj             optional list   drawing primitives
          keyword options keyword list    options defined below
  
          The following are keyword options, with their default values:
  
          x, y            20, 5         upper-left corner of the Frame in SVG coordinates
          width, height   75, 80        width and height of the Frame in SVG coordinates
          flipx, flipy    False, True   flip the sign of the coordinate axis
          minusInfinity   -1000         if an axis is logarithmic and an object is plotted at 0 or
                                        a negative value, -1000 will be used as a stand-in for NaN
          xtitle          None          if a string, label the x axis
          xticks          -10           request ticks according to the standard tick specification
                                        (see help(Ticks))
          xminiticks      True          request miniticks according to the standard minitick
                                        specification
          xlabels         True          request tick labels according to the standard tick label
                                        specification
          xlogbase        None          if a number, the axis and transformation are logarithmic
                                        with ticks at the given base (10 being the most common)
          (same for y)
          text_attr       {}            a dictionary of attributes for label text
          axis_attr       {}            a dictionary of attributes for the axis lines
          """
  
          self.xmin, self.xmax, self.ymin, self.ymax = xmin, xmax, ymin, ymax
          self.d = list(d)
          defaults = {"x": 20, "y": 5, "width": 75, "height": 80,
                      "flipx": False, "flipy": True, "minusInfinity": -1000,
                      "xtitle": None, "xticks": -10, "xminiticks": True, "xlabels": True,
                      "x2labels": None, "xlogbase": None,
                      "ytitle": None, "yticks": -10, "yminiticks": True, "ylabels": True,
                      "y2labels": None, "ylogbase": None,
                      "text_attr": {}, "axis_attr": {},
                     }
          defaults.update(kwds)
          kwds = defaults
  
          self.x = kwds["x"]; del kwds["x"]
          self.y = kwds["y"]; del kwds["y"]
          self.width = kwds["width"]; del kwds["width"]
          self.height = kwds["height"]; del kwds["height"]
          self.flipx = kwds["flipx"]; del kwds["flipx"]
          self.flipy = kwds["flipy"]; del kwds["flipy"]
          self.minusInfinity = kwds["minusInfinity"]; del kwds["minusInfinity"]
          self.xtitle = kwds["xtitle"]; del kwds["xtitle"]
          self.xticks = kwds["xticks"]; del kwds["xticks"]
          self.xminiticks = kwds["xminiticks"]; del kwds["xminiticks"]
          self.xlabels = kwds["xlabels"]; del kwds["xlabels"]
          self.x2labels = kwds["x2labels"]; del kwds["x2labels"]
          self.xlogbase = kwds["xlogbase"]; del kwds["xlogbase"]
          self.ytitle = kwds["ytitle"]; del kwds["ytitle"]
          self.yticks = kwds["yticks"]; del kwds["yticks"]
          self.yminiticks = kwds["yminiticks"]; del kwds["yminiticks"]
          self.ylabels = kwds["ylabels"]; del kwds["ylabels"]
          self.y2labels = kwds["y2labels"]; del kwds["y2labels"]
          self.ylogbase = kwds["ylogbase"]; del kwds["ylogbase"]
  
          self.text_attr = dict(self.text_defaults)
          self.text_attr.update(kwds["text_attr"]); del kwds["text_attr"]
  
          self.axis_attr = dict(self.axis_defaults)
          self.axis_attr.update(kwds["axis_attr"]); del kwds["axis_attr"]
  
          if len(kwds) != 0:
              raise TypeError( "Frame() got unexpected keyword arguments %s" % kwds.keys())
  
      def SVG(self):
          """Apply the window transformation and return an SVG object."""
  
          self.last_window = window(self.xmin, self.xmax, self.ymin, self.ymax,
                                    x=self.x, y=self.y, width=self.width, height=self.height,
                                    xlogbase=self.xlogbase, ylogbase=self.ylogbase,
                                    minusInfinity=self.minusInfinity, flipx=self.flipx, flipy=self.flipy)
  
          left = YAxis(self.ymin, self.ymax, self.xmin, self.yticks, self.yminiticks, self.ylabels, self.ylogbase,
                       None, None, None, self.text_attr, **self.axis_attr)
          right = YAxis(self.ymin, self.ymax, self.xmax, self.yticks, self.yminiticks, self.y2labels, self.ylogbase,
                        None, None, None, self.text_attr, **self.axis_attr)
          bottom = XAxis(self.xmin, self.xmax, self.ymin, self.xticks, self.xminiticks, self.xlabels, self.xlogbase,
                         None, None, None, self.text_attr, **self.axis_attr)
          top = XAxis(self.xmin, self.xmax, self.ymax, self.xticks, self.xminiticks, self.x2labels, self.xlogbase,
                      None, None, None, self.text_attr, **self.axis_attr)
  
          left.tick_start = -self.tick_length
          left.tick_end = 0
          left.minitick_start = -self.minitick_length
          left.minitick_end = 0.
          left.text_start = self.text_yaxis_offset
  
          right.tick_start = 0.
          right.tick_end = self.tick_length
          right.minitick_start = 0.
          right.minitick_end = self.minitick_length
          right.text_start = -self.text_yaxis_offset
          right.text_attr["text-anchor"] = "start"
  
          bottom.tick_start = 0.
          bottom.tick_end = self.tick_length
          bottom.minitick_start = 0.
          bottom.minitick_end = self.minitick_length
          bottom.text_start = -self.text_xaxis_offset
  
          top.tick_start = -self.tick_length
          top.tick_end = 0.
          top.minitick_start = -self.minitick_length
          top.minitick_end = 0.
          top.text_start = self.text_xaxis_offset
          top.text_attr["dominant-baseline"] = "text-after-edge"
  
          output = Fig(*self.d).SVG(self.last_window)
          output.prepend(left.SVG(self.last_window))
          output.prepend(bottom.SVG(self.last_window))
          output.prepend(right.SVG(self.last_window))
          output.prepend(top.SVG(self.last_window))
  
          if self.xtitle is not None:
              output.append(SVG("text", self.xtitle, transform="translate(%g, %g)" % ((self.x + self.width/2.), (self.y + self.height + self.text_xtitle_offset)), dominant_baseline="text-before-edge", **self.text_attr))
          if self.ytitle is not None:
              output.append(SVG("text", self.ytitle, transform="translate(%g, %g) rotate(-90)" % ((self.x - self.text_ytitle_offset), (self.y + self.height/2.)), **self.text_attr))
          return output
  
  ######################################################################
  
  def pathtoPath(svg):
      """Converts SVG("path", d="...") into Path(d=[...])."""
      if not isinstance(svg, SVG) or svg.t != "path":
          raise TypeError ("Only SVG <path /> objects can be converted into Paths")
      attr = dict(svg.attr)
      d = attr["d"]
      del attr["d"]
      for key in attr.keys():
          if not isinstance(key, str):
              value = attr[key]
              del attr[key]
              attr[str(key)] = value
      return Path(d, **attr)
  
  
  class Path:
      """Path represents an SVG path, an arbitrary set of curves and
      straight segments. Unlike SVG("path", d="..."), Path stores
      coordinates as a list of numbers, rather than a string, so that it is
      transformable in a Fig.
  
      Path(d, attribute=value)
  
      d                       required        path data
      attribute=value pairs   keyword list    SVG attributes
  
      See http://www.w3.org/TR/SVG/paths.html for specification of paths
      from text.
  
      Internally, Path data is a list of tuples with these definitions:
  
          * ("Z/z",): close the current path
          * ("H/h", x) or ("V/v", y): a horizontal or vertical line
            segment to x or y
          * ("M/m/L/l/T/t", x, y, global): moveto, lineto, or smooth
            quadratic curveto point (x, y). If global=True, (x, y) should
            not be transformed.
          * ("S/sQ/q", cx, cy, cglobal, x, y, global): polybezier or
            smooth quadratic curveto point (x, y) using (cx, cy) as a
            control point. If cglobal or global=True, (cx, cy) or (x, y)
            should not be transformed.
          * ("C/c", c1x, c1y, c1global, c2x, c2y, c2global, x, y, global):
            cubic curveto point (x, y) using (c1x, c1y) and (c2x, c2y) as
            control points. If c1global, c2global, or global=True, (c1x, c1y),
            (c2x, c2y), or (x, y) should not be transformed.
          * ("A/a", rx, ry, rglobal, x-axis-rotation, angle, large-arc-flag,
            sweep-flag, x, y, global): arcto point (x, y) using the
            aforementioned parameters.
          * (",/.", rx, ry, rglobal, angle, x, y, global): an ellipse at
            point (x, y) with radii (rx, ry). If angle is 0, the whole
            ellipse is drawn; otherwise, a partial ellipse is drawn.
      """
      defaults = {}
  
      def __repr__(self):
          return "<Path (%d nodes) %s>" % (len(self.d), self.attr)
  
      def __init__(self, d=[], **attr):
          if isinstance(d, basestring):
              self.d = self.parse(d)
          else:
              self.d = list(d)
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def parse_whitespace(self, index, pathdata):
          """Part of Path's text-command parsing algorithm; used internally."""
          while index < len(pathdata) and pathdata[index] in (" ", "\t", "\r", "\n", ","):
              index += 1
          return index, pathdata
  
      def parse_command(self, index, pathdata):
          """Part of Path's text-command parsing algorithm; used internally."""
          index, pathdata = self.parse_whitespace(index, pathdata)
  
          if index >= len(pathdata):
              return None, index, pathdata
          command = pathdata[index]
          if "A" <= command <= "Z" or "a" <= command <= "z":
              index += 1
              return command, index, pathdata
          else:
              return None, index, pathdata
  
      def parse_number(self, index, pathdata):
          """Part of Path's text-command parsing algorithm; used internally."""
          index, pathdata = self.parse_whitespace(index, pathdata)
  
          if index >= len(pathdata):
              return None, index, pathdata
          first_digit = pathdata[index]
  
          if "0" <= first_digit <= "9" or first_digit in ("-", "+", "."):
              start = index
              while index < len(pathdata) and ("0" <= pathdata[index] <= "9" or pathdata[index] in ("-", "+", ".", "e", "E")):
                  index += 1
              end = index
  
              index = end
              return float(pathdata[start:end]), index, pathdata
          else:
              return None, index, pathdata
  
      def parse_boolean(self, index, pathdata):
          """Part of Path's text-command parsing algorithm; used internally."""
          index, pathdata = self.parse_whitespace(index, pathdata)
  
          if index >= len(pathdata):
              return None, index, pathdata
          first_digit = pathdata[index]
  
          if first_digit in ("0", "1"):
              index += 1
              return int(first_digit), index, pathdata
          else:
              return None, index, pathdata
  
      def parse(self, pathdata):
          """Parses text-commands, converting them into a list of tuples.
          Called by the constructor."""
          output = []
          index = 0
          while True:
              command, index, pathdata = self.parse_command(index, pathdata)
              index, pathdata = self.parse_whitespace(index, pathdata)
  
              if command is None and index == len(pathdata):
                  break  # this is the normal way out of the loop
              if command in ("Z", "z"):
                  output.append((command,))
  
              ######################
              elif command in ("H", "h", "V", "v"):
                  errstring = "Path command \"%s\" requires a number at index %d" % (command, index)
                  num1, index, pathdata = self.parse_number(index, pathdata)
                  if num1 is None:
                      raise ValueError ( errstring)
  
                  while num1 is not None:
                      output.append((command, num1))
                      num1, index, pathdata = self.parse_number(index, pathdata)
  
              ######################
              elif command in ("M", "m", "L", "l", "T", "t"):
                  errstring = "Path command \"%s\" requires an x,y pair at index %d" % (command, index)
                  num1, index, pathdata = self.parse_number(index, pathdata)
                  num2, index, pathdata = self.parse_number(index, pathdata)
  
                  if num1 is None:
                      raise ValueError ( errstring)
  
                  while num1 is not None:
                      if num2 is None:
                          raise ValueError ( errstring)
                      output.append((command, num1, num2, False))
  
                      num1, index, pathdata = self.parse_number(index, pathdata)
                      num2, index, pathdata = self.parse_number(index, pathdata)
  
              ######################
              elif command in ("S", "s", "Q", "q"):
                  errstring = "Path command \"%s\" requires a cx,cy,x,y quadruplet at index %d" % (command, index)
                  num1, index, pathdata = self.parse_number(index, pathdata)
                  num2, index, pathdata = self.parse_number(index, pathdata)
                  num3, index, pathdata = self.parse_number(index, pathdata)
                  num4, index, pathdata = self.parse_number(index, pathdata)
  
                  if num1 is None:
                      raise ValueError ( errstring )
  
                  while num1 is not None:
                      if num2 is None or num3 is None or num4 is None:
                          raise ValueError (errstring)
                      output.append((command, num1, num2, False, num3, num4, False))
  
                      num1, index, pathdata = self.parse_number(index, pathdata)
                      num2, index, pathdata = self.parse_number(index, pathdata)
                      num3, index, pathdata = self.parse_number(index, pathdata)
                      num4, index, pathdata = self.parse_number(index, pathdata)
  
              ######################
              elif command in ("C", "c"):
                  errstring = "Path command \"%s\" requires a c1x,c1y,c2x,c2y,x,y sextuplet at index %d" % (command, index)
                  num1, index, pathdata = self.parse_number(index, pathdata)
                  num2, index, pathdata = self.parse_number(index, pathdata)
                  num3, index, pathdata = self.parse_number(index, pathdata)
                  num4, index, pathdata = self.parse_number(index, pathdata)
                  num5, index, pathdata = self.parse_number(index, pathdata)
                  num6, index, pathdata = self.parse_number(index, pathdata)
  
                  if num1 is None:
                      raise ValueError(errstring)
  
                  while num1 is not None:
                      if num2 is None or num3 is None or num4 is None or num5 is None or num6 is None:
                          raise ValueError(errstring)
  
                      output.append((command, num1, num2, False, num3, num4, False, num5, num6, False))
  
                      num1, index, pathdata = self.parse_number(index, pathdata)
                      num2, index, pathdata = self.parse_number(index, pathdata)
                      num3, index, pathdata = self.parse_number(index, pathdata)
                      num4, index, pathdata = self.parse_number(index, pathdata)
                      num5, index, pathdata = self.parse_number(index, pathdata)
                      num6, index, pathdata = self.parse_number(index, pathdata)
  
              ######################
              elif command in ("A", "a"):
                  errstring = "Path command \"%s\" requires a rx,ry,angle,large-arc-flag,sweep-flag,x,y septuplet at index %d" % (command, index)
                  num1, index, pathdata = self.parse_number(index, pathdata)
                  num2, index, pathdata = self.parse_number(index, pathdata)
                  num3, index, pathdata = self.parse_number(index, pathdata)
                  num4, index, pathdata = self.parse_boolean(index, pathdata)
                  num5, index, pathdata = self.parse_boolean(index, pathdata)
                  num6, index, pathdata = self.parse_number(index, pathdata)
                  num7, index, pathdata = self.parse_number(index, pathdata)
  
                  if num1 is None:
                      raise ValueError(errstring)
  
                  while num1 is not None:
                      if num2 is None or num3 is None or num4 is None or num5 is None or num6 is None or num7 is None:
                          raise ValueError(errstring)
  
                      output.append((command, num1, num2, False, num3, num4, num5, num6, num7, False))
  
                      num1, index, pathdata = self.parse_number(index, pathdata)
                      num2, index, pathdata = self.parse_number(index, pathdata)
                      num3, index, pathdata = self.parse_number(index, pathdata)
                      num4, index, pathdata = self.parse_boolean(index, pathdata)
                      num5, index, pathdata = self.parse_boolean(index, pathdata)
                      num6, index, pathdata = self.parse_number(index, pathdata)
                      num7, index, pathdata = self.parse_number(index, pathdata)
  
          return output
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          if isinstance(trans, basestring):
              trans = totrans(trans)
  
          x, y, X, Y = None, None, None, None
          output = []
          for datum in self.d:
              if not isinstance(datum, (tuple, list)):
                  raise TypeError("pathdata elements must be tuples/lists")
  
              command = datum[0]
  
              ######################
              if command in ("Z", "z"):
                  x, y, X, Y = None, None, None, None
                  output.append("Z")
  
              ######################
              elif command in ("H", "h", "V", "v"):
                  command, num1 = datum
  
                  if command == "H" or (command == "h" and x is None):
                      x = num1
                  elif command == "h":
                      x += num1
                  elif command == "V" or (command == "v" and y is None):
                      y = num1
                  elif command == "v":
                      y += num1
  
                  if trans is None:
                      X, Y = x, y
                  else:
                      X, Y = trans(x, y)
  
                  output.append("L%g %g" % (X, Y))
  
              ######################
              elif command in ("M", "m", "L", "l", "T", "t"):
                  command, num1, num2, isglobal12 = datum
  
                  if trans is None or isglobal12:
                      if command.isupper() or X is None or Y is None:
                          X, Y = num1, num2
                      else:
                          X += num1
                          Y += num2
                      x, y = X, Y
  
                  else:
                      if command.isupper() or x is None or y is None:
                          x, y = num1, num2
                      else:
                          x += num1
                          y += num2
                      X, Y = trans(x, y)
  
                  COMMAND = command.capitalize()
                  output.append("%s%g %g" % (COMMAND, X, Y))
  
              ######################
              elif command in ("S", "s", "Q", "q"):
                  command, num1, num2, isglobal12, num3, num4, isglobal34 = datum
  
                  if trans is None or isglobal12:
                      if command.isupper() or X is None or Y is None:
                          CX, CY = num1, num2
                      else:
                          CX = X + num1
                          CY = Y + num2
  
                  else:
                      if command.isupper() or x is None or y is None:
                          cx, cy = num1, num2
                      else:
                          cx = x + num1
                          cy = y + num2
                      CX, CY = trans(cx, cy)
  
                  if trans is None or isglobal34:
                      if command.isupper() or X is None or Y is None:
                          X, Y = num3, num4
                      else:
                          X += num3
                          Y += num4
                      x, y = X, Y
  
                  else:
                      if command.isupper() or x is None or y is None:
                          x, y = num3, num4
                      else:
                          x += num3
                          y += num4
                      X, Y = trans(x, y)
  
                  COMMAND = command.capitalize()
                  output.append("%s%g %g %g %g" % (COMMAND, CX, CY, X, Y))
  
              ######################
              elif command in ("C", "c"):
                  command, num1, num2, isglobal12, num3, num4, isglobal34, num5, num6, isglobal56 = datum
  
                  if trans is None or isglobal12:
                      if command.isupper() or X is None or Y is None:
                          C1X, C1Y = num1, num2
                      else:
                          C1X = X + num1
                          C1Y = Y + num2
  
                  else:
                      if command.isupper() or x is None or y is None:
                          c1x, c1y = num1, num2
                      else:
                          c1x = x + num1
                          c1y = y + num2
                      C1X, C1Y = trans(c1x, c1y)
  
                  if trans is None or isglobal34:
                      if command.isupper() or X is None or Y is None:
                          C2X, C2Y = num3, num4
                      else:
                          C2X = X + num3
                          C2Y = Y + num4
  
                  else:
                      if command.isupper() or x is None or y is None:
                          c2x, c2y = num3, num4
                      else:
                          c2x = x + num3
                          c2y = y + num4
                      C2X, C2Y = trans(c2x, c2y)
  
                  if trans is None or isglobal56:
                      if command.isupper() or X is None or Y is None:
                          X, Y = num5, num6
                      else:
                          X += num5
                          Y += num6
                      x, y = X, Y
  
                  else:
                      if command.isupper() or x is None or y is None:
                          x, y = num5, num6
                      else:
                          x += num5
                          y += num6
                      X, Y = trans(x, y)
  
                  COMMAND = command.capitalize()
                  output.append("%s%g %g %g %g %g %g" % (COMMAND, C1X, C1Y, C2X, C2Y, X, Y))
  
              ######################
              elif command in ("A", "a"):
                  command, num1, num2, isglobal12, angle, large_arc_flag, sweep_flag, num3, num4, isglobal34 = datum
  
                  oldx, oldy = x, y
                  OLDX, OLDY = X, Y
  
                  if trans is None or isglobal34:
                      if command.isupper() or X is None or Y is None:
                          X, Y = num3, num4
                      else:
                          X += num3
                          Y += num4
                      x, y = X, Y
  
                  else:
                      if command.isupper() or x is None or y is None:
                          x, y = num3, num4
                      else:
                          x += num3
                          y += num4
                      X, Y = trans(x, y)
  
                  if x is not None and y is not None:
                      centerx, centery = (x + oldx)/2., (y + oldy)/2.
                  CENTERX, CENTERY = (X + OLDX)/2., (Y + OLDY)/2.
  
                  if trans is None or isglobal12:
                      RX = CENTERX + num1
                      RY = CENTERY + num2
  
                  else:
                      rx = centerx + num1
                      ry = centery + num2
                      RX, RY = trans(rx, ry)
  
                  COMMAND = command.capitalize()
                  output.append("%s%g %g %g %d %d %g %g" % (COMMAND, RX - CENTERX, RY - CENTERY, angle, large_arc_flag, sweep_flag, X, Y))
  
              elif command in (",", "."):
                  command, num1, num2, isglobal12, angle, num3, num4, isglobal34 = datum
                  if trans is None or isglobal34:
                      if command == "." or X is None or Y is None:
                          X, Y = num3, num4
                      else:
                          X += num3
                          Y += num4
                          x, y = None, None
  
                  else:
                      if command == "." or x is None or y is None:
                          x, y = num3, num4
                      else:
                          x += num3
                          y += num4
                      X, Y = trans(x, y)
  
                  if trans is None or isglobal12:
                      RX = X + num1
                      RY = Y + num2
  
                  else:
                      rx = x + num1
                      ry = y + num2
                      RX, RY = trans(rx, ry)
  
                  RX, RY = RX - X, RY - Y
  
                  X1, Y1 = X + RX * math.cos(angle*math.pi/180.), Y + RX * math.sin(angle*math.pi/180.)
                  X2, Y2 = X + RY * math.sin(angle*math.pi/180.), Y - RY * math.cos(angle*math.pi/180.)
                  X3, Y3 = X - RX * math.cos(angle*math.pi/180.), Y - RX * math.sin(angle*math.pi/180.)
                  X4, Y4 = X - RY * math.sin(angle*math.pi/180.), Y + RY * math.cos(angle*math.pi/180.)
  
                  output.append("M%g %gA%g %g %g 0 0 %g %gA%g %g %g 0 0 %g %gA%g %g %g 0 0 %g %gA%g %g %g 0 0 %g %g" % (
                                X1, Y1, RX, RY, angle, X2, Y2, RX, RY, angle, X3, Y3, RX, RY, angle, X4, Y4, RX, RY, angle, X1, Y1))
  
          return SVG("path", d="".join(output), **self.attr)
  
  ######################################################################
  
  def funcRtoC(expr, var="t", globals=None, locals=None):
      """Converts a complex "z(t)" string to a function acceptable for Curve.
  
      expr    required        string in the form "z(t)"
      var     default="t"     name of the independent variable
      globals default=None    dict of global variables used in the expression;
                              you may want to use Python's builtin globals()
      locals  default=None    dict of local variables
      """
      if locals is None:
          locals = {}  # python 2.3's eval() won't accept None
      g = cmath.__dict__
      if globals is not None:
          g.update(globals)
      output = eval("lambda %s: (%s)" % (var, expr), g, locals)
      split = lambda z: (z.real, z.imag)
      output2 = lambda t: split(output(t))
      set_func_name(output2, "%s -> %s" % (var, expr))
      return output2
  
  
  def funcRtoR2(expr, var="t", globals=None, locals=None):
      """Converts a "f(t), g(t)" string to a function acceptable for Curve.
  
      expr    required        string in the form "f(t), g(t)"
      var     default="t"     name of the independent variable
      globals default=None    dict of global variables used in the expression;
                              you may want to use Python's builtin globals()
      locals  default=None    dict of local variables
      """
      if locals is None:
          locals = {}  # python 2.3's eval() won't accept None
      g = math.__dict__
      if globals is not None:
          g.update(globals)
      output = eval("lambda %s: (%s)" % (var, expr), g, locals)
      set_func_name(output, "%s -> %s" % (var, expr))
      return output
  
  
  def funcRtoR(expr, var="x", globals=None, locals=None):
      """Converts a "f(x)" string to a function acceptable for Curve.
  
      expr    required        string in the form "f(x)"
      var     default="x"     name of the independent variable
      globals default=None    dict of global variables used in the expression;
                              you may want to use Python's builtin globals()
      locals  default=None    dict of local variables
      """
      if locals is None:
          locals = {}  # python 2.3's eval() won't accept None
      g = math.__dict__
      if globals is not None:
          g.update(globals)
      output = eval("lambda %s: (%s, %s)" % (var, var, expr), g, locals)
      set_func_name(output, "%s -> %s" % (var, expr))
      return output
  
  
  class Curve:
      """Draws a parametric function as a path.
  
      Curve(f, low, high, loop, attribute=value)
  
      f                      required         a Python callable or string in
                                              the form "f(t), g(t)"
      low, high              required         left and right endpoints
      loop                   default=False    if True, connect the endpoints
      attribute=value pairs  keyword list     SVG attributes
      """
      defaults = {}
      random_sampling = True
      recursion_limit = 15
      linearity_limit = 0.05
      discontinuity_limit = 5.
  
      def __repr__(self):
          return "<Curve %s [%s, %s] %s>" % (self.f, self.low, self.high, self.attr)
  
      def __init__(self, f, low, high, loop=False, **attr):
          self.f = f
          self.low = low
          self.high = high
          self.loop = loop
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      ### nested class Sample
      class Sample:
          def __repr__(self):
              t, x, y, X, Y = self.t, self.x, self.y, self.X, self.Y
              if t is not None:
                  t = "%g" % t
              if x is not None:
                  x = "%g" % x
              if y is not None:
                  y = "%g" % y
              if X is not None:
                  X = "%g" % X
              if Y is not None:
                  Y = "%g" % Y
              return "<Curve.Sample t=%s x=%s y=%s X=%s Y=%s>" % (t, x, y, X, Y)
  
          def __init__(self, t):
              self.t = t
  
          def link(self, left, right):
              self.left, self.right = left, right
  
          def evaluate(self, f, trans):
              self.x, self.y = f(self.t)
              if trans is None:
                  self.X, self.Y = self.x, self.y
              else:
                  self.X, self.Y = trans(self.x, self.y)
      ### end Sample
  
      ### nested class Samples
      class Samples:
          def __repr__(self):
              return "<Curve.Samples (%d samples)>" % len(self)
  
          def __init__(self, left, right):
              self.left, self.right = left, right
  
          def __len__(self):
              count = 0
              current = self.left
              while current is not None:
                  count += 1
                  current = current.right
              return count
  
          def __iter__(self):
              self.current = self.left
              return self
  
          def next(self):
              current = self.current
              if current is None:
                  raise StopIteration
              self.current = self.current.right
              return current
      ### end nested class
  
      def sample(self, trans=None):
          """Adaptive-sampling algorithm that chooses the best sample points
          for a parametric curve between two endpoints and detects
          discontinuities.  Called by SVG()."""
          oldrecursionlimit = sys.getrecursionlimit()
          sys.setrecursionlimit(self.recursion_limit + 100)
          try:
              # the best way to keep all the information while sampling is to make a linked list
              if not (self.low < self.high):
                  raise ValueError("low must be less than high")
              low, high = self.Sample(float(self.low)), self.Sample(float(self.high))
              low.link(None, high)
              high.link(low, None)
  
              low.evaluate(self.f, trans)
              high.evaluate(self.f, trans)
  
              # adaptive sampling between the low and high points
              self.subsample(low, high, 0, trans)
  
              # Prune excess points where the curve is nearly linear
              left = low
              while left.right is not None:
                  # increment mid and right
                  mid = left.right
                  right = mid.right
                  if (right is not None and
                      left.X is not None and left.Y is not None and
                      mid.X is not None and mid.Y is not None and
                      right.X is not None and right.Y is not None):
                      numer = left.X*(right.Y - mid.Y) + mid.X*(left.Y - right.Y) + right.X*(mid.Y - left.Y)
                      denom = math.sqrt((left.X - right.X)**2 + (left.Y - right.Y)**2)
                      if denom != 0. and abs(numer/denom) < self.linearity_limit:
                          # drop mid (the garbage collector will get it)
                          left.right = right
                          right.left = left
                      else:
                          # increment left
                          left = left.right
                  else:
                      left = left.right
  
              self.last_samples = self.Samples(low, high)
  
          finally:
              sys.setrecursionlimit(oldrecursionlimit)
  
      def subsample(self, left, right, depth, trans=None):
          """Part of the adaptive-sampling algorithm that chooses the best
          sample points.  Called by sample()."""
  
          if self.random_sampling:
              mid = self.Sample(left.t + random.uniform(0.3, 0.7) * (right.t - left.t))
          else:
              mid = self.Sample(left.t + 0.5 * (right.t - left.t))
  
          left.right = mid
          right.left = mid
          mid.link(left, right)
          mid.evaluate(self.f, trans)
  
          # calculate the distance of closest approach of mid to the line between left and right
          numer = left.X*(right.Y - mid.Y) + mid.X*(left.Y - right.Y) + right.X*(mid.Y - left.Y)
          denom = math.sqrt((left.X - right.X)**2 + (left.Y - right.Y)**2)
  
          # if we haven't sampled enough or left fails to be close enough to right, or mid fails to be linear enough...
          if (depth < 3 or
              (denom == 0 and left.t != right.t) or
              denom > self.discontinuity_limit or
              (denom != 0. and abs(numer/denom) > self.linearity_limit)):
  
              # and we haven't sampled too many points
              if depth < self.recursion_limit:
                  self.subsample(left, mid, depth+1, trans)
                  self.subsample(mid, right, depth+1, trans)
  
              else:
                  # We've sampled many points and yet it's still not a small linear gap.
                  # Break the line: it's a discontinuity
                  mid.y = mid.Y = None
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          return self.Path(trans).SVG()
  
      def Path(self, trans=None, local=False):
          """Apply the transformation "trans" and return a Path object in
          global coordinates.  If local=True, return a Path in local coordinates
          (which must be transformed again)."""
  
          if isinstance(trans, basestring):
              trans = totrans(trans)
          if isinstance(self.f, basestring):
              self.f = funcRtoR2(self.f)
  
          self.sample(trans)
  
          output = []
          for s in self.last_samples:
              if s.X is not None and s.Y is not None:
                  if s.left is None or s.left.Y is None:
                      command = "M"
                  else:
                      command = "L"
  
                  if local:
                      output.append((command, s.x, s.y, False))
                  else:
                      output.append((command, s.X, s.Y, True))
  
          if self.loop:
              output.append(("Z",))
          return Path(output, **self.attr)
  
  ######################################################################
  
  class Poly:
      """Draws a curve specified by a sequence of points. The curve may be
      piecewise linear, like a polygon, or a Bezier curve.
  
      Poly(d, mode, loop, attribute=value)
  
      d                       required        list of tuples representing points
                                              and possibly control points
      mode                    default="L"     "lines", "bezier", "velocity",
                                              "foreback", "smooth", or an abbreviation
      loop                    default=False   if True, connect the first and last
                                              point, closing the loop
      attribute=value pairs   keyword list    SVG attributes
  
      The format of the tuples in d depends on the mode.
  
      "lines"/"L"         d=[(x,y), (x,y), ...]
                                              piecewise-linear segments joining the (x,y) points
      "bezier"/"B"        d=[(x, y, c1x, c1y, c2x, c2y), ...]
                                              Bezier curve with two control points (control points
                                              precede (x,y), as in SVG paths). If (c1x,c1y) and
                                              (c2x,c2y) both equal (x,y), you get a linear
                                              interpolation ("lines")
      "velocity"/"V"      d=[(x, y, vx, vy), ...]
                                              curve that passes through (x,y) with velocity (vx,vy)
                                              (one unit of arclength per unit time); in other words,
                                              (vx,vy) is the tangent vector at (x,y). If (vx,vy) is
                                              (0,0), you get a linear interpolation ("lines").
      "foreback"/"F"      d=[(x, y, bx, by, fx, fy), ...]
                                              like "velocity" except that there is a left derivative
                                              (bx,by) and a right derivative (fx,fy). If (bx,by)
                                              equals (fx,fy) (with no minus sign), you get a
                                              "velocity" curve
      "smooth"/"S"        d=[(x,y), (x,y), ...]
                                              a "velocity" interpolation with (vx,vy)[i] equal to
                                              ((x,y)[i+1] - (x,y)[i-1])/2: the minimal derivative
      """
      defaults = {}
  
      def __repr__(self):
          return "<Poly (%d nodes) mode=%s loop=%s %s>" % (
                 len(self.d), self.mode, repr(self.loop), self.attr)
  
      def __init__(self, d=[], mode="L", loop=False, **attr):
          self.d = list(d)
          self.mode = mode
          self.loop = loop
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          return self.Path(trans).SVG()
  
      def Path(self, trans=None, local=False):
          """Apply the transformation "trans" and return a Path object in
          global coordinates.  If local=True, return a Path in local coordinates
          (which must be transformed again)."""
          if isinstance(trans, basestring):
              trans = totrans(trans)
  
          if self.mode[0] == "L" or self.mode[0] == "l":
              mode = "L"
          elif self.mode[0] == "B" or self.mode[0] == "b":
              mode = "B"
          elif self.mode[0] == "V" or self.mode[0] == "v":
              mode = "V"
          elif self.mode[0] == "F" or self.mode[0] == "f":
              mode = "F"
          elif self.mode[0] == "S" or self.mode[0] == "s":
              mode = "S"
  
              vx, vy = [0.]*len(self.d), [0.]*len(self.d)
              for i in xrange(len(self.d)):
                  inext = (i+1) % len(self.d)
                  iprev = (i-1) % len(self.d)
  
                  vx[i] = (self.d[inext][0] - self.d[iprev][0])/2.
                  vy[i] = (self.d[inext][1] - self.d[iprev][1])/2.
                  if not self.loop and (i == 0 or i == len(self.d)-1):
                      vx[i], vy[i] = 0., 0.
  
          else:
              raise ValueError("mode must be \"lines\", \"bezier\", \"velocity\", \"foreback\", \"smooth\", or an abbreviation")
  
          d = []
          indexes = list(range(len(self.d)))
          if self.loop and len(self.d) > 0:
              indexes.append(0)
  
          for i in indexes:
              inext = (i+1) % len(self.d)
              iprev = (i-1) % len(self.d)
  
              x, y = self.d[i][0], self.d[i][1]
  
              if trans is None:
                  X, Y = x, y
              else:
                  X, Y = trans(x, y)
  
              if d == []:
                  if local:
                      d.append(("M", x, y, False))
                  else:
                      d.append(("M", X, Y, True))
  
              elif mode == "L":
                  if local:
                      d.append(("L", x, y, False))
                  else:
                      d.append(("L", X, Y, True))
  
              elif mode == "B":
                  c1x, c1y = self.d[i][2], self.d[i][3]
                  if trans is None:
                      C1X, C1Y = c1x, c1y
                  else:
                      C1X, C1Y = trans(c1x, c1y)
  
                  c2x, c2y = self.d[i][4], self.d[i][5]
                  if trans is None:
                      C2X, C2Y = c2x, c2y
                  else:
                      C2X, C2Y = trans(c2x, c2y)
  
                  if local:
                      d.append(("C", c1x, c1y, False, c2x, c2y, False, x, y, False))
                  else:
                      d.append(("C", C1X, C1Y, True, C2X, C2Y, True, X, Y, True))
  
              elif mode == "V":
                  c1x, c1y = self.d[iprev][2]/3. + self.d[iprev][0], self.d[iprev][3]/3. + self.d[iprev][1]
                  c2x, c2y = self.d[i][2]/-3. + x, self.d[i][3]/-3. + y
  
                  if trans is None:
                      C1X, C1Y = c1x, c1y
                  else:
                      C1X, C1Y = trans(c1x, c1y)
                  if trans is None:
                      C2X, C2Y = c2x, c2y
                  else:
                      C2X, C2Y = trans(c2x, c2y)
  
                  if local:
                      d.append(("C", c1x, c1y, False, c2x, c2y, False, x, y, False))
                  else:
                      d.append(("C", C1X, C1Y, True, C2X, C2Y, True, X, Y, True))
  
              elif mode == "F":
                  c1x, c1y = self.d[iprev][4]/3. + self.d[iprev][0], self.d[iprev][5]/3. + self.d[iprev][1]
                  c2x, c2y = self.d[i][2]/-3. + x, self.d[i][3]/-3. + y
  
                  if trans is None:
                      C1X, C1Y = c1x, c1y
                  else:
                      C1X, C1Y = trans(c1x, c1y)
                  if trans is None:
                      C2X, C2Y = c2x, c2y
                  else:
                      C2X, C2Y = trans(c2x, c2y)
  
                  if local:
                      d.append(("C", c1x, c1y, False, c2x, c2y, False, x, y, False))
                  else:
                      d.append(("C", C1X, C1Y, True, C2X, C2Y, True, X, Y, True))
  
              elif mode == "S":
                  c1x, c1y = vx[iprev]/3. + self.d[iprev][0], vy[iprev]/3. + self.d[iprev][1]
                  c2x, c2y = vx[i]/-3. + x, vy[i]/-3. + y
  
                  if trans is None:
                      C1X, C1Y = c1x, c1y
                  else:
                      C1X, C1Y = trans(c1x, c1y)
                  if trans is None:
                      C2X, C2Y = c2x, c2y
                  else:
                      C2X, C2Y = trans(c2x, c2y)
  
                  if local:
                      d.append(("C", c1x, c1y, False, c2x, c2y, False, x, y, False))
                  else:
                      d.append(("C", C1X, C1Y, True, C2X, C2Y, True, X, Y, True))
  
          if self.loop and len(self.d) > 0:
              d.append(("Z",))
  
          return Path(d, **self.attr)
  
  ######################################################################
  
  class Text:
      """Draws a text string at a specified point in local coordinates.
  
      x, y                   required      location of the point in local coordinates
      d                      required      text/Unicode string
      attribute=value pairs  keyword list  SVG attributes
      """
  
      defaults = {"stroke": "none", "fill": "black", "font-size": 5, }
  
      def __repr__(self):
          return "<Text %s at (%g, %g) %s>" % (repr(self.d), self.x, self.y, self.attr)
  
      def __init__(self, x, y, d, **attr):
          self.x = x
          self.y = y
          self.d = unicode(d)
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          if isinstance(trans, basestring):
              trans = totrans(trans)
  
          X, Y = self.x, self.y
          if trans is not None:
              X, Y = trans(X, Y)
          return SVG("text", self.d, x=X, y=Y, **self.attr)
  
  
  class TextGlobal:
      """Draws a text string at a specified point in global coordinates.
  
      x, y                   required      location of the point in global coordinates
      d                      required      text/Unicode string
      attribute=value pairs  keyword list  SVG attributes
      """
      defaults = {"stroke": "none", "fill": "black", "font-size": 5, }
  
      def __repr__(self):
          return "<TextGlobal %s at (%s, %s) %s>" % (repr(self.d), str(self.x), str(self.y), self.attr)
  
      def __init__(self, x, y, d, **attr):
          self.x = x
          self.y = y
          self.d = unicode(d)
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          return SVG("text", self.d, x=self.x, y=self.y, **self.attr)
  
  ######################################################################
  
  _symbol_templates = {"dot": SVG("symbol", SVG("circle", cx=0, cy=0, r=1, stroke="none", fill="black"), viewBox="0 0 1 1", overflow="visible"),
                      "box": SVG("symbol", SVG("rect", x1=-1, y1=-1, x2=1, y2=1, stroke="none", fill="black"), viewBox="0 0 1 1", overflow="visible"),
                      "uptri": SVG("symbol", SVG("path", d="M -1 0.866 L 1 0.866 L 0 -0.866 Z", stroke="none", fill="black"), viewBox="0 0 1 1", overflow="visible"),
                      "downtri": SVG("symbol", SVG("path", d="M -1 -0.866 L 1 -0.866 L 0 0.866 Z", stroke="none", fill="black"), viewBox="0 0 1 1", overflow="visible"),
                      }
  
  def make_symbol(id, shape="dot", **attr):
      """Creates a new instance of an SVG symbol to avoid cross-linking objects.
  
      id                    required         a new identifier (string/Unicode)
      shape                 default="dot"  the shape name from _symbol_templates
      attribute=value list  keyword list     modify the SVG attributes of the new symbol
      """
      output = copy.deepcopy(_symbol_templates[shape])
      for i in output.sub:
          i.attr.update(attr_preprocess(attr))
      output["id"] = id
      return output
  
  _circular_dot = make_symbol("circular_dot")
  
  
  class Dots:
      """Dots draws SVG symbols at a set of points.
  
      d                      required               list of (x,y) points
      symbol                 default=None           SVG symbol or a new identifier to
                                                    label an auto-generated symbol;
                                                    if None, use pre-defined _circular_dot
      width, height          default=1, 1           width and height of the symbols
                                                    in SVG coordinates
      attribute=value pairs  keyword list           SVG attributes
      """
      defaults = {}
  
      def __repr__(self):
          return "<Dots (%d nodes) %s>" % (len(self.d), self.attr)
  
      def __init__(self, d=[], symbol=None, width=1., height=1., **attr):
          self.d = list(d)
          self.width = width
          self.height = height
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
          if symbol is None:
              self.symbol = _circular_dot
          elif isinstance(symbol, SVG):
              self.symbol = symbol
          else:
              self.symbol = make_symbol(symbol)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          if isinstance(trans, basestring):
              trans = totrans(trans)
  
          output = SVG("g", SVG("defs", self.symbol))
          id = "#%s" % self.symbol["id"]
  
          for p in self.d:
              x, y = p[0], p[1]
  
              if trans is None:
                  X, Y = x, y
              else:
                  X, Y = trans(x, y)
  
              item = SVG("use", x=X, y=Y, xlink__href=id)
              if self.width is not None:
                  item["width"] = self.width
              if self.height is not None:
                  item["height"] = self.height
              output.append(item)
  
          return output
  
  ######################################################################
  
  _marker_templates = {"arrow_start": SVG("marker", SVG("path", d="M 9 3.6 L 10.5 0 L 0 3.6 L 10.5 7.2 L 9 3.6 Z"), viewBox="0 0 10.5 7.2", refX="9", refY="3.6", markerWidth="10.5", markerHeight="7.2", markerUnits="strokeWidth", orient="auto", stroke="none", fill="black"),
                      "arrow_end": SVG("marker", SVG("path", d="M 1.5 3.6 L 0 0 L 10.5 3.6 L 0 7.2 L 1.5 3.6 Z"), viewBox="0 0 10.5 7.2", refX="1.5", refY="3.6", markerWidth="10.5", markerHeight="7.2", markerUnits="strokeWidth", orient="auto", stroke="none", fill="black"),
                      }
  
  def make_marker(id, shape, **attr):
      """Creates a new instance of an SVG marker to avoid cross-linking objects.
  
      id                     required         a new identifier (string/Unicode)
      shape                  required         the shape name from _marker_templates
      attribute=value list   keyword list     modify the SVG attributes of the new marker
      """
      output = copy.deepcopy(_marker_templates[shape])
      for i in output.sub:
          i.attr.update(attr_preprocess(attr))
      output["id"] = id
      return output
  
  
  class Line(Curve):
      """Draws a line between two points.
  
      Line(x1, y1, x2, y2, arrow_start, arrow_end, attribute=value)
  
      x1, y1                  required        the starting point
      x2, y2                  required        the ending point
      arrow_start             default=None    if an identifier string/Unicode,
                                              draw a new arrow object at the
                                              beginning of the line; if a marker,
                                              draw that marker instead
      arrow_end               default=None    same for the end of the line
      attribute=value pairs   keyword list    SVG attributes
      """
      defaults = {}
  
      def __repr__(self):
          return "<Line (%g, %g) to (%g, %g) %s>" % (
                 self.x1, self.y1, self.x2, self.y2, self.attr)
  
      def __init__(self, x1, y1, x2, y2, arrow_start=None, arrow_end=None, **attr):
          self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2
          self.arrow_start, self.arrow_end = arrow_start, arrow_end
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
  
          line = self.Path(trans).SVG()
  
          if ((self.arrow_start != False and self.arrow_start is not None) or
              (self.arrow_end != False and self.arrow_end is not None)):
              defs = SVG("defs")
  
              if self.arrow_start != False and self.arrow_start is not None:
                  if isinstance(self.arrow_start, SVG):
                      defs.append(self.arrow_start)
                      line.attr["marker-start"] = "url(#%s)" % self.arrow_start["id"]
                  elif isinstance(self.arrow_start, basestring):
                      defs.append(make_marker(self.arrow_start, "arrow_start"))
                      line.attr["marker-start"] = "url(#%s)" % self.arrow_start
                  else:
                      raise TypeError("arrow_start must be False/None or an id string for the new marker")
  
              if self.arrow_end != False and self.arrow_end is not None:
                  if isinstance(self.arrow_end, SVG):
                      defs.append(self.arrow_end)
                      line.attr["marker-end"] = "url(#%s)" % self.arrow_end["id"]
                  elif isinstance(self.arrow_end, basestring):
                      defs.append(make_marker(self.arrow_end, "arrow_end"))
                      line.attr["marker-end"] = "url(#%s)" % self.arrow_end
                  else:
                      raise TypeError("arrow_end must be False/None or an id string for the new marker")
  
              return SVG("g", defs, line)
  
          return line
  
      def Path(self, trans=None, local=False):
          """Apply the transformation "trans" and return a Path object in
          global coordinates.  If local=True, return a Path in local coordinates
          (which must be transformed again)."""
          self.f = lambda t: (self.x1 + t*(self.x2 - self.x1), self.y1 + t*(self.y2 - self.y1))
          self.low = 0.
          self.high = 1.
          self.loop = False
  
          if trans is None:
              return Path([("M", self.x1, self.y1, not local), ("L", self.x2, self.y2, not local)], **self.attr)
          else:
              return Curve.Path(self, trans, local)
  
  
  class LineGlobal:
      """Draws a line between two points, one or both of which is in
      global coordinates.
  
      Line(x1, y1, x2, y2, lcoal1, local2, arrow_start, arrow_end, attribute=value)
  
      x1, y1                  required        the starting point
      x2, y2                  required        the ending point
      local1                  default=False   if True, interpret first point as a
                                              local coordinate (apply transform)
      local2                  default=False   if True, interpret second point as a
                                              local coordinate (apply transform)
      arrow_start             default=None    if an identifier string/Unicode,
                                              draw a new arrow object at the
                                              beginning of the line; if a marker,
                                              draw that marker instead
      arrow_end               default=None    same for the end of the line
      attribute=value pairs   keyword list    SVG attributes
      """
      defaults = {}
  
      def __repr__(self):
          local1, local2 = "", ""
          if self.local1:
              local1 = "L"
          if self.local2:
              local2 = "L"
  
          return "<LineGlobal %s(%s, %s) to %s(%s, %s) %s>" % (
                 local1, str(self.x1), str(self.y1), local2, str(self.x2), str(self.y2), self.attr)
  
      def __init__(self, x1, y1, x2, y2, local1=False, local2=False, arrow_start=None, arrow_end=None, **attr):
          self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2
          self.local1, self.local2 = local1, local2
          self.arrow_start, self.arrow_end = arrow_start, arrow_end
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          if isinstance(trans, basestring):
              trans = totrans(trans)
  
          X1, Y1, X2, Y2 = self.x1, self.y1, self.x2, self.y2
  
          if self.local1:
              X1, Y1 = trans(X1, Y1)
          if self.local2:
              X2, Y2 = trans(X2, Y2)
  
          line = SVG("path", d="M%s %s L%s %s" % (X1, Y1, X2, Y2), **self.attr)
  
          if ((self.arrow_start != False and self.arrow_start is not None) or
              (self.arrow_end != False and self.arrow_end is not None)):
              defs = SVG("defs")
  
              if self.arrow_start != False and self.arrow_start is not None:
                  if isinstance(self.arrow_start, SVG):
                      defs.append(self.arrow_start)
                      line.attr["marker-start"] = "url(#%s)" % self.arrow_start["id"]
                  elif isinstance(self.arrow_start, basestring):
                      defs.append(make_marker(self.arrow_start, "arrow_start"))
                      line.attr["marker-start"] = "url(#%s)" % self.arrow_start
                  else:
                      raise TypeError("arrow_start must be False/None or an id string for the new marker")
  
              if self.arrow_end != False and self.arrow_end is not None:
                  if isinstance(self.arrow_end, SVG):
                      defs.append(self.arrow_end)
                      line.attr["marker-end"] = "url(#%s)" % self.arrow_end["id"]
                  elif isinstance(self.arrow_end, basestring):
                      defs.append(make_marker(self.arrow_end, "arrow_end"))
                      line.attr["marker-end"] = "url(#%s)" % self.arrow_end
                  else:
                      raise TypeError("arrow_end must be False/None or an id string for the new marker")
  
              return SVG("g", defs, line)
  
          return line
  
  
  class VLine(Line):
      """Draws a vertical line.
  
      VLine(y1, y2, x, attribute=value)
  
      y1, y2                  required        y range
      x                       required        x position
      attribute=value pairs   keyword list    SVG attributes
      """
      defaults = {}
  
      def __repr__(self):
          return "<VLine (%g, %g) at x=%s %s>" % (self.y1, self.y2, self.x, self.attr)
  
      def __init__(self, y1, y2, x, **attr):
          self.x = x
          self.attr = dict(self.defaults)
          self.attr.update(attr)
          Line.__init__(self, x, y1, x, y2, **self.attr)
  
      def Path(self, trans=None, local=False):
          """Apply the transformation "trans" and return a Path object in
          global coordinates.  If local=True, return a Path in local coordinates
          (which must be transformed again)."""
          self.x1 = self.x
          self.x2 = self.x
          return Line.Path(self, trans, local)
  
  
  class HLine(Line):
      """Draws a horizontal line.
  
      HLine(x1, x2, y, attribute=value)
  
      x1, x2                  required        x range
      y                       required        y position
      attribute=value pairs   keyword list    SVG attributes
      """
      defaults = {}
  
      def __repr__(self):
          return "<HLine (%g, %g) at y=%s %s>" % (self.x1, self.x2, self.y, self.attr)
  
      def __init__(self, x1, x2, y, **attr):
          self.y = y
          self.attr = dict(self.defaults)
          self.attr.update(attr)
          Line.__init__(self, x1, y, x2, y, **self.attr)
  
      def Path(self, trans=None, local=False):
          """Apply the transformation "trans" and return a Path object in
          global coordinates.  If local=True, return a Path in local coordinates
          (which must be transformed again)."""
          self.y1 = self.y
          self.y2 = self.y
          return Line.Path(self, trans, local)
  
  ######################################################################
  
  class Rect(Curve):
      """Draws a rectangle.
  
      Rect(x1, y1, x2, y2, attribute=value)
  
      x1, y1                  required        the starting point
      x2, y2                  required        the ending point
      attribute=value pairs   keyword list    SVG attributes
      """
      defaults = {}
  
      def __repr__(self):
          return "<Rect (%g, %g), (%g, %g) %s>" % (
                 self.x1, self.y1, self.x2, self.y2, self.attr)
  
      def __init__(self, x1, y1, x2, y2, **attr):
          self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          return self.Path(trans).SVG()
  
      def Path(self, trans=None, local=False):
          """Apply the transformation "trans" and return a Path object in
          global coordinates.  If local=True, return a Path in local coordinates
          (which must be transformed again)."""
          if trans is None:
              return Path([("M", self.x1, self.y1, not local), ("L", self.x2, self.y1, not local), ("L", self.x2, self.y2, not local), ("L", self.x1, self.y2, not local), ("Z",)], **self.attr)
  
          else:
              self.low = 0.
              self.high = 1.
              self.loop = False
  
              self.f = lambda t: (self.x1 + t*(self.x2 - self.x1), self.y1)
              d1 = Curve.Path(self, trans, local).d
  
              self.f = lambda t: (self.x2, self.y1 + t*(self.y2 - self.y1))
              d2 = Curve.Path(self, trans, local).d
              del d2[0]
  
              self.f = lambda t: (self.x2 + t*(self.x1 - self.x2), self.y2)
              d3 = Curve.Path(self, trans, local).d
              del d3[0]
  
              self.f = lambda t: (self.x1, self.y2 + t*(self.y1 - self.y2))
              d4 = Curve.Path(self, trans, local).d
              del d4[0]
  
              return Path(d=(d1 + d2 + d3 + d4 + [("Z",)]), **self.attr)
  
  ######################################################################
  
  class Ellipse(Curve):
      """Draws an ellipse from a semimajor vector (ax,ay) and a semiminor
      length (b).
  
      Ellipse(x, y, ax, ay, b, attribute=value)
  
      x, y                    required        the center of the ellipse/circle
      ax, ay                  required        a vector indicating the length
                                              and direction of the semimajor axis
      b                       required        the length of the semiminor axis.
                                              If equal to sqrt(ax2 + ay2), the
                                              ellipse is a circle
      attribute=value pairs   keyword list    SVG attributes
  
      (If sqrt(ax**2 + ay**2) is less than b, then (ax,ay) is actually the
      semiminor axis.)
      """
      defaults = {}
  
      def __repr__(self):
          return "<Ellipse (%g, %g) a=(%g, %g), b=%g %s>" % (
                 self.x, self.y, self.ax, self.ay, self.b, self.attr)
  
      def __init__(self, x, y, ax, ay, b, **attr):
          self.x, self.y, self.ax, self.ay, self.b = x, y, ax, ay, b
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          return self.Path(trans).SVG()
  
      def Path(self, trans=None, local=False):
          """Apply the transformation "trans" and return a Path object in
          global coordinates.  If local=True, return a Path in local coordinates
          (which must be transformed again)."""
          angle = math.atan2(self.ay, self.ax) + math.pi/2.
          bx = self.b * math.cos(angle)
          by = self.b * math.sin(angle)
  
          self.f = lambda t: (self.x + self.ax*math.cos(t) + bx*math.sin(t), self.y + self.ay*math.cos(t) + by*math.sin(t))
          self.low = -math.pi
          self.high = math.pi
          self.loop = True
          return Curve.Path(self, trans, local)
  
  ######################################################################
  
  def unumber(x):
      """Converts numbers to a Unicode string, taking advantage of special
      Unicode characters to make nice minus signs and scientific notation.
      """
      output = u"%g" % x
  
      if output[0] == u"-":
          output = u"\u2013" + output[1:]
  
      index = output.find(u"e")
      if index != -1:
          uniout = unicode(output[:index]) + u"\u00d710"
          saw_nonzero = False
          for n in output[index+1:]:
              if n == u"+":
                  pass # uniout += u"\u207a"
              elif n == u"-":
                  uniout += u"\u207b"
              elif n == u"0":
                  if saw_nonzero:
                      uniout += u"\u2070"
              elif n == u"1":
                  saw_nonzero = True
                  uniout += u"\u00b9"
              elif n == u"2":
                  saw_nonzero = True
                  uniout += u"\u00b2"
              elif n == u"3":
                  saw_nonzero = True
                  uniout += u"\u00b3"
              elif u"4" <= n <= u"9":
                  saw_nonzero = True
                  if saw_nonzero:
                      uniout += eval("u\"\\u%x\"" % (0x2070 + ord(n) - ord(u"0")))
              else:
                  uniout += n
  
          if uniout[:2] == u"1\u00d7":
              uniout = uniout[2:]
          return uniout
  
      return output
  
  
  class Ticks:
      """Superclass for all graphics primitives that draw ticks,
      miniticks, and tick labels.  This class only draws the ticks.
  
      Ticks(f, low, high, ticks, miniticks, labels, logbase, arrow_start,
            arrow_end, text_attr, attribute=value)
  
      f                       required        parametric function along which ticks
                                              will be drawn; has the same format as
                                              the function used in Curve
      low, high               required        range of the independent variable
      ticks                   default=-10     request ticks according to the standard
                                              tick specification (see below)
      miniticks               default=True    request miniticks according to the
                                              standard minitick specification (below)
      labels                  True            request tick labels according to the
                                              standard tick label specification (below)
      logbase                 default=None    if a number, the axis is logarithmic with
                                              ticks at the given base (usually 10)
      arrow_start             default=None    if a new string identifier, draw an arrow
                                              at the low-end of the axis, referenced by
                                              that identifier; if an SVG marker object,
                                              use that marker
      arrow_end               default=None    if a new string identifier, draw an arrow
                                              at the high-end of the axis, referenced by
                                              that identifier; if an SVG marker object,
                                              use that marker
      text_attr               default={}      SVG attributes for the text labels
      attribute=value pairs   keyword list    SVG attributes for the tick marks
  
      Standard tick specification:
  
          * True: same as -10 (below).
          * Positive number N: draw exactly N ticks, including the endpoints. To
            subdivide an axis into 10 equal-sized segments, ask for 11 ticks.
          * Negative number -N: draw at least N ticks. Ticks will be chosen with
            "natural" values, multiples of 2 or 5.
          * List of values: draw a tick mark at each value.
          * Dict of value, label pairs: draw a tick mark at each value, labeling
            it with the given string. This lets you say things like {3.14159: "pi"}.
          * False or None: no ticks.
  
      Standard minitick specification:
  
          * True: draw miniticks with "natural" values, more closely spaced than
            the ticks.
          * Positive number N: draw exactly N miniticks, including the endpoints.
            To subdivide an axis into 100 equal-sized segments, ask for 101 miniticks.
          * Negative number -N: draw at least N miniticks.
          * List of values: draw a minitick mark at each value.
          * False or None: no miniticks.
  
      Standard tick label specification:
  
          * True: use the unumber function (described below)
          * Format string: standard format strings, e.g. "%5.2f" for 12.34
          * Python callable: function that converts numbers to strings
          * False or None: no labels
      """
      defaults = {"stroke-width": "0.25pt", }
      text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, }
      tick_start = -1.5
      tick_end = 1.5
      minitick_start = -0.75
      minitick_end = 0.75
      text_start = 2.5
      text_angle = 0.
  
      def __repr__(self):
          return "<Ticks %s from %s to %s ticks=%s labels=%s %s>" % (
                 self.f, self.low, self.high, str(self.ticks), str(self.labels), self.attr)
  
      def __init__(self, f, low, high, ticks=-10, miniticks=True, labels=True, logbase=None,
                   arrow_start=None, arrow_end=None, text_attr={}, **attr):
          self.f = f
          self.low = low
          self.high = high
          self.ticks = ticks
          self.miniticks = miniticks
          self.labels = labels
          self.logbase = logbase
          self.arrow_start = arrow_start
          self.arrow_end = arrow_end
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
          self.text_attr = dict(self.text_defaults)
          self.text_attr.update(text_attr)
  
      def orient_tickmark(self, t, trans=None):
          """Return the position, normalized local x vector, normalized
          local y vector, and angle of a tick at position t.
  
          Normally only used internally.
          """
          if isinstance(trans, basestring):
              trans = totrans(trans)
          if trans is None:
              f = self.f
          else:
              f = lambda t: trans(*self.f(t))
  
          eps = _epsilon * abs(self.high - self.low)
  
          X, Y = f(t)
          Xprime, Yprime = f(t + eps)
          xhatx, xhaty = (Xprime - X)/eps, (Yprime - Y)/eps
  
          norm = math.sqrt(xhatx**2 + xhaty**2)
          if norm != 0:
              xhatx, xhaty = xhatx/norm, xhaty/norm
          else:
              xhatx, xhaty = 1., 0.
  
          angle = math.atan2(xhaty, xhatx) + math.pi/2.
          yhatx, yhaty = math.cos(angle), math.sin(angle)
  
          return (X, Y), (xhatx, xhaty), (yhatx, yhaty), angle
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          if isinstance(trans, basestring):
              trans = totrans(trans)
  
          self.last_ticks, self.last_miniticks = self.interpret()
          tickmarks = Path([], **self.attr)
          minitickmarks = Path([], **self.attr)
          output = SVG("g")
  
          if ((self.arrow_start != False and self.arrow_start is not None) or
              (self.arrow_end != False and self.arrow_end is not None)):
              defs = SVG("defs")
  
              if self.arrow_start != False and self.arrow_start is not None:
                  if isinstance(self.arrow_start, SVG):
                      defs.append(self.arrow_start)
                  elif isinstance(self.arrow_start, basestring):
                      defs.append(make_marker(self.arrow_start, "arrow_start"))
                  else:
                      raise TypeError("arrow_start must be False/None or an id string for the new marker")
  
              if self.arrow_end != False and self.arrow_end is not None:
                  if isinstance(self.arrow_end, SVG):
                      defs.append(self.arrow_end)
                  elif isinstance(self.arrow_end, basestring):
                      defs.append(make_marker(self.arrow_end, "arrow_end"))
                  else:
                      raise TypeError("arrow_end must be False/None or an id string for the new marker")
  
              output.append(defs)
  
          eps = _epsilon * (self.high - self.low)
  
          for t, label in self.last_ticks.items():
              (X, Y), (xhatx, xhaty), (yhatx, yhaty), angle = self.orient_tickmark(t, trans)
  
              if ((not self.arrow_start or abs(t - self.low) > eps) and
                  (not self.arrow_end or abs(t - self.high) > eps)):
                  tickmarks.d.append(("M", X - yhatx*self.tick_start, Y - yhaty*self.tick_start, True))
                  tickmarks.d.append(("L", X - yhatx*self.tick_end, Y - yhaty*self.tick_end, True))
  
              angle = (angle - math.pi/2.)*180./math.pi + self.text_angle
  
              ########### a HACK! ############ (to be removed when Inkscape handles baselines)
              if _hacks["inkscape-text-vertical-shift"]:
                  if self.text_start > 0:
                      X += math.cos(angle*math.pi/180. + math.pi/2.) * 2.
                      Y += math.sin(angle*math.pi/180. + math.pi/2.) * 2.
                  else:
                      X += math.cos(angle*math.pi/180. + math.pi/2.) * 2. * 2.5
                      Y += math.sin(angle*math.pi/180. + math.pi/2.) * 2. * 2.5
              ########### end hack ###########
  
              if label != "":
                  output.append(SVG("text", label, transform="translate(%g, %g) rotate(%g)" %
                                    (X - yhatx*self.text_start, Y - yhaty*self.text_start, angle), **self.text_attr))
  
          for t in self.last_miniticks:
              skip = False
              for tt in self.last_ticks.keys():
                  if abs(t - tt) < eps:
                      skip = True
                      break
              if not skip:
                  (X, Y), (xhatx, xhaty), (yhatx, yhaty), angle = self.orient_tickmark(t, trans)
  
              if ((not self.arrow_start or abs(t - self.low) > eps) and
                  (not self.arrow_end or abs(t - self.high) > eps)):
                  minitickmarks.d.append(("M", X - yhatx*self.minitick_start, Y - yhaty*self.minitick_start, True))
                  minitickmarks.d.append(("L", X - yhatx*self.minitick_end, Y - yhaty*self.minitick_end, True))
  
          output.prepend(tickmarks.SVG(trans))
          output.prepend(minitickmarks.SVG(trans))
          return output
  
      def interpret(self):
          """Evaluate and return optimal ticks and miniticks according to
          the standard minitick specification.
  
          Normally only used internally.
          """
  
          if self.labels is None or self.labels == False:
              format = lambda x: ""
  
          elif self.labels == True:
              format = unumber
  
          elif isinstance(self.labels, basestring):
              format = lambda x: (self.labels % x)
  
          elif callable(self.labels):
              format = self.labels
  
          else:
              raise TypeError("labels must be None/False, True, a format string, or a number->string function")
  
          # Now for the ticks
          ticks = self.ticks
  
          # Case 1: ticks is None/False
          if ticks is None or ticks == False:
              return {}, []
  
          # Case 2: ticks is the number of desired ticks
          elif isinstance(ticks, (int, long)):
              if ticks == True:
                  ticks = -10
  
              if self.logbase is None:
                  ticks = self.compute_ticks(ticks, format)
              else:
                  ticks = self.compute_logticks(self.logbase, ticks, format)
  
              # Now for the miniticks
              if self.miniticks == True:
                  if self.logbase is None:
                      return ticks, self.compute_miniticks(ticks)
                  else:
                      return ticks, self.compute_logminiticks(self.logbase)
  
              elif isinstance(self.miniticks, (int, long)):
                  return ticks, self.regular_miniticks(self.miniticks)
  
              elif getattr(self.miniticks, "__iter__", False):
                  return ticks, self.miniticks
  
              elif self.miniticks == False or self.miniticks is None:
                  return ticks, []
  
              else:
                  raise TypeError("miniticks must be None/False, True, a number of desired miniticks, or a list of numbers")
  
          # Cases 3 & 4: ticks is iterable
          elif getattr(ticks, "__iter__", False):
  
              # Case 3: ticks is some kind of list
              if not isinstance(ticks, dict):
                  output = {}
                  eps = _epsilon * (self.high - self.low)
                  for x in ticks:
                      if format == unumber and abs(x) < eps:
                          output[x] = u"0"
                      else:
                          output[x] = format(x)
                  ticks = output
  
              # Case 4: ticks is a dict
              else:
                  pass
  
              # Now for the miniticks
              if self.miniticks == True:
                  if self.logbase is None:
                      return ticks, self.compute_miniticks(ticks)
                  else:
                      return ticks, self.compute_logminiticks(self.logbase)
  
              elif isinstance(self.miniticks, (int, long)):
                  return ticks, self.regular_miniticks(self.miniticks)
  
              elif getattr(self.miniticks, "__iter__", False):
                  return ticks, self.miniticks
  
              elif self.miniticks == False or self.miniticks is None:
                  return ticks, []
  
              else:
                  raise TypeError("miniticks must be None/False, True, a number of desired miniticks, or a list of numbers")
  
          else:
              raise TypeError("ticks must be None/False, a number of desired ticks, a list of numbers, or a dictionary of explicit markers")
  
      def compute_ticks(self, N, format):
          """Return less than -N or exactly N optimal linear ticks.
  
          Normally only used internally.
          """
          if self.low >= self.high:
              raise ValueError("low must be less than high")
          if N == 1:
              raise ValueError("N can be 0 or >1 to specify the exact number of ticks or negative to specify a maximum")
  
          eps = _epsilon * (self.high - self.low)
  
          if N >= 0:
              output = {}
              x = self.low
              for i in xrange(N):
                  if format == unumber and abs(x) < eps:
                      label = u"0"
                  else:
                      label = format(x)
                  output[x] = label
                  x += (self.high - self.low)/(N-1.)
              return output
  
          N = -N
  
          counter = 0
          granularity = 10**math.ceil(math.log10(max(abs(self.low), abs(self.high))))
          lowN = math.ceil(1.*self.low / granularity)
          highN = math.floor(1.*self.high / granularity)
  
          while lowN > highN:
              countermod3 = counter % 3
              if countermod3 == 0:
                  granularity *= 0.5
              elif countermod3 == 1:
                  granularity *= 0.4
              else:
                  granularity *= 0.5
              counter += 1
              lowN = math.ceil(1.*self.low / granularity)
              highN = math.floor(1.*self.high / granularity)
  
          last_granularity = granularity
          last_trial = None
  
          while True:
              trial = {}
              for n in range(int(lowN), int(highN)+1):
                  x = n * granularity
                  if format == unumber and abs(x) < eps:
                      label = u"0"
                  else:
                      label = format(x)
                  trial[x] = label
  
              if int(highN)+1 - int(lowN) >= N:
                  if last_trial is None:
                      v1, v2 = self.low, self.high
                      return {v1: format(v1), v2: format(v2)}
                  else:
                      low_in_ticks, high_in_ticks = False, False
                      for t in last_trial.keys():
                          if 1.*abs(t - self.low)/last_granularity < _epsilon:
                              low_in_ticks = True
                          if 1.*abs(t - self.high)/last_granularity < _epsilon:
                              high_in_ticks = True
  
                      lowN = 1.*self.low / last_granularity
                      highN = 1.*self.high / last_granularity
                      if abs(lowN - round(lowN)) < _epsilon and not low_in_ticks:
                          last_trial[self.low] = format(self.low)
                      if abs(highN - round(highN)) < _epsilon and not high_in_ticks:
                          last_trial[self.high] = format(self.high)
                      return last_trial
  
              last_granularity = granularity
              last_trial = trial
  
              countermod3 = counter % 3
              if countermod3 == 0:
                  granularity *= 0.5
              elif countermod3 == 1:
                  granularity *= 0.4
              else:
                  granularity *= 0.5
              counter += 1
              lowN = math.ceil(1.*self.low / granularity)
              highN = math.floor(1.*self.high / granularity)
  
      def regular_miniticks(self, N):
          """Return exactly N linear ticks.
  
          Normally only used internally.
          """
          output = []
          x = self.low
          for i in xrange(N):
              output.append(x)
              x += (self.high - self.low)/(N-1.)
          return output
  
      def compute_miniticks(self, original_ticks):
          """Return optimal linear miniticks, given a set of ticks.
  
          Normally only used internally.
          """
          if len(original_ticks) < 2:
              original_ticks = ticks(self.low, self.high) # XXX ticks is undefined!
          original_ticks = original_ticks.keys()
          original_ticks.sort()
  
          if self.low > original_ticks[0] + _epsilon or self.high < original_ticks[-1] - _epsilon:
              raise ValueError("original_ticks {%g...%g} extend beyond [%g, %g]" % (original_ticks[0], original_ticks[-1], self.low, self.high))
  
          granularities = []
          for i in range(len(original_ticks)-1):
              granularities.append(original_ticks[i+1] - original_ticks[i])
          spacing = 10**(math.ceil(math.log10(min(granularities)) - 1))
  
          output = []
          x = original_ticks[0] - math.ceil(1.*(original_ticks[0] - self.low) / spacing) * spacing
  
          while x <= self.high:
              if x >= self.low:
                  already_in_ticks = False
                  for t in original_ticks:
                      if abs(x-t) < _epsilon * (self.high - self.low):
                          already_in_ticks = True
                  if not already_in_ticks:
                      output.append(x)
              x += spacing
          return output
  
      def compute_logticks(self, base, N, format):
          """Return less than -N or exactly N optimal logarithmic ticks.
  
          Normally only used internally.
          """
          if self.low >= self.high:
              raise ValueError("low must be less than high")
          if N == 1:
              raise ValueError("N can be 0 or >1 to specify the exact number of ticks or negative to specify a maximum")
  
          eps = _epsilon * (self.high - self.low)
  
          if N >= 0:
              output = {}
              x = self.low
              for i in xrange(N):
                  if format == unumber and abs(x) < eps:
                      label = u"0"
                  else:
                      label = format(x)
                  output[x] = label
                  x += (self.high - self.low)/(N-1.)
              return output
  
          N = -N
  
          lowN = math.floor(math.log(self.low, base))
          highN = math.ceil(math.log(self.high, base))
          output = {}
          for n in range(int(lowN), int(highN)+1):
              x = base**n
              label = format(x)
              if self.low <= x <= self.high:
                  output[x] = label
  
          for i in range(1, len(output)):
              keys = output.keys()
              keys.sort()
              keys = keys[::i]
              values = map(lambda k: output[k], keys)
              if len(values) <= N:
                  for k in output.keys():
                      if k not in keys:
                          output[k] = ""
                  break
  
          if len(output) <= 2:
              output2 = self.compute_ticks(N=-int(math.ceil(N/2.)), format=format)
              lowest = min(output2)
  
              for k in output:
                  if k < lowest:
                      output2[k] = output[k]
              output = output2
  
          return output
  
      def compute_logminiticks(self, base):
          """Return optimal logarithmic miniticks, given a set of ticks.
  
          Normally only used internally.
          """
          if self.low >= self.high:
              raise ValueError("low must be less than high")
  
          lowN = math.floor(math.log(self.low, base))
          highN = math.ceil(math.log(self.high, base))
          output = []
          num_ticks = 0
          for n in range(int(lowN), int(highN)+1):
              x = base**n
              if self.low <= x <= self.high:
                  num_ticks += 1
              for m in range(2, int(math.ceil(base))):
                  minix = m * x
                  if self.low <= minix <= self.high:
                      output.append(minix)
  
          if num_ticks <= 2:
              return []
          else:
              return output
  
  ######################################################################
  
  class CurveAxis(Curve, Ticks):
      """Draw an axis with tick marks along a parametric curve.
  
      CurveAxis(f, low, high, ticks, miniticks, labels, logbase, arrow_start, arrow_end,
      text_attr, attribute=value)
  
      f                      required         a Python callable or string in
                                              the form "f(t), g(t)", just like Curve
      low, high              required         left and right endpoints
      ticks                  default=-10      request ticks according to the standard
                                              tick specification (see help(Ticks))
      miniticks              default=True     request miniticks according to the
                                              standard minitick specification
      labels                 True             request tick labels according to the
                                              standard tick label specification
      logbase                default=None     if a number, the x axis is logarithmic
                                              with ticks at the given base (10 being
                                              the most common)
      arrow_start            default=None     if a new string identifier, draw an
                                              arrow at the low-end of the axis,
                                              referenced by that identifier; if an
                                              SVG marker object, use that marker
      arrow_end              default=None     if a new string identifier, draw an
                                              arrow at the high-end of the axis,
                                              referenced by that identifier; if an
                                              SVG marker object, use that marker
      text_attr              default={}       SVG attributes for the text labels
      attribute=value pairs  keyword list     SVG attributes
      """
      defaults = {"stroke-width": "0.25pt", }
      text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, }
  
      def __repr__(self):
          return "<CurveAxis %s [%s, %s] ticks=%s labels=%s %s>" % (
                 self.f, self.low, self.high, str(self.ticks), str(self.labels), self.attr)
  
      def __init__(self, f, low, high, ticks=-10, miniticks=True, labels=True, logbase=None,
                   arrow_start=None, arrow_end=None, text_attr={}, **attr):
          tattr = dict(self.text_defaults)
          tattr.update(text_attr)
          Curve.__init__(self, f, low, high)
          Ticks.__init__(self, f, low, high, ticks, miniticks, labels, logbase, arrow_start, arrow_end, tattr, **attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          func = Curve.SVG(self, trans)
          ticks = Ticks.SVG(self, trans) # returns a <g />
  
          if self.arrow_start != False and self.arrow_start is not None:
              if isinstance(self.arrow_start, basestring):
                  func.attr["marker-start"] = "url(#%s)" % self.arrow_start
              else:
                  func.attr["marker-start"] = "url(#%s)" % self.arrow_start.id
  
          if self.arrow_end != False and self.arrow_end is not None:
              if isinstance(self.arrow_end, basestring):
                  func.attr["marker-end"] = "url(#%s)" % self.arrow_end
              else:
                  func.attr["marker-end"] = "url(#%s)" % self.arrow_end.id
  
          ticks.append(func)
          return ticks
  
  
  class LineAxis(Line, Ticks):
      """Draws an axis with tick marks along a line.
  
      LineAxis(x1, y1, x2, y2, start, end, ticks, miniticks, labels, logbase,
      arrow_start, arrow_end, text_attr, attribute=value)
  
      x1, y1                  required        starting point
      x2, y2                  required        ending point
      start, end              default=0, 1    values to start and end labeling
      ticks                   default=-10     request ticks according to the standard
                                              tick specification (see help(Ticks))
      miniticks               default=True    request miniticks according to the
                                              standard minitick specification
      labels                  True            request tick labels according to the
                                              standard tick label specification
      logbase                 default=None    if a number, the x axis is logarithmic
                                              with ticks at the given base (usually 10)
      arrow_start             default=None    if a new string identifier, draw an arrow
                                              at the low-end of the axis, referenced by
                                              that identifier; if an SVG marker object,
                                              use that marker
      arrow_end               default=None    if a new string identifier, draw an arrow
                                              at the high-end of the axis, referenced by
                                              that identifier; if an SVG marker object,
                                              use that marker
      text_attr               default={}      SVG attributes for the text labels
      attribute=value pairs   keyword list    SVG attributes
      """
      defaults = {"stroke-width": "0.25pt", }
      text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, }
  
      def __repr__(self):
          return "<LineAxis (%g, %g) to (%g, %g) ticks=%s labels=%s %s>" % (
                 self.x1, self.y1, self.x2, self.y2, str(self.ticks), str(self.labels), self.attr)
  
      def __init__(self, x1, y1, x2, y2, start=0., end=1., ticks=-10, miniticks=True, labels=True,
                   logbase=None, arrow_start=None, arrow_end=None, exclude=None, text_attr={}, **attr):
          self.start = start
          self.end = end
          self.exclude = exclude
          tattr = dict(self.text_defaults)
          tattr.update(text_attr)
          Line.__init__(self, x1, y1, x2, y2, **attr)
          Ticks.__init__(self, None, None, None, ticks, miniticks, labels, logbase, arrow_start, arrow_end, tattr, **attr)
  
      def interpret(self):
          if self.exclude is not None and not (isinstance(self.exclude, (tuple, list)) and len(self.exclude) == 2 and
                                               isinstance(self.exclude[0], (int, long, float)) and isinstance(self.exclude[1], (int, long, float))):
              raise TypeError("exclude must either be None or (low, high)")
  
          ticks, miniticks = Ticks.interpret(self)
          if self.exclude is None:
              return ticks, miniticks
  
          ticks2 = {}
          for loc, label in ticks.items():
              if self.exclude[0] <= loc <= self.exclude[1]:
                  ticks2[loc] = ""
              else:
                  ticks2[loc] = label
  
          return ticks2, miniticks
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          line = Line.SVG(self, trans) # must be evaluated first, to set self.f, self.low, self.high
  
          f01 = self.f
          self.f = lambda t: f01(1. * (t - self.start) / (self.end - self.start))
          self.low = self.start
          self.high = self.end
  
          if self.arrow_start != False and self.arrow_start is not None:
              if isinstance(self.arrow_start, basestring):
                  line.attr["marker-start"] = "url(#%s)" % self.arrow_start
              else:
                  line.attr["marker-start"] = "url(#%s)" % self.arrow_start.id
  
          if self.arrow_end != False and self.arrow_end is not None:
              if isinstance(self.arrow_end, basestring):
                  line.attr["marker-end"] = "url(#%s)" % self.arrow_end
              else:
                  line.attr["marker-end"] = "url(#%s)" % self.arrow_end.id
  
          ticks = Ticks.SVG(self, trans) # returns a <g />
          ticks.append(line)
          return ticks
  
  
  class XAxis(LineAxis):
      """Draws an x axis with tick marks.
  
      XAxis(xmin, xmax, aty, ticks, miniticks, labels, logbase, arrow_start, arrow_end,
      exclude, text_attr, attribute=value)
  
      xmin, xmax              required        the x range
      aty                     default=0       y position to draw the axis
      ticks                   default=-10     request ticks according to the standard
                                              tick specification (see help(Ticks))
      miniticks               default=True    request miniticks according to the
                                              standard minitick specification
      labels                  True            request tick labels according to the
                                              standard tick label specification
      logbase                 default=None    if a number, the x axis is logarithmic
                                              with ticks at the given base (usually 10)
      arrow_start             default=None    if a new string identifier, draw an arrow
                                              at the low-end of the axis, referenced by
                                              that identifier; if an SVG marker object,
                                              use that marker
      arrow_end               default=None    if a new string identifier, draw an arrow
                                              at the high-end of the axis, referenced by
                                              that identifier; if an SVG marker object,
                                              use that marker
      exclude                 default=None    if a (low, high) pair, don't draw text
                                              labels within this range
      text_attr               default={}      SVG attributes for the text labels
      attribute=value pairs   keyword list    SVG attributes for all lines
  
      The exclude option is provided for Axes to keep text from overlapping
      where the axes cross. Normal users are not likely to need it.
      """
      defaults = {"stroke-width": "0.25pt", }
      text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, "dominant-baseline": "text-before-edge", }
      text_start = -1.
      text_angle = 0.
  
      def __repr__(self):
          return "<XAxis (%g, %g) at y=%g ticks=%s labels=%s %s>" % (
                 self.xmin, self.xmax, self.aty, str(self.ticks), str(self.labels), self.attr) # XXX self.xmin/xmax undefd!
  
      def __init__(self, xmin, xmax, aty=0, ticks=-10, miniticks=True, labels=True, logbase=None,
                   arrow_start=None, arrow_end=None, exclude=None, text_attr={}, **attr):
          self.aty = aty
          tattr = dict(self.text_defaults)
          tattr.update(text_attr)
          LineAxis.__init__(self, xmin, aty, xmax, aty, xmin, xmax, ticks, miniticks, labels, logbase, arrow_start, arrow_end, exclude, tattr, **attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          self.y1 = self.aty
          self.y2 = self.aty
          return LineAxis.SVG(self, trans)
  
  
  class YAxis(LineAxis):
      """Draws a y axis with tick marks.
  
      YAxis(ymin, ymax, atx, ticks, miniticks, labels, logbase, arrow_start, arrow_end,
      exclude, text_attr, attribute=value)
  
      ymin, ymax              required        the y range
      atx                     default=0       x position to draw the axis
      ticks                   default=-10     request ticks according to the standard
                                              tick specification (see help(Ticks))
      miniticks               default=True    request miniticks according to the
                                              standard minitick specification
      labels                  True            request tick labels according to the
                                              standard tick label specification
      logbase                 default=None    if a number, the y axis is logarithmic
                                              with ticks at the given base (usually 10)
      arrow_start             default=None    if a new string identifier, draw an arrow
                                              at the low-end of the axis, referenced by
                                              that identifier; if an SVG marker object,
                                              use that marker
      arrow_end               default=None    if a new string identifier, draw an arrow
                                              at the high-end of the axis, referenced by
                                              that identifier; if an SVG marker object,
                                              use that marker
      exclude                 default=None    if a (low, high) pair, don't draw text
                                              labels within this range
      text_attr               default={}      SVG attributes for the text labels
      attribute=value pairs   keyword list    SVG attributes for all lines
  
      The exclude option is provided for Axes to keep text from overlapping
      where the axes cross. Normal users are not likely to need it.
      """
      defaults = {"stroke-width": "0.25pt", }
      text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, "text-anchor": "end", "dominant-baseline": "middle", }
      text_start = 2.5
      text_angle = 90.
  
      def __repr__(self):
          return "<YAxis (%g, %g) at x=%g ticks=%s labels=%s %s>" % (
                 self.ymin, self.ymax, self.atx, str(self.ticks), str(self.labels), self.attr) # XXX self.ymin/ymax undefd!
  
      def __init__(self, ymin, ymax, atx=0, ticks=-10, miniticks=True, labels=True, logbase=None,
                   arrow_start=None, arrow_end=None, exclude=None, text_attr={}, **attr):
          self.atx = atx
          tattr = dict(self.text_defaults)
          tattr.update(text_attr)
          LineAxis.__init__(self, atx, ymin, atx, ymax, ymin, ymax, ticks, miniticks, labels, logbase, arrow_start, arrow_end, exclude, tattr, **attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          self.x1 = self.atx
          self.x2 = self.atx
          return LineAxis.SVG(self, trans)
  
  
  class Axes:
      """Draw a pair of intersecting x-y axes.
  
      Axes(xmin, xmax, ymin, ymax, atx, aty, xticks, xminiticks, xlabels, xlogbase,
      yticks, yminiticks, ylabels, ylogbase, arrows, text_attr, attribute=value)
  
      xmin, xmax               required       the x range
      ymin, ymax               required       the y range
      atx, aty                 default=0, 0   point where the axes try to cross;
                                              if outside the range, the axes will
                                              cross at the closest corner
      xticks                   default=-10    request ticks according to the standard
                                              tick specification (see help(Ticks))
      xminiticks               default=True   request miniticks according to the
                                              standard minitick specification
      xlabels                  True           request tick labels according to the
                                              standard tick label specification
      xlogbase                 default=None   if a number, the x axis is logarithmic
                                              with ticks at the given base (usually 10)
      yticks                   default=-10    request ticks according to the standard
                                              tick specification
      yminiticks               default=True   request miniticks according to the
                                              standard minitick specification
      ylabels                  True           request tick labels according to the
                                              standard tick label specification
      ylogbase                 default=None   if a number, the y axis is logarithmic
                                              with ticks at the given base (usually 10)
      arrows                   default=None   if a new string identifier, draw arrows
                                              referenced by that identifier
      text_attr                default={}     SVG attributes for the text labels
      attribute=value pairs    keyword list   SVG attributes for all lines
      """
      defaults = {"stroke-width": "0.25pt", }
      text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, }
  
      def __repr__(self):
          return "<Axes x=(%g, %g) y=(%g, %g) at (%g, %g) %s>" % (
                 self.xmin, self.xmax, self.ymin, self.ymax, self.atx, self.aty, self.attr)
  
      def __init__(self, xmin, xmax, ymin, ymax, atx=0, aty=0,
                   xticks=-10, xminiticks=True, xlabels=True, xlogbase=None,
                   yticks=-10, yminiticks=True, ylabels=True, ylogbase=None,
                   arrows=None, text_attr={}, **attr):
          self.xmin, self.xmax = xmin, xmax
          self.ymin, self.ymax = ymin, ymax
          self.atx, self.aty = atx, aty
          self.xticks, self.xminiticks, self.xlabels, self.xlogbase = xticks, xminiticks, xlabels, xlogbase
          self.yticks, self.yminiticks, self.ylabels, self.ylogbase = yticks, yminiticks, ylabels, ylogbase
          self.arrows = arrows
  
          self.text_attr = dict(self.text_defaults)
          self.text_attr.update(text_attr)
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          atx, aty = self.atx, self.aty
          if atx < self.xmin:
              atx = self.xmin
          if atx > self.xmax:
              atx = self.xmax
          if aty < self.ymin:
              aty = self.ymin
          if aty > self.ymax:
              aty = self.ymax
  
          xmargin = 0.1 * abs(self.ymin - self.ymax)
          xexclude = atx - xmargin, atx + xmargin
  
          ymargin = 0.1 * abs(self.xmin - self.xmax)
          yexclude = aty - ymargin, aty + ymargin
  
          if self.arrows is not None and self.arrows != False:
              xarrow_start = self.arrows + ".xstart"
              xarrow_end = self.arrows + ".xend"
              yarrow_start = self.arrows + ".ystart"
              yarrow_end = self.arrows + ".yend"
          else:
              xarrow_start = xarrow_end = yarrow_start = yarrow_end = None
  
          xaxis = XAxis(self.xmin, self.xmax, aty, self.xticks, self.xminiticks, self.xlabels, self.xlogbase, xarrow_start, xarrow_end, exclude=xexclude, text_attr=self.text_attr, **self.attr).SVG(trans)
          yaxis = YAxis(self.ymin, self.ymax, atx, self.yticks, self.yminiticks, self.ylabels, self.ylogbase, yarrow_start, yarrow_end, exclude=yexclude, text_attr=self.text_attr, **self.attr).SVG(trans)
          return SVG("g", *(xaxis.sub + yaxis.sub))
  
  ######################################################################
  
  class HGrid(Ticks):
      """Draws the horizontal lines of a grid over a specified region
      using the standard tick specification (see help(Ticks)) to place the
      grid lines.
  
      HGrid(xmin, xmax, low, high, ticks, miniticks, logbase, mini_attr, attribute=value)
  
      xmin, xmax              required        the x range
      low, high               required        the y range
      ticks                   default=-10     request ticks according to the standard
                                              tick specification (see help(Ticks))
      miniticks               default=False   request miniticks according to the
                                              standard minitick specification
      logbase                 default=None    if a number, the axis is logarithmic
                                              with ticks at the given base (usually 10)
      mini_attr               default={}      SVG attributes for the minitick-lines
                                              (if miniticks != False)
      attribute=value pairs   keyword list    SVG attributes for the major tick lines
      """
      defaults = {"stroke-width": "0.25pt", "stroke": "gray", }
      mini_defaults = {"stroke-width": "0.25pt", "stroke": "lightgray", "stroke-dasharray": "1,1", }
  
      def __repr__(self):
          return "<HGrid x=(%g, %g) %g <= y <= %g ticks=%s miniticks=%s %s>" % (
                 self.xmin, self.xmax, self.low, self.high, str(self.ticks), str(self.miniticks), self.attr)
  
      def __init__(self, xmin, xmax, low, high, ticks=-10, miniticks=False, logbase=None, mini_attr={}, **attr):
          self.xmin, self.xmax = xmin, xmax
  
          self.mini_attr = dict(self.mini_defaults)
          self.mini_attr.update(mini_attr)
  
          Ticks.__init__(self, None, low, high, ticks, miniticks, None, logbase)
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          self.last_ticks, self.last_miniticks = Ticks.interpret(self)
  
          ticksd = []
          for t in self.last_ticks.keys():
              ticksd += Line(self.xmin, t, self.xmax, t).Path(trans).d
  
          miniticksd = []
          for t in self.last_miniticks:
              miniticksd += Line(self.xmin, t, self.xmax, t).Path(trans).d
  
          return SVG("g", Path(d=ticksd, **self.attr).SVG(), Path(d=miniticksd, **self.mini_attr).SVG())
  
  
  class VGrid(Ticks):
      """Draws the vertical lines of a grid over a specified region
      using the standard tick specification (see help(Ticks)) to place the
      grid lines.
  
      HGrid(ymin, ymax, low, high, ticks, miniticks, logbase, mini_attr, attribute=value)
  
      ymin, ymax              required        the y range
      low, high               required        the x range
      ticks                   default=-10     request ticks according to the standard
                                              tick specification (see help(Ticks))
      miniticks               default=False   request miniticks according to the
                                              standard minitick specification
      logbase                 default=None    if a number, the axis is logarithmic
                                              with ticks at the given base (usually 10)
      mini_attr               default={}      SVG attributes for the minitick-lines
                                              (if miniticks != False)
      attribute=value pairs   keyword list    SVG attributes for the major tick lines
      """
      defaults = {"stroke-width": "0.25pt", "stroke": "gray", }
      mini_defaults = {"stroke-width": "0.25pt", "stroke": "lightgray", "stroke-dasharray": "1,1", }
  
      def __repr__(self):
          return "<VGrid y=(%g, %g) %g <= x <= %g ticks=%s miniticks=%s %s>" % (
                 self.ymin, self.ymax, self.low, self.high, str(self.ticks), str(self.miniticks), self.attr)
  
      def __init__(self, ymin, ymax, low, high, ticks=-10, miniticks=False, logbase=None, mini_attr={}, **attr):
          self.ymin, self.ymax = ymin, ymax
  
          self.mini_attr = dict(self.mini_defaults)
          self.mini_attr.update(mini_attr)
  
          Ticks.__init__(self, None, low, high, ticks, miniticks, None, logbase)
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          self.last_ticks, self.last_miniticks = Ticks.interpret(self)
  
          ticksd = []
          for t in self.last_ticks.keys():
              ticksd += Line(t, self.ymin, t, self.ymax).Path(trans).d
  
          miniticksd = []
          for t in self.last_miniticks:
              miniticksd += Line(t, self.ymin, t, self.ymax).Path(trans).d
  
          return SVG("g", Path(d=ticksd, **self.attr).SVG(), Path(d=miniticksd, **self.mini_attr).SVG())
  
  
  class Grid(Ticks):
      """Draws a grid over a specified region using the standard tick
      specification (see help(Ticks)) to place the grid lines.
  
      Grid(xmin, xmax, ymin, ymax, ticks, miniticks, logbase, mini_attr, attribute=value)
  
      xmin, xmax              required        the x range
      ymin, ymax              required        the y range
      ticks                   default=-10     request ticks according to the standard
                                              tick specification (see help(Ticks))
      miniticks               default=False   request miniticks according to the
                                              standard minitick specification
      logbase                 default=None    if a number, the axis is logarithmic
                                              with ticks at the given base (usually 10)
      mini_attr               default={}      SVG attributes for the minitick-lines
                                              (if miniticks != False)
      attribute=value pairs   keyword list    SVG attributes for the major tick lines
      """
      defaults = {"stroke-width": "0.25pt", "stroke": "gray", }
      mini_defaults = {"stroke-width": "0.25pt", "stroke": "lightgray", "stroke-dasharray": "1,1", }
  
      def __repr__(self):
          return "<Grid x=(%g, %g) y=(%g, %g) ticks=%s miniticks=%s %s>" % (
                 self.xmin, self.xmax, self.ymin, self.ymax, str(self.ticks), str(self.miniticks), self.attr)
  
      def __init__(self, xmin, xmax, ymin, ymax, ticks=-10, miniticks=False, logbase=None, mini_attr={}, **attr):
          self.xmin, self.xmax = xmin, xmax
          self.ymin, self.ymax = ymin, ymax
  
          self.mini_attr = dict(self.mini_defaults)
          self.mini_attr.update(mini_attr)
  
          Ticks.__init__(self, None, None, None, ticks, miniticks, None, logbase)
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          self.low, self.high = self.xmin, self.xmax
          self.last_xticks, self.last_xminiticks = Ticks.interpret(self)
          self.low, self.high = self.ymin, self.ymax
          self.last_yticks, self.last_yminiticks = Ticks.interpret(self)
  
          ticksd = []
          for t in self.last_xticks.keys():
              ticksd += Line(t, self.ymin, t, self.ymax).Path(trans).d
          for t in self.last_yticks.keys():
              ticksd += Line(self.xmin, t, self.xmax, t).Path(trans).d
  
          miniticksd = []
          for t in self.last_xminiticks:
              miniticksd += Line(t, self.ymin, t, self.ymax).Path(trans).d
          for t in self.last_yminiticks:
              miniticksd += Line(self.xmin, t, self.xmax, t).Path(trans).d
  
          return SVG("g", Path(d=ticksd, **self.attr).SVG(), Path(d=miniticksd, **self.mini_attr).SVG())
  
  ######################################################################
  
  class XErrorBars:
      """Draws x error bars at a set of points. This is usually used
      before (under) a set of Dots at the same points.
  
      XErrorBars(d, attribute=value)
  
      d                       required        list of (x,y,xerr...) points
      attribute=value pairs   keyword list    SVG attributes
  
      If points in d have
  
          * 3 elements, the third is the symmetric error bar
          * 4 elements, the third and fourth are the asymmetric lower and
            upper error bar. The third element should be negative,
            e.g. (5, 5, -1, 2) is a bar from 4 to 7.
          * more than 4, a tick mark is placed at each value. This lets
            you nest errors from different sources, correlated and
            uncorrelated, statistical and systematic, etc.
      """
      defaults = {"stroke-width": "0.25pt", }
  
      def __repr__(self):
          return "<XErrorBars (%d nodes)>" % len(self.d)
  
      def __init__(self, d=[], **attr):
          self.d = list(d)
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          if isinstance(trans, basestring):
              trans = totrans(trans) # only once
  
          output = SVG("g")
          for p in self.d:
              x, y = p[0], p[1]
  
              if len(p) == 3:
                  bars = [x - p[2], x + p[2]]
              else:
                  bars = [x + pi for pi in p[2:]]
  
              start, end = min(bars), max(bars)
              output.append(LineAxis(start, y, end, y, start, end, bars, False, False, **self.attr).SVG(trans))
  
          return output
  
  
  class YErrorBars:
      """Draws y error bars at a set of points. This is usually used
      before (under) a set of Dots at the same points.
  
      YErrorBars(d, attribute=value)
  
      d                       required        list of (x,y,yerr...) points
      attribute=value pairs   keyword list    SVG attributes
  
      If points in d have
  
          * 3 elements, the third is the symmetric error bar
          * 4 elements, the third and fourth are the asymmetric lower and
            upper error bar. The third element should be negative,
            e.g. (5, 5, -1, 2) is a bar from 4 to 7.
          * more than 4, a tick mark is placed at each value. This lets
            you nest errors from different sources, correlated and
            uncorrelated, statistical and systematic, etc.
      """
      defaults = {"stroke-width": "0.25pt", }
  
      def __repr__(self):
          return "<YErrorBars (%d nodes)>" % len(self.d)
  
      def __init__(self, d=[], **attr):
          self.d = list(d)
  
          self.attr = dict(self.defaults)
          self.attr.update(attr)
  
      def SVG(self, trans=None):
          """Apply the transformation "trans" and return an SVG object."""
          if isinstance(trans, basestring):
              trans = totrans(trans) # only once
  
          output = SVG("g")
          for p in self.d:
              x, y = p[0], p[1]
  
              if len(p) == 3:
                  bars = [y - p[2], y + p[2]]
              else:
                  bars = [y + pi for pi in p[2:]]
  
              start, end = min(bars), max(bars)
              output.append(LineAxis(x, start, x, end, start, end, bars, False, False, **self.attr).SVG(trans))
  
          return output