f4334277
Hu Chunming
提交3rdparty
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_USAC_USAC_HPP
#define OPENCV_USAC_USAC_HPP
namespace cv { namespace usac {
enum EstimationMethod { Homography, Fundamental, Fundamental8, Essential, Affine, P3P, P6P};
enum VerificationMethod { NullVerifier, SprtVerifier };
enum PolishingMethod { NonePolisher, LSQPolisher };
enum ErrorMetric {DIST_TO_LINE, SAMPSON_ERR, SGD_ERR, SYMM_REPR_ERR, FORW_REPR_ERR, RERPOJ};
// Abstract Error class
class Error : public Algorithm {
public:
// set model to use getError() function
virtual void setModelParameters (const Mat &model) = 0;
// returns error of point wih @point_idx w.r.t. model
virtual float getError (int point_idx) const = 0;
virtual const std::vector<float> &getErrors (const Mat &model) = 0;
virtual Ptr<Error> clone () const = 0;
};
// Symmetric Reprojection Error for Homography
class ReprojectionErrorSymmetric : public Error {
public:
static Ptr<ReprojectionErrorSymmetric> create(const Mat &points);
};
// Forward Reprojection Error for Homography
class ReprojectionErrorForward : public Error {
public:
static Ptr<ReprojectionErrorForward> create(const Mat &points);
};
// Sampson Error for Fundamental matrix
class SampsonError : public Error {
public:
static Ptr<SampsonError> create(const Mat &points);
};
// Symmetric Geometric Distance (to epipolar lines) for Fundamental and Essential matrix
class SymmetricGeometricDistance : public Error {
public:
static Ptr<SymmetricGeometricDistance> create(const Mat &points);
};
// Reprojection Error for Projection matrix
class ReprojectionErrorPmatrix : public Error {
public:
static Ptr<ReprojectionErrorPmatrix> create(const Mat &points);
};
// Reprojection Error for Affine matrix
class ReprojectionErrorAffine : public Error {
public:
static Ptr<ReprojectionErrorAffine> create(const Mat &points);
};
// Normalizing transformation of data points
class NormTransform : public Algorithm {
public:
/*
* @norm_points is output matrix of size pts_size x 4
* @sample constains indices of points
* @sample_number is number of used points in sample <0; sample_number)
* @T1, T2 are output transformation matrices
*/
virtual void getNormTransformation (Mat &norm_points, const std::vector<int> &sample,
int sample_number, Matx33d &T1, Matx33d &T2) const = 0;
static Ptr<NormTransform> create (const Mat &points);
};
/////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////// SOLVER ///////////////////////////////////////////
class MinimalSolver : public Algorithm {
public:
// Estimate models from minimal sample. models.size() == number of found solutions
virtual int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const = 0;
// return minimal sample size required for estimation.
virtual int getSampleSize() const = 0;
// return maximum number of possible solutions.
virtual int getMaxNumberOfSolutions () const = 0;
virtual Ptr<MinimalSolver> clone () const = 0;
};
//-------------------------- HOMOGRAPHY MATRIX -----------------------
class HomographyMinimalSolver4ptsGEM : public MinimalSolver {
public:
static Ptr<HomographyMinimalSolver4ptsGEM> create(const Mat &points_);
};
//-------------------------- FUNDAMENTAL MATRIX -----------------------
class FundamentalMinimalSolver7pts : public MinimalSolver {
public:
static Ptr<FundamentalMinimalSolver7pts> create(const Mat &points_);
};
class FundamentalMinimalSolver8pts : public MinimalSolver {
public:
static Ptr<FundamentalMinimalSolver8pts> create(const Mat &points_);
};
//-------------------------- ESSENTIAL MATRIX -----------------------
class EssentialMinimalSolverStewenius5pts : public MinimalSolver {
public:
static Ptr<EssentialMinimalSolverStewenius5pts> create(const Mat &points_);
};
//-------------------------- PNP -----------------------
class PnPMinimalSolver6Pts : public MinimalSolver {
public:
static Ptr<PnPMinimalSolver6Pts> create(const Mat &points_);
};
class P3PSolver : public MinimalSolver {
public:
static Ptr<P3PSolver> create(const Mat &points_, const Mat &calib_norm_pts, const Mat &K);
};
//-------------------------- AFFINE -----------------------
class AffineMinimalSolver : public MinimalSolver {
public:
static Ptr<AffineMinimalSolver> create(const Mat &points_);
};
//////////////////////////////////////// NON MINIMAL SOLVER ///////////////////////////////////////
class NonMinimalSolver : public Algorithm {
public:
// Estimate models from non minimal sample. models.size() == number of found solutions
virtual int estimate (const std::vector<int> &sample, int sample_size,
std::vector<Mat> &models, const std::vector<double> &weights) const = 0;
// return minimal sample size required for non-minimal estimation.
virtual int getMinimumRequiredSampleSize() const = 0;
// return maximum number of possible solutions.
virtual int getMaxNumberOfSolutions () const = 0;
virtual Ptr<NonMinimalSolver> clone () const = 0;
};
//-------------------------- HOMOGRAPHY MATRIX -----------------------
class HomographyNonMinimalSolver : public NonMinimalSolver {
public:
static Ptr<HomographyNonMinimalSolver> create(const Mat &points_);
};
//-------------------------- FUNDAMENTAL MATRIX -----------------------
class FundamentalNonMinimalSolver : public NonMinimalSolver {
public:
static Ptr<FundamentalNonMinimalSolver> create(const Mat &points_);
};
//-------------------------- ESSENTIAL MATRIX -----------------------
class EssentialNonMinimalSolver : public NonMinimalSolver {
public:
static Ptr<EssentialNonMinimalSolver> create(const Mat &points_);
};
//-------------------------- PNP -----------------------
class PnPNonMinimalSolver : public NonMinimalSolver {
public:
static Ptr<PnPNonMinimalSolver> create(const Mat &points);
};
class DLSPnP : public NonMinimalSolver {
public:
static Ptr<DLSPnP> create(const Mat &points_, const Mat &calib_norm_pts, const Mat &K);
};
//-------------------------- AFFINE -----------------------
class AffineNonMinimalSolver : public NonMinimalSolver {
public:
static Ptr<AffineNonMinimalSolver> create(const Mat &points_);
};
//////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////// SCORE ///////////////////////////////////////////
class Score {
public:
int inlier_number;
double score;
Score () { // set worst case
inlier_number = 0;
score = std::numeric_limits<double>::max();
}
Score (int inlier_number_, double score_) { // copy constructor
inlier_number = inlier_number_;
score = score_;
}
// Compare two scores. Objective is minimization of score. Lower score is better.
inline bool isBetter (const Score &score2) const {
return score < score2.score;
}
};
class GammaValues
{
const double max_range_complete /*= 4.62*/, max_range_gamma /*= 1.52*/;
const int max_size_table /* = 3000 */;
std::vector<double> gamma_complete, gamma_incomplete, gamma;
GammaValues(); // use getSingleton()
public:
static const GammaValues& getSingleton();
const std::vector<double>& getCompleteGammaValues() const;
const std::vector<double>& getIncompleteGammaValues() const;
const std::vector<double>& getGammaValues() const;
double getScaleOfGammaCompleteValues () const;
double getScaleOfGammaValues () const;
int getTableSize () const;
};
////////////////////////////////////////// QUALITY ///////////////////////////////////////////
class Quality : public Algorithm {
public:
virtual ~Quality() override = default;
/*
* Calculates number of inliers and score of the @model.
* return Score with calculated inlier_number and score.
* @model: Mat current model, e.g., H matrix.
*/
virtual Score getScore (const Mat &model) const = 0;
virtual Score getScore (const std::vector<float> &/*errors*/) const {
CV_Error(cv::Error::StsNotImplemented, "getScore(errors)");
}
// get @inliers of the @model. Assume threshold is given
// @inliers must be preallocated to maximum points size.
virtual int getInliers (const Mat &model, std::vector<int> &inliers) const = 0;
// get @inliers of the @model for given threshold
virtual int getInliers (const Mat &model, std::vector<int> &inliers, double thr) const = 0;
// Set the best score, so evaluation of the model can terminate earlier
virtual void setBestScore (double best_score_) = 0;
// set @inliers_mask: true if point i is inlier, false - otherwise.
virtual int getInliers (const Mat &model, std::vector<bool> &inliers_mask) const = 0;
virtual int getPointsSize() const = 0;
virtual Ptr<Quality> clone () const = 0;
static int getInliers (const Ptr<Error> &error, const Mat &model,
std::vector<bool> &inliers_mask, double threshold);
static int getInliers (const Ptr<Error> &error, const Mat &model,
std::vector<int> &inliers, double threshold);
};
// RANSAC (binary) quality
class RansacQuality : public Quality {
public:
static Ptr<RansacQuality> create(int points_size_, double threshold_,const Ptr<Error> &error_);
};
// M-estimator quality - truncated Squared error
class MsacQuality : public Quality {
public:
static Ptr<MsacQuality> create(int points_size_, double threshold_, const Ptr<Error> &error_);
};
// Marginlizing Sample Consensus quality, D. Barath et al.
class MagsacQuality : public Quality {
public:
static Ptr<MagsacQuality> create(double maximum_thr, int points_size_,const Ptr<Error> &error_,
double tentative_inlier_threshold_, int DoF, double sigma_quantile,
double upper_incomplete_of_sigma_quantile,
double lower_incomplete_of_sigma_quantile, double C_);
};
// Least Median of Squares Quality
class LMedsQuality : public Quality {
public:
static Ptr<LMedsQuality> create(int points_size_, double threshold_, const Ptr<Error> &error_);
};
//////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////// DEGENERACY //////////////////////////////////
class Degeneracy : public Algorithm {
public:
virtual ~Degeneracy() override = default;
/*
* Check if sample causes degenerate configurations.
* For example, test if points are collinear.
*/
virtual bool isSampleGood (const std::vector<int> &/*sample*/) const {
return true;
}
/*
* Check if model satisfies constraints.
* For example, test if epipolar geometry satisfies oriented constraint.
*/
virtual bool isModelValid (const Mat &/*model*/, const std::vector<int> &/*sample*/) const {
return true;
}
/*
* Fix degenerate model.
* Return true if model is degenerate, false - otherwise
*/
virtual bool recoverIfDegenerate (const std::vector<int> &/*sample*/,const Mat &/*best_model*/,
Mat &/*non_degenerate_model*/, Score &/*non_degenerate_model_score*/) {
return false;
}
virtual Ptr<Degeneracy> clone(int /*state*/) const { return makePtr<Degeneracy>(); }
};
class EpipolarGeometryDegeneracy : public Degeneracy {
public:
static void recoverRank (Mat &model, bool is_fundamental_mat);
static Ptr<EpipolarGeometryDegeneracy> create (const Mat &points_, int sample_size_);
};
class EssentialDegeneracy : public EpipolarGeometryDegeneracy {
public:
static Ptr<EssentialDegeneracy>create (const Mat &points, int sample_size);
};
class HomographyDegeneracy : public Degeneracy {
public:
static Ptr<HomographyDegeneracy> create(const Mat &points_);
};
class FundamentalDegeneracy : public EpipolarGeometryDegeneracy {
public:
// threshold for homography is squared so is around 2.236 pixels
static Ptr<FundamentalDegeneracy> create (int state, const Ptr<Quality> &quality_,
const Mat &points_, int sample_size_, double homography_threshold);
};
/////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////// ESTIMATOR //////////////////////////////////
class Estimator : public Algorithm{
public:
/*
* Estimate models with minimal solver.
* Return number of valid solutions after estimation.
* Return models accordingly to number of solutions.
* Note, vector of models must allocated before.
* Note, not all degenerate tests are included in estimation.
*/
virtual int
estimateModels (const std::vector<int> &sample, std::vector<Mat> &models) const = 0;
/*
* Estimate model with non-minimal solver.
* Return number of valid solutions after estimation.
* Note, not all degenerate tests are included in estimation.
*/
virtual int
estimateModelNonMinimalSample (const std::vector<int> &sample, int sample_size,
std::vector<Mat> &models, const std::vector<double> &weights) const = 0;
// return minimal sample size required for minimal estimation.
virtual int getMinimalSampleSize () const = 0;
// return minimal sample size required for non-minimal estimation.
virtual int getNonMinimalSampleSize () const = 0;
// return maximum number of possible solutions of minimal estimation.
virtual int getMaxNumSolutions () const = 0;
// return maximum number of possible solutions of non-minimal estimation.
virtual int getMaxNumSolutionsNonMinimal () const = 0;
virtual Ptr<Estimator> clone() const = 0;
};
class HomographyEstimator : public Estimator {
public:
static Ptr<HomographyEstimator> create (const Ptr<MinimalSolver> &min_solver_,
const Ptr<NonMinimalSolver> &non_min_solver_, const Ptr<Degeneracy> °eneracy_);
};
class FundamentalEstimator : public Estimator {
public:
static Ptr<FundamentalEstimator> create (const Ptr<MinimalSolver> &min_solver_,
const Ptr<NonMinimalSolver> &non_min_solver_, const Ptr<Degeneracy> °eneracy_);
};
class EssentialEstimator : public Estimator {
public:
static Ptr<EssentialEstimator> create (const Ptr<MinimalSolver> &min_solver_,
const Ptr<NonMinimalSolver> &non_min_solver_, const Ptr<Degeneracy> °eneracy_);
};
class AffineEstimator : public Estimator {
public:
static Ptr<AffineEstimator> create (const Ptr<MinimalSolver> &min_solver_,
const Ptr<NonMinimalSolver> &non_min_solver_);
};
class PnPEstimator : public Estimator {
public:
static Ptr<PnPEstimator> create (const Ptr<MinimalSolver> &min_solver_,
const Ptr<NonMinimalSolver> &non_min_solver_);
};
//////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////// MODEL VERIFIER ////////////////////////////////////
class ModelVerifier : public Algorithm {
public:
virtual ~ModelVerifier() override = default;
// Return true if model is good, false - otherwise.
virtual bool isModelGood(const Mat &model) = 0;
// Return true if score was computed during evaluation.
virtual bool getScore(Score &score) const = 0;
// update verifier by given inlier number
virtual void update (int highest_inlier_number) = 0;
virtual const std::vector<float> &getErrors() const = 0;
virtual bool hasErrors () const = 0;
virtual Ptr<ModelVerifier> clone (int state) const = 0;
static Ptr<ModelVerifier> create();
};
struct SPRT_history {
/*
* delta:
* The probability of a data point being consistent
* with a ‘bad’ model is modeled as a probability of
* a random event with Bernoulli distribution with parameter
* δ : p(1|Hb) = δ.
* epsilon:
* The probability p(1|Hg) = ε
* that any randomly chosen data point is consistent with a ‘good’ model
* is approximated by the fraction of inliers ε among the data
* points
* A is the decision threshold, the only parameter of the Adapted SPRT
*/
double epsilon, delta, A;
// number of samples processed by test
int tested_samples; // k
SPRT_history () : epsilon(0), delta(0), A(0) {
tested_samples = 0;
}
};
///////////////////////////////// SPRT VERIFIER /////////////////////////////////////////
/*
* Matas, Jiri, and Ondrej Chum. "Randomized RANSAC with sequential probability ratio test."
* Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. Vol. 2. IEEE, 2005.
*/
class SPRT : public ModelVerifier {
public:
// return constant reference of vector of SPRT histories for SPRT termination.
virtual const std::vector<SPRT_history> &getSPRTvector () const = 0;
static Ptr<SPRT> create (int state, const Ptr<Error> &err_, int points_size_,
double inlier_threshold_, double prob_pt_of_good_model,
double prob_pt_of_bad_model, double time_sample, double avg_num_models,
ScoreMethod score_type_);
};
//////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////// SAMPLER ///////////////////////////////////////
class Sampler : public Algorithm {
public:
virtual ~Sampler() override = default;
// set new points size
virtual void setNewPointsSize (int points_size) = 0;
// generate sample. Fill @sample with indices of points.
virtual void generateSample (std::vector<int> &sample) = 0;
virtual Ptr<Sampler> clone (int state) const = 0;
};
////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////// NEIGHBORHOOD GRAPH /////////////////////////////////////////
class NeighborhoodGraph : public Algorithm {
public:
virtual ~NeighborhoodGraph() override = default;
// Return neighbors of the point with index @point_idx_ in the graph.
virtual const std::vector<int> &getNeighbors(int point_idx_) const = 0;
};
class RadiusSearchNeighborhoodGraph : public NeighborhoodGraph {
public:
static Ptr<RadiusSearchNeighborhoodGraph> create (const Mat &points, int points_size,
double radius_, int flann_search_params, int num_kd_trees);
};
class FlannNeighborhoodGraph : public NeighborhoodGraph {
public:
static Ptr<FlannNeighborhoodGraph> create(const Mat &points, int points_size,
int k_nearest_neighbors_, bool get_distances, int flann_search_params, int num_kd_trees);
virtual const std::vector<double> &getNeighborsDistances (int idx) const = 0;
};
class GridNeighborhoodGraph : public NeighborhoodGraph {
public:
static Ptr<GridNeighborhoodGraph> create(const Mat &points, int points_size,
int cell_size_x_img1_, int cell_size_y_img1_,
int cell_size_x_img2_, int cell_size_y_img2_, int max_neighbors);
};
////////////////////////////////////// UNIFORM SAMPLER ////////////////////////////////////////////
class UniformSampler : public Sampler {
public:
static Ptr<UniformSampler> create(int state, int sample_size_, int points_size_);
};
/////////////////////////////////// PROSAC (SIMPLE) SAMPLER ///////////////////////////////////////
class ProsacSimpleSampler : public Sampler {
public:
static Ptr<ProsacSimpleSampler> create(int state, int points_size_, int sample_size_,
int max_prosac_samples_count);
};
////////////////////////////////////// PROSAC SAMPLER ////////////////////////////////////////////
class ProsacSampler : public Sampler {
public:
static Ptr<ProsacSampler> create(int state, int points_size_, int sample_size_,
int growth_max_samples);
// return number of samples generated (for prosac termination).
virtual int getKthSample () const = 0;
// return constant reference of growth function of prosac sampler (for prosac termination)
virtual const std::vector<int> &getGrowthFunction () const = 0;
virtual void setTerminationLength (int termination_length) = 0;
};
////////////////////////// NAPSAC (N adjacent points sample consensus) SAMPLER ////////////////////
class NapsacSampler : public Sampler {
public:
static Ptr<NapsacSampler> create(int state, int points_size_, int sample_size_,
const Ptr<NeighborhoodGraph> &neighborhood_graph_);
};
////////////////////////////////////// P-NAPSAC SAMPLER /////////////////////////////////////////
class ProgressiveNapsac : public Sampler {
public:
static Ptr<ProgressiveNapsac> create(int state, int points_size_, int sample_size_,
const std::vector<Ptr<NeighborhoodGraph>> &layers, int sampler_length);
};
/////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////// TERMINATION ///////////////////////////////////////////
class TerminationCriteria : public Algorithm {
public:
// update termination object by given @model and @inlier number.
// and return maximum number of predicted iteration
virtual int update(const Mat &model, int inlier_number) = 0;
// clone termination
virtual Ptr<TerminationCriteria> clone () const = 0;
};
//////////////////////////////// STANDARD TERMINATION ///////////////////////////////////////////
class StandardTerminationCriteria : public TerminationCriteria {
public:
static Ptr<StandardTerminationCriteria> create(double confidence, int points_size_,
int sample_size_, int max_iterations_);
};
///////////////////////////////////// SPRT TERMINATION //////////////////////////////////////////
class SPRTTermination : public TerminationCriteria {
public:
static Ptr<SPRTTermination> create(const std::vector<SPRT_history> &sprt_histories_,
double confidence, int points_size_, int sample_size_, int max_iterations_);
};
///////////////////////////// PROGRESSIVE-NAPSAC-SPRT TERMINATION /////////////////////////////////
class SPRTPNapsacTermination : public TerminationCriteria {
public:
static Ptr<SPRTPNapsacTermination> create(const std::vector<SPRT_history>&
sprt_histories_, double confidence, int points_size_, int sample_size_,
int max_iterations_, double relax_coef_);
};
////////////////////////////////////// PROSAC TERMINATION /////////////////////////////////////////
class ProsacTerminationCriteria : public TerminationCriteria {
public:
static Ptr<ProsacTerminationCriteria> create(const Ptr<ProsacSampler> &sampler_,
const Ptr<Error> &error_, int points_size_, int sample_size, double confidence,
int max_iters, int min_termination_length, double beta, double non_randomness_phi,
double inlier_thresh);
};
//////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////// UTILS ////////////////////////////////////////////////
namespace Utils {
/*
* calibrate points: [x'; 1] = K^-1 [x; 1]
* @points is matrix N x 4.
* @norm_points is output matrix N x 4 with calibrated points.
*/
void calibratePoints (const Mat &K1, const Mat &K2, const Mat &points, Mat &norm_points);
void calibrateAndNormalizePointsPnP (const Mat &K, const Mat &pts, Mat &calib_norm_pts);
void normalizeAndDecalibPointsPnP (const Mat &K, Mat &pts, Mat &calib_norm_pts);
void decomposeProjection (const Mat &P, Mat &K_, Mat &R, Mat &t, bool same_focal=false);
double getCalibratedThreshold (double threshold, const Mat &K1, const Mat &K2);
float findMedian (std::vector<float> &array);
}
namespace Math {
// return skew symmetric matrix
Matx33d getSkewSymmetric(const Vec3d &v_);
// eliminate matrix with m rows and n columns to be upper triangular.
bool eliminateUpperTriangular (std::vector<double> &a, int m, int n);
Matx33d rotVec2RotMat (const Vec3d &v);
Vec3d rotMat2RotVec (const Matx33d &R);
}
///////////////////////////////////////// RANDOM GENERATOR /////////////////////////////////////
class RandomGenerator : public Algorithm {
public:
virtual ~RandomGenerator() override = default;
// interval is <0, max_range);
virtual void resetGenerator (int max_range) = 0;
// return sample filled with random numbers
virtual void generateUniqueRandomSet (std::vector<int> &sample) = 0;
// fill @sample of size @subset_size with random numbers in range <0, @max_range)
virtual void generateUniqueRandomSet (std::vector<int> &sample, int subset_size,
int max_range) = 0;
// fill @sample of size @sample.size() with random numbers in range <0, @max_range)
virtual void generateUniqueRandomSet (std::vector<int> &sample, int max_range) = 0;
// return subset=sample size
virtual void setSubsetSize (int subset_sz) = 0;
virtual int getSubsetSize () const = 0;
// return random number from <0, max_range), where max_range is from constructor
virtual int getRandomNumber () = 0;
// return random number from <0, max_rng)
virtual int getRandomNumber (int max_rng) = 0;
virtual const std::vector<int> &generateUniqueRandomSubset (std::vector<int> &array1,
int size1) = 0;
virtual Ptr<RandomGenerator> clone (int state) const = 0;
};
class UniformRandomGenerator : public RandomGenerator {
public:
static Ptr<UniformRandomGenerator> create (int state);
static Ptr<UniformRandomGenerator> create (int state, int max_range, int subset_size_);
};
///////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////// LOCAL OPTIMIZATION /////////////////////////////////////////
class LocalOptimization : public Algorithm {
public:
virtual ~LocalOptimization() override = default;
/*
* Refine so-far-the-best RANSAC model in local optimization step.
* @best_model: so-far-the-best model
* @new_model: output refined new model.
* @new_model_score: score of @new_model.
* Returns bool if model was refined successfully, false - otherwise
*/
virtual bool refineModel (const Mat &best_model, const Score &best_model_score,
Mat &new_model, Score &new_model_score) = 0;
virtual Ptr<LocalOptimization> clone(int state) const = 0;
};
//////////////////////////////////// GRAPH CUT LO ////////////////////////////////////////
class GraphCut : public LocalOptimization {
public:
static Ptr<GraphCut>
create(const Ptr<Estimator> &estimator_, const Ptr<Error> &error_,
const Ptr<Quality> &quality_, const Ptr<NeighborhoodGraph> &neighborhood_graph_,
const Ptr<RandomGenerator> &lo_sampler_, double threshold_,
double spatial_coherence_term, int gc_iters);
};
//////////////////////////////////// INNER + ITERATIVE LO ///////////////////////////////////////
class InnerIterativeLocalOptimization : public LocalOptimization {
public:
static Ptr<InnerIterativeLocalOptimization>
create(const Ptr<Estimator> &estimator_, const Ptr<Quality> &quality_,
const Ptr<RandomGenerator> &lo_sampler_, int pts_size, double threshold_,
bool is_iterative_, int lo_iter_sample_size_, int lo_inner_iterations,
int lo_iter_max_iterations, double threshold_multiplier);
};
class SigmaConsensus : public LocalOptimization {
public:
static Ptr<SigmaConsensus>
create(const Ptr<Estimator> &estimator_, const Ptr<Error> &error_,
const Ptr<Quality> &quality, const Ptr<ModelVerifier> &verifier_,
int max_lo_sample_size, int number_of_irwls_iters_,
int DoF, double sigma_quantile, double upper_incomplete_of_sigma_quantile,
double C_, double maximum_thr);
};
///////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////// FINAL MODEL POLISHER //////////////////////////////////////
class FinalModelPolisher : public Algorithm {
public:
virtual ~FinalModelPolisher() override = default;
/*
* Polish so-far-the-best RANSAC model in the end of RANSAC.
* @model: input final RANSAC model.
* @new_model: output polished model.
* @new_score: score of output model.
* Return true if polishing was successful, false - otherwise.
*/
virtual bool polishSoFarTheBestModel (const Mat &model, const Score &best_model_score,
Mat &new_model, Score &new_model_score) = 0;
};
///////////////////////////////////// LEAST SQUARES POLISHER //////////////////////////////////////
class LeastSquaresPolishing : public FinalModelPolisher {
public:
static Ptr<LeastSquaresPolishing> create (const Ptr<Estimator> &estimator_,
const Ptr<Quality> &quality_, int lsq_iterations);
};
/////////////////////////////////// RANSAC OUTPUT ///////////////////////////////////
class RansacOutput : public Algorithm {
public:
virtual ~RansacOutput() override = default;
static Ptr<RansacOutput> create(const Mat &model_,
const std::vector<bool> &inliers_mask_,
int time_mcs_, double score_, int number_inliers_, int number_iterations_,
int number_estimated_models_, int number_good_models_);
// Return inliers' indices. size of vector = number of inliers
virtual const std::vector<int > &getInliers() = 0;
// Return inliers mask. Vector of points size. 1-inlier, 0-outlier.
virtual const std::vector<bool> &getInliersMask() const = 0;
virtual int getTimeMicroSeconds() const = 0;
virtual int getTimeMicroSeconds1() const = 0;
virtual int getTimeMilliSeconds2() const = 0;
virtual int getTimeSeconds3() const = 0;
virtual int getNumberOfInliers() const = 0;
virtual int getNumberOfMainIterations() const = 0;
virtual int getNumberOfGoodModels () const = 0;
virtual int getNumberOfEstimatedModels () const = 0;
virtual const Mat &getModel() const = 0;
};
////////////////////////////////////////////// MODEL /////////////////////////////////////////////
class Model : public Algorithm {
public:
virtual bool isFundamental () const = 0;
virtual bool isHomography () const = 0;
virtual bool isEssential () const = 0;
virtual bool isPnP () const = 0;
// getters
virtual int getSampleSize () const = 0;
virtual bool isParallel() const = 0;
virtual int getMaxNumHypothesisToTestBeforeRejection() const = 0;
virtual PolishingMethod getFinalPolisher () const = 0;
virtual LocalOptimMethod getLO () const = 0;
virtual ErrorMetric getError () const = 0;
virtual EstimationMethod getEstimator () const = 0;
virtual ScoreMethod getScore () const = 0;
virtual int getMaxIters () const = 0;
virtual double getConfidence () const = 0;
virtual double getThreshold () const = 0;
virtual VerificationMethod getVerifier () const = 0;
virtual SamplingMethod getSampler () const = 0;
virtual double getTimeForModelEstimation () const = 0;
virtual double getSPRTdelta () const = 0;
virtual double getSPRTepsilon () const = 0;
virtual double getSPRTavgNumModels () const = 0;
virtual NeighborSearchMethod getNeighborsSearch () const = 0;
virtual int getKNN () const = 0;
virtual int getCellSize () const = 0;
virtual int getGraphRadius() const = 0;
virtual double getRelaxCoef () const = 0;
virtual int getFinalLSQIterations () const = 0;
virtual int getDegreesOfFreedom () const = 0;
virtual double getSigmaQuantile () const = 0;
virtual double getUpperIncompleteOfSigmaQuantile () const = 0;
virtual double getLowerIncompleteOfSigmaQuantile () const = 0;
virtual double getC () const = 0;
virtual double getMaximumThreshold () const = 0;
virtual double getGraphCutSpatialCoherenceTerm () const = 0;
virtual int getLOSampleSize () const = 0;
virtual int getLOThresholdMultiplier() const = 0;
virtual int getLOIterativeSampleSize() const = 0;
virtual int getLOIterativeMaxIters() const = 0;
virtual int getLOInnerMaxIters() const = 0;
virtual const std::vector<int> &getGridCellNumber () const = 0;
virtual int getRandomGeneratorState () const = 0;
virtual int getMaxItersBeforeLO () const = 0;
// setters
virtual void setLocalOptimization (LocalOptimMethod lo_) = 0;
virtual void setKNearestNeighhbors (int knn_) = 0;
virtual void setNeighborsType (NeighborSearchMethod neighbors) = 0;
virtual void setCellSize (int cell_size_) = 0;
virtual void setParallel (bool is_parallel) = 0;
virtual void setVerifier (VerificationMethod verifier_) = 0;
virtual void setPolisher (PolishingMethod polisher_) = 0;
virtual void setError (ErrorMetric error_) = 0;
virtual void setLOIterations (int iters) = 0;
virtual void setLOIterativeIters (int iters) = 0;
virtual void setLOSampleSize (int lo_sample_size) = 0;
virtual void setThresholdMultiplierLO (double thr_mult) = 0;
virtual void setRandomGeneratorState (int state) = 0;
virtual void maskRequired (bool required) = 0;
virtual bool isMaskRequired () const = 0;
static Ptr<Model> create(double threshold_, EstimationMethod estimator_, SamplingMethod sampler_,
double confidence_=0.95, int max_iterations_=5000, ScoreMethod score_ =ScoreMethod::SCORE_METHOD_MSAC);
};
Mat findHomography(InputArray srcPoints, InputArray dstPoints, int method,
double ransacReprojThreshold, OutputArray mask,
const int maxIters, const double confidence);
Mat findFundamentalMat( InputArray points1, InputArray points2,
int method, double ransacReprojThreshold, double confidence,
int maxIters, OutputArray mask=noArray());
bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
InputArray cameraMatrix, InputArray distCoeffs,
OutputArray rvec, OutputArray tvec,
bool useExtrinsicGuess, int iterationsCount,
float reprojectionError, double confidence,
OutputArray inliers, int flags);
Mat findEssentialMat( InputArray points1, InputArray points2,
InputArray cameraMatrix1,
int method, double prob,
double threshold, OutputArray mask);
Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers,
int method, double ransacReprojThreshold, int maxIters,
double confidence, int refineIters);
void saveMask (OutputArray mask, const std::vector<bool> &inliers_mask);
void setParameters (Ptr<Model> ¶ms, EstimationMethod estimator, const UsacParams &usac_params,
bool mask_need);
bool run (const Ptr<const Model> ¶ms, InputArray points1, InputArray points2, int state,
Ptr<RansacOutput> &ransac_output, InputArray K1_, InputArray K2_,
InputArray dist_coeff1, InputArray dist_coeff2);
}}
#endif //OPENCV_USAC_USAC_HPP
|