Blame view

3rdparty/opencv-4.5.4/modules/dnn/src/cuda/eltwise_activation.cu 6.22 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
  // This file is part of OpenCV project.
  // It is subject to the license terms in the LICENSE file found in the top-level directory
  // of this distribution and at http://opencv.org/license.html.
  
  #include <cuda_runtime.h>
  #include <cuda_fp16.h>
  
  #include "functors.hpp"
  #include "types.hpp"
  #include "vector_traits.hpp"
  #include "grid_stride_range.hpp"
  #include "execution.hpp"
  
  #include "../cuda4dnn/csl/stream.hpp"
  #include "../cuda4dnn/csl/span.hpp"
  
  using namespace cv::dnn::cuda4dnn::csl;
  using namespace cv::dnn::cuda4dnn::csl::device;
  
  namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
  
  namespace raw {
  
      template <class T, class EltwiseOp, class ActivationOp, std::size_t N>
      __global__ void eltwise_op_generic_op_vec(Span<T> output, View<T> x, View<T> y, const typename EltwiseOp::Params eltwise_params, const typename ActivationOp::Params act_params) {
          using vector_type = get_vector_type_t<T, N>;
  
          auto output_vPtr = vector_type::get_pointer(output.data());
          auto x_vPtr = vector_type::get_pointer(x.data());
          auto y_vPtr = vector_type::get_pointer(y.data());
  
          EltwiseOp eltwise_op(eltwise_params);
          ActivationOp activation_op(act_params);
  
          for (auto i : grid_stride_range(output.size() / vector_type::size())) {
              vector_type vec_x, vec_y;
              v_load(vec_x, x_vPtr[i]);
              v_load(vec_y, y_vPtr[i]);
              for(int j = 0; j < vec_x.size(); j++)
                  vec_x.data[j] = activation_op(eltwise_op(vec_x.data[j], vec_y.data[j]));
              v_store(output_vPtr[i], vec_x);
          }
      }
  }
  
  template <class T, class EltwiseOp, class ActivationOp, std::size_t N> static
  void launch_vectorized_eltwise_op_generic_op(const Stream& stream, Span<T> output, View<T> x, View<T> y, const typename EltwiseOp::Params& eltwise_params, const typename ActivationOp::Params& act_params) {
      CV_Assert(is_fully_aligned<T>(output, N));
      CV_Assert(is_fully_aligned<T>(x, N));
      CV_Assert(is_fully_aligned<T>(y, N));
  
      auto kernel = raw::eltwise_op_generic_op_vec<T, EltwiseOp, ActivationOp, N>;
      auto policy = make_policy(kernel, output.size() / N, 0, stream);
      launch_kernel(kernel, policy, output, x, y, eltwise_params, act_params);
  }
  
  template <class T, class EltwiseOp, class ActivationOp> static
  void eltwise_op_generic_op(const Stream& stream, Span<T> output, View<T> x, View<T> y, const typename EltwiseOp::Params& eltwise_params = {}, const typename ActivationOp::Params& act_params = {}) {
      CV_Assert(output.size() == x.size());
      CV_Assert(output.size() == y.size());
  
      if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
          launch_vectorized_eltwise_op_generic_op<T, EltwiseOp, ActivationOp, 4>(stream, output, x, y, eltwise_params, act_params);
      } else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 4)) {
          launch_vectorized_eltwise_op_generic_op<T, EltwiseOp, ActivationOp, 2>(stream, output, x, y, eltwise_params, act_params);
      } else {
          launch_vectorized_eltwise_op_generic_op<T, EltwiseOp, ActivationOp, 1>(stream, output, x, y, eltwise_params, act_params);
      }
  }
  
  template <class T>
  void eltwise_sum_2_relu(const Stream& stream, Span<T> output, View<T> x, View<T> y, T slope) {
      eltwise_op_generic_op<T, SumFunctor<T>, ReLUFunctor<T>>(stream, output, x, y, {}, {slope});
  }
  
  template <class T>
  void eltwise_sum_2_clipped_relu(const Stream& stream, Span<T> output, View<T> x, View<T> y, T floor, T ceiling) {
      CV_Assert(static_cast<double>(floor) <= static_cast<double>(ceiling));
      eltwise_op_generic_op<T, SumFunctor<T>, ClippedReLUFunctor<T>>(stream, output, x, y, {}, {floor, ceiling});
  }
  
  template <class T>
  void eltwise_sum_2_tanh(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
      eltwise_op_generic_op<T, SumFunctor<T>, TanHFunctor<T>>(stream, output, x, y);
  }
  
  template <class T>
  void eltwise_sum_2_swish(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
      eltwise_op_generic_op<T, SumFunctor<T>, SwishFunctor<T>>(stream, output, x, y);
  }
  
  template <class T>
  void eltwise_sum_2_mish(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
      eltwise_op_generic_op<T, SumFunctor<T>, MishFunctor<T>>(stream, output, x, y);
  }
  
  template <class T>
  void eltwise_sum_2_sigmoid(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
      eltwise_op_generic_op<T, SumFunctor<T>, SigmoidFunctor<T>>(stream, output, x, y);
  }
  
  template <class T>
  void eltwise_sum_2_power(const Stream& stream, Span<T> output, View<T> x, View<T> y, T exp, T scale, T shift) {
      eltwise_op_generic_op<T, SumFunctor<T>, PowerFunctor<T>>(stream, output, x, y, {}, {exp, scale, shift});
  }
  
  #if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
  template void eltwise_sum_2_relu<__half>(const Stream&, Span<__half>, View<__half>, View<__half>, __half);
  template void eltwise_sum_2_clipped_relu<__half>(const Stream&, Span<__half>, View<__half>, View<__half>, __half, __half);
  template void eltwise_sum_2_tanh<__half>(const Stream&, Span<__half>, View<__half>, View<__half>);
  template void eltwise_sum_2_swish<__half>(const Stream&, Span<__half>, View<__half>, View<__half>);
  template void eltwise_sum_2_mish<__half>(const Stream&, Span<__half>, View<__half>, View<__half>);
  template void eltwise_sum_2_sigmoid<__half>(const Stream&, Span<__half>, View<__half>, View<__half>);
  template void eltwise_sum_2_power<__half>(const Stream&, Span<__half>, View<__half>, View<__half>, __half, __half, __half);
  #endif
  
  template void eltwise_sum_2_relu<float>(const Stream&, Span<float>, View<float>, View<float>, float);
  template void eltwise_sum_2_clipped_relu<float>(const Stream&, Span<float>, View<float>, View<float>, float, float);
  template void eltwise_sum_2_tanh<float>(const Stream&, Span<float>, View<float>, View<float>);
  template void eltwise_sum_2_swish<float>(const Stream&, Span<float>, View<float>, View<float>);
  template void eltwise_sum_2_mish<float>(const Stream&, Span<float>, View<float>, View<float>);
  template void eltwise_sum_2_sigmoid<float>(const Stream&, Span<float>, View<float>, View<float>);
  template void eltwise_sum_2_power<float>(const Stream&, Span<float>, View<float>, View<float>, float, float, float);
  
  }}}} /* namespace cv::dnn::cuda4dnn::kernels */