Blame view

3rdparty/opencv-4.5.4/modules/dnn/src/cuda/shortcut.cu 4.77 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
  // This file is part of OpenCV project.
  // It is subject to the license terms in the LICENSE file found in the top-level directory
  // of this distribution and at http://opencv.org/license.html.
  
  #include <cuda_runtime.h>
  #include <cuda_fp16.h>
  
  #include "grid_stride_range.hpp"
  #include "execution.hpp"
  #include "vector_traits.hpp"
  
  #include "../cuda4dnn/csl/stream.hpp"
  #include "../cuda4dnn/csl/span.hpp"
  #include "../cuda4dnn/csl/tensor.hpp"
  
  #include <opencv2/core.hpp>
  
  using namespace cv::dnn::cuda4dnn::csl;
  using namespace cv::dnn::cuda4dnn::csl::device;
  
  namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
  
  namespace raw {
      template <class T, std::size_t N>
      __global__ void input_shortcut_vec(
          Span<T> output,
          View<T> input, index_type c_input, /* `c_input` = number of channels in `input` */
          View<T> from, index_type c_from, /* `c_from` = number of channels in `from` */
          size_type channel_stride /* common for both `input` and `from` */)
      {
          using vector_type = get_vector_type_t<T, N>;
  
          auto output_vPtr = vector_type::get_pointer(output.data());
          auto input_vPtr = vector_type::get_pointer(input.data());
          auto from_vPtr = vector_type::get_pointer(from.data());
  
          auto batch_stride_input = c_input * channel_stride;
          auto batch_stride_from = c_from * channel_stride;
  
          for (auto i : grid_stride_range(output.size() / vector_type::size())) {
              const auto actual_idx = i * vector_type::size();
              const auto b = actual_idx / batch_stride_input; /* `input` and `output` have the same shape */
              const auto c = (actual_idx % batch_stride_input) / channel_stride;
              const auto c_offset = actual_idx % channel_stride;
  
              vector_type vec_input;
              v_load(vec_input, input_vPtr[i]);
  
              /* We can break down the shortcut operation into two steps:
               * - copy `input` to `output`
               * - add `from` to corresponding channels in `output`
               *
               * In this scheme, only some channels in the `output` differ from `input`. They differ in the channels
               * which have a corresponding channel in `from`.
               */
              if (c < c_from) {
                  const auto from_actual_idx = b * batch_stride_from + c * channel_stride + c_offset;
                  const auto from_vec_idx = from_actual_idx / vector_type::size();
  
                  vector_type vec_from;
                  v_load(vec_from, from_vPtr[from_vec_idx]);
                  for (int j = 0; j < vector_type::size(); j++)
                      vec_input.data[j] += vec_from.data[j];
              }
  
              v_store(output_vPtr[i], vec_input);
          }
      }
  }
  
  template <class T, std::size_t N>
  void launch_vectorized_input_shortcut(const Stream& stream, Span<T> output, View<T> input, std::size_t c_input, View<T> from, std::size_t c_from, std::size_t channel_stride) {
      CV_Assert(is_fully_aligned<T>(output, N));
      CV_Assert(is_fully_aligned<T>(input, N));
      CV_Assert(is_fully_aligned<T>(from, N));
      CV_Assert(channel_stride % N == 0);
  
      auto kernel = raw::input_shortcut_vec<T, N>;
      auto policy = make_policy(kernel, output.size() / N, 0, stream);
      launch_kernel(kernel, policy, output, input, c_input, from, c_from, channel_stride);
  }
  
  template <class T>
  void input_shortcut(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, csl::TensorView<T> from) {
      CV_Assert(is_shape_same(output, input));
      CV_Assert(output.rank() == from.rank());
      for (int i = 0; i < output.rank(); i++) {
          if (i != 1) {
              CV_Assert(from.get_axis_size(i) == output.get_axis_size(i));
          }
      }
  
      auto channel_stride = output.size_range(2, output.rank()); /* same for `output`, `input` and `from` */
      auto c_input = input.get_axis_size(1);
      auto c_from = from.get_axis_size(1);
  
      if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4) && is_fully_aligned<T>(from, 4) && channel_stride % 4 == 0) {
          launch_vectorized_input_shortcut<T, 4>(stream, output, input, c_input, from, c_from, channel_stride);
      } else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2) && is_fully_aligned<T>(from, 2) && channel_stride % 2 == 0) {
          launch_vectorized_input_shortcut<T, 2>(stream, output, input, c_input, from, c_from, channel_stride);
      } else {
          launch_vectorized_input_shortcut<T, 1>(stream, output, input, c_input, from, c_from, channel_stride);
      }
  }
  
  #if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
  template void input_shortcut(const Stream&, TensorSpan<__half>, TensorView<__half>, TensorView<__half>);
  #endif
  template void input_shortcut(const Stream&, TensorSpan<float>, TensorView<float>, TensorView<float>);
  
  }}}} /* namespace cv::dnn::cuda4dnn::kernels */