Blame view

3rdparty/opencv-4.5.4/modules/dnn/src/cuda4dnn/primitives/concat.hpp 2.96 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
  // This file is part of OpenCV project.
  // It is subject to the license terms in the LICENSE file found in the top-level directory
  // of this distribution and at http://opencv.org/license.html.
  
  #ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CONCAT_HPP
  #define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CONCAT_HPP
  
  #include "../../op_cuda.hpp"
  
  #include "../csl/stream.hpp"
  #include "../csl/pointer.hpp"
  
  #include "../kernels/fill_copy.hpp"
  #include "../kernels/concat.hpp"
  
  #include <opencv2/core.hpp>
  
  #include <cstddef>
  #include <vector>
  #include <utility>
  
  namespace cv { namespace dnn { namespace cuda4dnn {
  
      template <class T>
      class ConcatOp final : public CUDABackendNode {
      public:
          using wrapper_type = GetCUDABackendWrapperType<T>;
  
          ConcatOp(csl::Stream stream_, std::size_t concat_axis, bool zero_padding)
              : stream(std::move(stream_)), concat_axis{ concat_axis }, zero_padding{ zero_padding }
          {
          }
  
          void forward(
              const std::vector<cv::Ptr<BackendWrapper>>& inputs,
              const std::vector<cv::Ptr<BackendWrapper>>& outputs,
              csl::Workspace& workspace) override
          {
              CV_Assert(outputs.size() == 1);
  
              auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
              auto output = output_wrapper->getSpan();
  
              if(zero_padding)
              {
                  auto output_shape = output_wrapper->getShape();
  
                  kernels::fill<T>(stream, output, 0.0);
  
                  std::size_t output_concat_axis_offset = 0;
                  for (int i = 0; i < inputs.size(); i++)
                  {
                      auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
                      auto input = input_wrapper->getView();
                      auto input_shape = input_wrapper->getShape();
  
                      std::vector<std::size_t> offsets(input_shape.size());
                      for (int j = 0; j < offsets.size(); j++)
                          offsets[j] = (output_shape[j] - input_shape[j]) / 2;
                      offsets[concat_axis] = output_concat_axis_offset;
  
                      kernels::concat_with_offsets(stream, output, input, offsets);
  
                      output_concat_axis_offset += input.get_axis_size(concat_axis);
                  }
              }
              else
              {
                  std::size_t output_axis_offset = 0;
                  for (int i = 0; i < inputs.size(); i++)
                  {
                      auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
                      auto input = input_wrapper->getView();
  
                      kernels::concat(stream, output, output_axis_offset, input, concat_axis);
  
                      output_axis_offset += input.get_axis_size(concat_axis);
                  }
              }
          }
  
      private:
          csl::Stream stream;
          std::size_t concat_axis;
          bool zero_padding;
      };
  
  }}} /* namespace cv::dnn::cuda4dnn */
  
  #endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CONCAT_HPP */