Blame view

3rdparty/opencv-4.5.4/modules/dnn/src/cuda4dnn/primitives/lrn.hpp 2.56 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
  // This file is part of OpenCV project.
  // It is subject to the license terms in the LICENSE file found in the top-level directory
  // of this distribution and at http://opencv.org/license.html.
  
  #ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_LRN_HPP
  #define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_LRN_HPP
  
  #include "../../op_cuda.hpp"
  
  #include "../csl/cudnn.hpp"
  #include "../csl/tensor_ops.hpp"
  
  #include <cstddef>
  #include <utility>
  
  namespace cv { namespace dnn { namespace cuda4dnn {
  
      enum class LRNType {
          ACROSS_CHANNELS,
          WITHIN_CHANNEL
      };
  
      template <class T>
      class LRNOp final : public CUDABackendNode {
      public:
          using wrapper_type = GetCUDABackendWrapperType<T>;
  
          LRNOp(csl::cudnn::Handle handle, LRNType type_, std::size_t local_size, T alpha, T beta, T bias, std::size_t largestInputSize)
              : scratch_mem_in_bytes { 0 }
          {
              typename csl::LRN<T>::LRNType type{};
              switch (type_) {
              case LRNType::ACROSS_CHANNELS: type = csl::LRN<T>::LRNType::ACROSS_CHANNELS; break;
              case LRNType::WITHIN_CHANNEL: type = csl::LRN<T>::LRNType::WITHIN_CHANNEL; break;
              }
              lrn = csl::LRN<T>(std::move(handle), local_size, alpha, beta, bias, type);
  
              csl::WorkspaceBuilder builder;
              if (type_ == LRNType::WITHIN_CHANNEL) {
                  /* this is not a bug; we require two of these */
                  builder.require<T>(largestInputSize);
                  builder.require<T>(largestInputSize);
              }
  
              scratch_mem_in_bytes = builder.required_workspace_size();
          }
  
          void forward(
              const std::vector<cv::Ptr<BackendWrapper>>& inputs,
              const std::vector<cv::Ptr<BackendWrapper>>& outputs,
              csl::Workspace& workspace) override
          {
              for (int i = 0; i < inputs.size(); i++)
              {
                  auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
                  auto input = input_wrapper->getView();
  
                  auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
                  auto output = output_wrapper->getSpan();
  
                  csl::WorkspaceAllocator allocator(workspace);
                  lrn.normalize(input, output, allocator.get_instance());
              }
          }
  
          std::size_t get_workspace_memory_in_bytes() const noexcept override { return scratch_mem_in_bytes; }
  
      private:
          csl::LRN<T> lrn;
          std::size_t scratch_mem_in_bytes;
      };
  
  }}} /* namespace cv::dnn::cuda4dnn */
  
  #endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_LRN_HPP */