Blame view

3rdparty/opencv-4.5.4/modules/dnn/src/cuda4dnn/primitives/matmul.hpp 3.25 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
  // This file is part of OpenCV project.
  // It is subject to the license terms in the LICENSE file found in the top-level directory
  // of this distribution and at http://opencv.org/license.html.
  
  #ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MATMUL_HPP
  #define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MATMUL_HPP
  
  #include "../../op_cuda.hpp"
  
  #include "../csl/stream.hpp"
  #include "../csl/cublas.hpp"
  #include "../csl/tensor.hpp"
  #include "../csl/tensor_ops.hpp"
  
  #include <opencv2/core.hpp>
  
  #include <utility>
  
  namespace cv { namespace dnn { namespace cuda4dnn {
  
      template <class T>
      class MatMulOp final : public CUDABackendNode {
      public:
          using wrapper_type = GetCUDABackendWrapperType<T>;
  
          MatMulOp(csl::Stream stream_, csl::cublas::Handle handle)
              : stream(std::move(stream_)), cublasHandle(std::move(handle))
          {
          }
  
          void forward(
              const std::vector<cv::Ptr<BackendWrapper>>& inputs,
              const std::vector<cv::Ptr<BackendWrapper>>& outputs,
              csl::Workspace& workspace) override
          {
              CV_Assert(inputs.size() == 2 && outputs.size() == 1);
  
              auto input1_wrapper = inputs[0].dynamicCast<wrapper_type>();
              auto input1 = input1_wrapper->getView();
  
              auto input2_wrapper = inputs[1].dynamicCast<wrapper_type>();
              auto input2 = input2_wrapper->getView();
  
              auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
              auto output = output_wrapper->getSpan();
  
              auto rank = output.rank();
              CV_Assert(rank == input1.rank());
              CV_Assert(rank == input2.rank());
              CV_Assert(rank >= 2); // 1D MatMul not supported
  
              for (int i = 0; i < rank - 2; i++)
              {
                  // broadcasting not supported
                  auto size = output.get_axis_size(i);
                  CV_Assert(input1.get_axis_size(i) == size);
                  CV_Assert(input2.get_axis_size(i) == size);
              }
  
              auto m = input1.get_axis_size(-2);
              auto n = input1.get_axis_size(-1);
              auto k = input2.get_axis_size(-1);
              auto b = input1.size() / m / n;
              CV_Assert(input2.get_axis_size(-2) == n);
              CV_Assert(output.get_axis_size(-2) == m);
              CV_Assert(output.get_axis_size(-1) == k);
  
              if (get_effective_rank(output) <= 2)
              {
                  CV_Assert(b == 1);
                  CV_Assert(get_effective_rank(input1) <= 2);
                  CV_Assert(get_effective_rank(input2) <= 2);
                  csl::tensor_ops::gemm<T>(cublasHandle, 0.0, output, 1.0, false, input1, false, input2);
              }
              else
              {
                  CV_Assert(rank >= 3);
                  input1.reshape(b, m, n);
                  input2.reshape(b, n, k);
                  output.reshape(b, m, k);
                  input1.squeeze_to(3);
                  input2.squeeze_to(3);
                  output.squeeze_to(3);
                  csl::tensor_ops::gemmStridedBatched<T>(cublasHandle, 0.0, output, 1.0, false, input1, false, input2);
              }
          }
  
      private:
          csl::Stream stream;
          csl::cublas::Handle cublasHandle;
      };
  
  }}} /* namespace cv::dnn::cuda4dnn */
  
  #endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MATMUL_HPP */