Blame view

3rdparty/opencv-4.5.4/modules/dnn/src/op_inf_engine.cpp 43.8 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
  // This file is part of OpenCV project.
  // It is subject to the license terms in the LICENSE file found in the top-level directory
  // of this distribution and at http://opencv.org/license.html.
  //
  // Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
  // Third party copyrights are property of their respective owners.
  
  #include "precomp.hpp"
  #include "op_inf_engine.hpp"
  #include <opencv2/dnn/shape_utils.hpp>
  
  #ifdef HAVE_INF_ENGINE
  #include <ie_extension.h>
  #endif  // HAVE_INF_ENGINE
  
  #include <opencv2/core/utils/configuration.private.hpp>
  #include <opencv2/core/utils/logger.hpp>
  
  namespace cv { namespace dnn {
  
  #ifdef HAVE_INF_ENGINE
  
  static Backend parseInferenceEngineBackendType(const cv::String& backend)
  {
      CV_Assert(!backend.empty());
      if (backend == CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
          return DNN_BACKEND_INFERENCE_ENGINE_NGRAPH;
      if (backend == CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API)
          return DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019;
      CV_Error(Error::StsBadArg, cv::format("Unknown IE backend: %s", backend.c_str()));
  }
  static const char* dumpInferenceEngineBackendType(Backend backend)
  {
      if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
          return CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH;
      if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
          return CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API;
      CV_Error(Error::StsBadArg, cv::format("Invalid backend ID for IE: %d", backend));
  }
  Backend& getInferenceEngineBackendTypeParam()
  {
      static Backend param = parseInferenceEngineBackendType(
          utils::getConfigurationParameterString("OPENCV_DNN_BACKEND_INFERENCE_ENGINE_TYPE",
  #ifdef HAVE_DNN_NGRAPH
              CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH
  #elif defined(HAVE_DNN_IE_NN_BUILDER_2019)
              CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API
  #else
  #error "Build configuration error: nGraph or NN Builder API backend should be enabled"
  #endif
          )
      );
      return param;
  }
  
  CV__DNN_INLINE_NS_BEGIN
  
  cv::String getInferenceEngineBackendType()
  {
      return dumpInferenceEngineBackendType(getInferenceEngineBackendTypeParam());
  }
  cv::String setInferenceEngineBackendType(const cv::String& newBackendType)
  {
      Backend newBackend = parseInferenceEngineBackendType(newBackendType);
      Backend& param = getInferenceEngineBackendTypeParam();
      Backend old = param;
      param = newBackend;
      return dumpInferenceEngineBackendType(old);
  }
  
  CV__DNN_INLINE_NS_END
  
  
  Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob)
  {
      // NOTE: Inference Engine sizes are reversed.
      std::vector<size_t> dims = blob->getTensorDesc().getDims();
      std::vector<int> size(dims.begin(), dims.end());
      auto precision = blob->getTensorDesc().getPrecision();
  
      int type = -1;
      switch (precision)
      {
          case InferenceEngine::Precision::FP32: type = CV_32F; break;
          case InferenceEngine::Precision::U8: type = CV_8U; break;
          default:
              CV_Error(Error::StsNotImplemented, "Unsupported blob precision");
      }
      return Mat(size, type, (void*)blob->buffer());
  }
  
  void infEngineBlobsToMats(const std::vector<InferenceEngine::Blob::Ptr>& blobs,
                            std::vector<Mat>& mats)
  {
      mats.resize(blobs.size());
      for (int i = 0; i < blobs.size(); ++i)
          mats[i] = infEngineBlobToMat(blobs[i]);
  }
  
  
  #ifdef HAVE_DNN_IE_NN_BUILDER_2019
  
  // For networks with input layer which has an empty name, IE generates a name id[some_number].
  // OpenCV lets users use an empty input name and to prevent unexpected naming,
  // we can use some predefined name.
  static std::string kDefaultInpLayerName = "empty_inp_layer_name";
  static std::string kOpenCVLayersType = "OpenCVLayer";
  
  static std::string shapesToStr(const std::vector<Mat>& mats)
  {
      std::ostringstream shapes;
      shapes << mats.size() << " ";
      for (const Mat& m : mats)
      {
          shapes << m.dims << " ";
          for (int i = 0; i < m.dims; ++i)
              shapes << m.size[i] << " ";
      }
      return shapes.str();
  }
  
  static void strToShapes(const std::string& str, std::vector<std::vector<size_t> >& shapes)
  {
      std::istringstream ss(str);
      int num, dims;
      ss >> num;
      shapes.resize(num);
      for (int i = 0; i < num; ++i)
      {
          ss >> dims;
          shapes[i].resize(dims);
          for (int j = 0; j < dims; ++j)
              ss >> shapes[i][j];
      }
  }
  
  class InfEngineCustomLayer : public InferenceEngine::ILayerExecImpl
  {
  public:
      explicit InfEngineCustomLayer(const InferenceEngine::CNNLayer& layer) : cnnLayer(layer)
      {
          std::istringstream iss(layer.GetParamAsString("impl"));
          size_t ptr;
          iss >> ptr;
          cvLayer = (Layer*)ptr;
  
          std::vector<std::vector<size_t> > shapes;
          strToShapes(layer.GetParamAsString("internals"), shapes);
          internals.resize(shapes.size());
          for (int i = 0; i < shapes.size(); ++i)
              internals[i].create(std::vector<int>(shapes[i].begin(), shapes[i].end()), CV_32F);
      }
  
      virtual InferenceEngine::StatusCode execute(std::vector<InferenceEngine::Blob::Ptr>& inputs,
                                                  std::vector<InferenceEngine::Blob::Ptr>& outputs,
                                                  InferenceEngine::ResponseDesc *resp) noexcept
      {
          std::vector<Mat> inpMats, outMats;
          infEngineBlobsToMats(inputs, inpMats);
          infEngineBlobsToMats(outputs, outMats);
  
          try
          {
              cvLayer->forward(inpMats, outMats, internals);
              return InferenceEngine::StatusCode::OK;
          }
          catch (...)
          {
              return InferenceEngine::StatusCode::GENERAL_ERROR;
          }
      }
  
      virtual InferenceEngine::StatusCode
      getSupportedConfigurations(std::vector<InferenceEngine::LayerConfig>& conf,
                                 InferenceEngine::ResponseDesc* resp) noexcept
      {
          std::vector<InferenceEngine::DataConfig> inDataConfig;
          std::vector<InferenceEngine::DataConfig> outDataConfig;
          for (auto& it : cnnLayer.insData)
          {
              InferenceEngine::DataConfig conf;
              conf.desc = it.lock()->getTensorDesc();
              inDataConfig.push_back(conf);
          }
  
          for (auto& it : cnnLayer.outData)
          {
              InferenceEngine::DataConfig conf;
              conf.desc = it->getTensorDesc();
              outDataConfig.push_back(conf);
          }
  
          InferenceEngine::LayerConfig layerConfig;
          layerConfig.inConfs = inDataConfig;
          layerConfig.outConfs = outDataConfig;
  
          conf.push_back(layerConfig);
          return InferenceEngine::StatusCode::OK;
      }
  
      InferenceEngine::StatusCode init(InferenceEngine::LayerConfig& config,
                                       InferenceEngine::ResponseDesc *resp) noexcept
      {
          return InferenceEngine::StatusCode::OK;
      }
  
  private:
      InferenceEngine::CNNLayer cnnLayer;
      dnn::Layer* cvLayer;
      std::vector<Mat> internals;
  };
  
  class InfEngineCustomLayerShapeInfer : public InferenceEngine::IShapeInferImpl
  {
  public:
        InferenceEngine::StatusCode
        inferShapes(const std::vector<InferenceEngine::Blob::CPtr>& inBlobs,
                    const std::map<std::string, std::string>& params,
                    const std::map<std::string, InferenceEngine::Blob::Ptr>& blobs,
                    std::vector<InferenceEngine::SizeVector>& outShapes,
                    InferenceEngine::ResponseDesc* desc) noexcept override
        {
            strToShapes(params.at("outputs"), outShapes);
            return InferenceEngine::StatusCode::OK;
        }
  };
  
  class InfEngineCustomLayerFactory : public InferenceEngine::ILayerImplFactory {
  public:
      explicit InfEngineCustomLayerFactory(const InferenceEngine::CNNLayer* layer) : cnnLayer(*layer) {}
  
      InferenceEngine::StatusCode
      getImplementations(std::vector<InferenceEngine::ILayerImpl::Ptr>& impls,
                         InferenceEngine::ResponseDesc* resp) noexcept override {
          impls.push_back(std::make_shared<InfEngineCustomLayer>(cnnLayer));
          return InferenceEngine::StatusCode::OK;
      }
  
  private:
      InferenceEngine::CNNLayer cnnLayer;
  };
  
  InferenceEngine::StatusCode InfEngineExtension::getFactoryFor(
          InferenceEngine::ILayerImplFactory*& factory,
          const InferenceEngine::CNNLayer* cnnLayer,
          InferenceEngine::ResponseDesc* resp
  ) noexcept
  {
      if (cnnLayer->type != kOpenCVLayersType)
          return InferenceEngine::StatusCode::NOT_IMPLEMENTED;
      factory = new InfEngineCustomLayerFactory(cnnLayer);
      return InferenceEngine::StatusCode::OK;
  }
  
  InfEngineBackendNode::InfEngineBackendNode(const InferenceEngine::Builder::Layer& _layer)
      : BackendNode(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019), layer(_layer) {}
  
      InfEngineBackendNode::InfEngineBackendNode(Ptr<Layer>& cvLayer_, std::vector<Mat*>& inputs,
                                                 std::vector<Mat>& outputs,
                                                 std::vector<Mat>& internals)
          : BackendNode(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019), layer(cvLayer_->name),
            cvLayer(cvLayer_)
  {
      CV_Assert(!cvLayer->name.empty());
      layer.setName(cvLayer->name);
      layer.setType(kOpenCVLayersType);
      layer.getParameters()["impl"] = (size_t)cvLayer.get();
      layer.getParameters()["outputs"] = shapesToStr(outputs);
      layer.getParameters()["internals"] = shapesToStr(internals);
      layer.setInputPorts(std::vector<InferenceEngine::Port>(inputs.size()));
      layer.setOutputPorts(std::vector<InferenceEngine::Port>(outputs.size()));
  }
  
  static std::vector<Ptr<InfEngineBackendWrapper> >
  infEngineWrappers(const std::vector<Ptr<BackendWrapper> >& ptrs)
  {
      std::vector<Ptr<InfEngineBackendWrapper> > wrappers(ptrs.size());
      for (int i = 0; i < ptrs.size(); ++i)
      {
          CV_Assert(!ptrs[i].empty());
          wrappers[i] = ptrs[i].dynamicCast<InfEngineBackendWrapper>();
          CV_Assert(!wrappers[i].empty());
      }
      return wrappers;
  }
  
  InfEngineBackendNet::InfEngineBackendNet() : netBuilder("")
  {
      hasNetOwner = false;
      device_name = "CPU";
  }
  
  InfEngineBackendNet::InfEngineBackendNet(InferenceEngine::CNNNetwork& net) : netBuilder(""), cnn(net)
  {
      hasNetOwner = true;
      device_name = "CPU";
  }
  
  void InfEngineBackendNet::connect(const std::vector<Ptr<BackendWrapper> >& inputs,
                                    const std::vector<Ptr<BackendWrapper> >& outputs,
                                    const std::string& layerName)
  {
      std::vector<Ptr<InfEngineBackendWrapper> > inpWrappers = infEngineWrappers(inputs);
      std::map<std::string, int>::iterator it = layers.find(layerName);
      CV_Assert(it != layers.end());
  
      const int layerId = it->second;
      for (size_t i = 0; i < inpWrappers.size(); ++i)
      {
          const auto& inp = inpWrappers[i];
          const std::string& inpName = inp->dataPtr->getName();
  
          std::string inpLayerName = inpName;
          size_t inpPortId = inpName.rfind('.');
          if (inpPortId != std::string::npos)
          {
              std::string portIdStr = inpName.substr(inpPortId + 1);
              if (std::all_of(portIdStr.begin(), portIdStr.end(), ::isdigit))
              {
                  inpLayerName = inpName.substr(0, inpPortId);
                  inpPortId = atoi(portIdStr.c_str());
              }
              else
                  inpPortId = 0;
          }
          else
              inpPortId = 0;
  
          int inpId;
          it = layers.find(inpLayerName);
          if (it == layers.end())
          {
              InferenceEngine::Builder::InputLayer inpLayer(!inpLayerName.empty() ? inpLayerName : kDefaultInpLayerName);
              std::vector<size_t> shape(inp->blob->getTensorDesc().getDims());
              inpLayer.setPort(InferenceEngine::Port(shape));
              inpId = netBuilder.addLayer(inpLayer);
  
              layers.insert({inpName, inpId});
          }
          else
              inpId = it->second;
  
          netBuilder.connect({(size_t)inpId, inpPortId}, {(size_t)layerId, i});
          unconnectedPorts.erase({inpId, inpPortId});
      }
      CV_Assert(!outputs.empty());
      for (int i = 0; i < outputs.size(); ++i)
      {
          InferenceEngine::DataPtr dataPtr = infEngineDataNode(outputs[i]);
          std::string outputName = outputs.size() > 1 ? (layerName + "." + std::to_string(i)) : layerName;
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1)
          dataPtr->name = outputName;
  #else
          dataPtr->setName(outputName);
  #endif
      }
  }
  
  void InfEngineBackendNet::init(Target targetId)
  {
      if (!hasNetOwner)
      {
          CV_Assert(!unconnectedPorts.empty());
          for (const auto& port : unconnectedPorts)
          {
              InferenceEngine::Builder::OutputLayer outLayer("myconv1");
  #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
              // Inference Engine determines network precision by ports.
              InferenceEngine::Precision p = (targetId == DNN_TARGET_MYRIAD ||
                                              targetId == DNN_TARGET_HDDL ||
                                              targetId == DNN_TARGET_OPENCL_FP16) ?
                                             InferenceEngine::Precision::FP16 :
                                             InferenceEngine::Precision::FP32;
              outLayer.setPort(InferenceEngine::Port({}, p));
  #endif
              netBuilder.addLayer({InferenceEngine::PortInfo(port.first, port.second)}, outLayer);
          }
          netBuilder.getContext().addShapeInferImpl(kOpenCVLayersType,
                              std::make_shared<InfEngineCustomLayerShapeInfer>());
          cnn = InferenceEngine::CNNNetwork(InferenceEngine::Builder::convertToICNNNetwork(netBuilder.build()));
      }
  
      switch (targetId)
      {
          case DNN_TARGET_CPU:
              device_name = "CPU";
              break;
          case DNN_TARGET_OPENCL:
          case DNN_TARGET_OPENCL_FP16:
              device_name = "GPU";
              break;
          case DNN_TARGET_MYRIAD:
              device_name = "MYRIAD";
              break;
          case DNN_TARGET_HDDL:
              device_name = "HDDL";
              break;
          case DNN_TARGET_FPGA:
              device_name = "FPGA";
              break;
          default:
              CV_Error(Error::StsNotImplemented, "Unknown target");
      };
  
      for (const auto& name : requestedOutputs)
      {
          cnn.addOutput(name);
      }
  
      for (const auto& it : cnn.getInputsInfo())
      {
          const std::string& name = it.first;
          auto blobIt = allBlobs.find(name);
          CV_Assert(blobIt != allBlobs.end());
          it.second->setPrecision(blobIt->second->getTensorDesc().getPrecision());
      }
      for (const auto& it : cnn.getOutputsInfo())
      {
          const std::string& name = it.first;
          auto blobIt = allBlobs.find(name);
          CV_Assert(blobIt != allBlobs.end());
          it.second->setPrecision(blobIt->second->getTensorDesc().getPrecision());  // Should be always FP32
      }
  
      initPlugin(cnn);
  }
  
  void InfEngineBackendNet::addLayer(InferenceEngine::Builder::Layer& layer)
  {
  #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
      // Add weights to network and connect them after input blobs.
      std::map<std::string, InferenceEngine::Parameter>& params = layer.getParameters();
      std::vector<int> blobsIds;
      std::vector<int> portIds;
      for (const std::string& name : {"weights", "biases"})
      {
          bool asInput = false;
          int portId = 0;
          for (int i = 0; i < layer.getInputPorts().size(); ++i)
          {
              const auto& port = layer.getInputPorts()[i];
              auto it = port.getParameters().find("type");
              if (it != port.getParameters().end() && it->second == name)
              {
                  portId = i;
                  asInput = true;
                  break;
              }
          }
  
          if (!asInput)
              continue;
  
          auto it = params.find(name);
          if (it != params.end())
          {
              InferenceEngine::Blob::Ptr blob = it->second.as<InferenceEngine::Blob::Ptr>();
              params.erase(it);
              int blobId = netBuilder.addLayer(InferenceEngine::Builder::ConstLayer(name).setData(blob));
              blobsIds.push_back(blobId);
              portIds.push_back(portId);
          }
      }
  #endif
  
      int id = netBuilder.addLayer(layer);
      const std::string& layerName = layer.getName();
  
      CV_Assert(layers.insert({layerName, id}).second);
      for (int i = 0; i < layer.getOutputPorts().size(); ++i)
          unconnectedPorts.insert({id, i});
  
  #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
      // By default, all the weights are connected to last ports ids.
      for (int i = 0; i < blobsIds.size(); ++i)
      {
          netBuilder.connect((size_t)blobsIds[i], {(size_t)id, (size_t)portIds[i]});
      }
  #endif
  }
  
  void InfEngineBackendNet::addOutput(const std::string& name)
  {
      requestedOutputs.push_back(name);
  }
  
  static InferenceEngine::Layout estimateLayout(const Mat& m)
  {
      if (m.dims == 4)
          return InferenceEngine::Layout::NCHW;
      else if (m.dims == 2)
          return InferenceEngine::Layout::NC;
      else
          return InferenceEngine::Layout::ANY;
  }
  
  static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std::string& name = "")
  {
      std::vector<size_t> shape = getShape<size_t>(m);
      if (m.type() == CV_32F)
          return InferenceEngine::DataPtr(new InferenceEngine::Data(name,
                 {InferenceEngine::Precision::FP32, shape, estimateLayout(m)}));
      else if (m.type() == CV_8U)
          return InferenceEngine::DataPtr(new InferenceEngine::Data(name,
                 {InferenceEngine::Precision::U8, shape, estimateLayout(m)}));
      else
          CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type()));
  }
  
  InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector<size_t>& shape,
                                                 InferenceEngine::Layout layout)
  {
      if (m.type() == CV_32F)
          return InferenceEngine::make_shared_blob<float>(
                 {InferenceEngine::Precision::FP32, shape, layout}, (float*)m.data);
      else if (m.type() == CV_8U)
          return InferenceEngine::make_shared_blob<uint8_t>(
                 {InferenceEngine::Precision::U8, shape, layout}, (uint8_t*)m.data);
      else
          CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type()));
  }
  
  InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout)
  {
      std::vector<size_t> shape = getShape<size_t>(m);
      return wrapToInfEngineBlob(m, shape, layout);
  }
  
  InferenceEngine::Blob::Ptr cloneBlob(const InferenceEngine::Blob::Ptr& blob)
  {
      InferenceEngine::Blob::Ptr copy;
      auto description = blob->getTensorDesc();
      InferenceEngine::Precision precision = description.getPrecision();
      if (precision == InferenceEngine::Precision::FP32)
      {
          copy = InferenceEngine::make_shared_blob<float>(description);
      }
      else if (precision == InferenceEngine::Precision::U8)
      {
          copy = InferenceEngine::make_shared_blob<uint8_t>(description);
      }
      else
          CV_Error(Error::StsNotImplemented, "Unsupported blob precision");
      copy->allocate();
      return copy;
  }
  
  InferenceEngine::DataPtr infEngineDataNode(const Ptr<BackendWrapper>& ptr)
  {
      CV_Assert(!ptr.empty());
      Ptr<InfEngineBackendWrapper> p = ptr.dynamicCast<InfEngineBackendWrapper>();
      CV_Assert(!p.empty());
      return p->dataPtr;
  }
  
  InfEngineBackendWrapper::InfEngineBackendWrapper(int targetId, const cv::Mat& m)
      : BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, targetId)
  {
      dataPtr = wrapToInfEngineDataNode(m);
      blob = wrapToInfEngineBlob(m, estimateLayout(m));
  }
  
  InfEngineBackendWrapper::InfEngineBackendWrapper(Ptr<BackendWrapper> wrapper)
      : BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, wrapper->targetId)
  {
      Ptr<InfEngineBackendWrapper> ieWrapper = wrapper.dynamicCast<InfEngineBackendWrapper>();
      CV_Assert(!ieWrapper.empty());
      InferenceEngine::DataPtr srcData = ieWrapper->dataPtr;
  
      dataPtr = InferenceEngine::DataPtr(new InferenceEngine::Data(srcData->getName(), srcData->getTensorDesc()));
      blob = ieWrapper->blob;
  }
  
  Ptr<BackendWrapper> InfEngineBackendWrapper::create(Ptr<BackendWrapper> wrapper)
  {
      return Ptr<BackendWrapper>(new InfEngineBackendWrapper(wrapper));
  }
  
  InfEngineBackendWrapper::~InfEngineBackendWrapper()
  {
  
  }
  
  void InfEngineBackendWrapper::copyToHost()
  {
  
  }
  
  void InfEngineBackendWrapper::setHostDirty()
  {
  
  }
  
  #endif // HAVE_DNN_IE_NN_BUILDER_2019
  
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1)
  static std::map<std::string, InferenceEngine::InferenceEnginePluginPtr>& getSharedPlugins()
  {
      static std::map<std::string, InferenceEngine::InferenceEnginePluginPtr> sharedPlugins;
      return sharedPlugins;
  }
  #else
  static bool init_IE_plugins()
  {
      // load and hold IE plugins
      static InferenceEngine::Core* init_core = new InferenceEngine::Core();  // 'delete' is never called
      (void)init_core->GetAvailableDevices();
      return true;
  }
  static InferenceEngine::Core& retrieveIECore(const std::string& id, std::map<std::string, std::shared_ptr<InferenceEngine::Core> >& cores)
  {
      AutoLock lock(getInitializationMutex());
      std::map<std::string, std::shared_ptr<InferenceEngine::Core> >::iterator i = cores.find(id);
      if (i == cores.end())
      {
          std::shared_ptr<InferenceEngine::Core> core = std::make_shared<InferenceEngine::Core>();
          cores[id] = core;
          return *core.get();
      }
      return *(i->second).get();
  }
  static InferenceEngine::Core& create_IE_Core_instance(const std::string& id)
  {
      static std::map<std::string, std::shared_ptr<InferenceEngine::Core> > cores;
      return retrieveIECore(id, cores);
  }
  static InferenceEngine::Core& create_IE_Core_pointer(const std::string& id)
  {
      // load and hold IE plugins
      static std::map<std::string, std::shared_ptr<InferenceEngine::Core> >* cores =
              new std::map<std::string, std::shared_ptr<InferenceEngine::Core> >();
      return retrieveIECore(id, *cores);
  }
  InferenceEngine::Core& getCore(const std::string& id)
  {
      // to make happy memory leak tools use:
      // - OPENCV_DNN_INFERENCE_ENGINE_HOLD_PLUGINS=0
      // - OPENCV_DNN_INFERENCE_ENGINE_CORE_LIFETIME_WORKAROUND=0
      static bool param_DNN_INFERENCE_ENGINE_HOLD_PLUGINS = utils::getConfigurationParameterBool("OPENCV_DNN_INFERENCE_ENGINE_HOLD_PLUGINS", true);
      static bool init_IE_plugins_ = param_DNN_INFERENCE_ENGINE_HOLD_PLUGINS && init_IE_plugins(); CV_UNUSED(init_IE_plugins_);
  
      static bool param_DNN_INFERENCE_ENGINE_CORE_LIFETIME_WORKAROUND =
              utils::getConfigurationParameterBool("OPENCV_DNN_INFERENCE_ENGINE_CORE_LIFETIME_WORKAROUND",
  #ifdef _WIN32
                  true
  #else
                  false
  #endif
              );
  
      InferenceEngine::Core& core = param_DNN_INFERENCE_ENGINE_CORE_LIFETIME_WORKAROUND
              ? create_IE_Core_pointer(id)
              : create_IE_Core_instance(id);
      return core;
  }
  #endif
  
  static bool detectArmPlugin_()
  {
      InferenceEngine::Core& ie = getCore("CPU");
      const std::vector<std::string> devices = ie.GetAvailableDevices();
      for (std::vector<std::string>::const_iterator i = devices.begin(); i != devices.end(); ++i)
      {
          if (i->find("CPU") != std::string::npos)
          {
              const std::string name = ie.GetMetric(*i, METRIC_KEY(FULL_DEVICE_NAME)).as<std::string>();
              CV_LOG_INFO(NULL, "CPU plugin: " << name);
              return name.find("arm_compute::NEON") != std::string::npos;
          }
      }
      return false;
  }
  
  #if !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)
  static bool detectMyriadX_(std::string device)
  {
      AutoLock lock(getInitializationMutex());
  #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R3)
      // Lightweight detection
      InferenceEngine::Core& ie = getCore(device);
      const std::vector<std::string> devices = ie.GetAvailableDevices();
      for (std::vector<std::string>::const_iterator i = devices.begin(); i != devices.end(); ++i)
      {
          if (i->find(device) != std::string::npos)
          {
              const std::string name = ie.GetMetric(*i, METRIC_KEY(FULL_DEVICE_NAME)).as<std::string>();
              CV_LOG_INFO(NULL, "Myriad device: " << name);
              return name.find("MyriadX") != std::string::npos || name.find("Myriad X") != std::string::npos || name.find("HDDL") != std::string::npos;
          }
      }
      return false;
  #else
      InferenceEngine::Builder::Network builder("");
      InferenceEngine::idx_t inpId = builder.addLayer(
                                     InferenceEngine::Builder::InputLayer().setPort(InferenceEngine::Port({1})));
  
  #if INF_ENGINE_RELEASE <= 2018050000
      InferenceEngine::idx_t clampId;
      {
          InferenceEngine::Builder::Layer l = InferenceEngine::Builder::ClampLayer();
          auto& blobs = l.getConstantData();
          auto blob = InferenceEngine::make_shared_blob<int16_t>(
                          InferenceEngine::Precision::FP16,
                          InferenceEngine::Layout::C, {1});
          blob->allocate();
          blobs[""] = blob;
          clampId = builder.addLayer({inpId}, l);
      }
      builder.addLayer({InferenceEngine::PortInfo(clampId)}, InferenceEngine::Builder::OutputLayer());
  #else
  
      InferenceEngine::idx_t clampId = builder.addLayer({inpId}, InferenceEngine::Builder::ClampLayer());
      builder.addLayer({InferenceEngine::PortInfo(clampId)},
                        InferenceEngine::Builder::OutputLayer().setPort(InferenceEngine::Port({},
                        InferenceEngine::Precision::FP16)));
  #endif
  
      InferenceEngine::CNNNetwork cnn = InferenceEngine::CNNNetwork(
                                        InferenceEngine::Builder::convertToICNNNetwork(builder.build()));
  
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1)
      InferenceEngine::InferenceEnginePluginPtr enginePtr;
      {
          auto& sharedPlugins = getSharedPlugins();
          auto pluginIt = sharedPlugins.find(device);
          if (pluginIt != sharedPlugins.end()) {
              enginePtr = pluginIt->second;
          } else {
              auto dispatcher = InferenceEngine::PluginDispatcher({""});
              enginePtr = dispatcher.getPluginByDevice(device);
              sharedPlugins[device] = enginePtr;
          }
      }
      auto plugin = InferenceEngine::InferencePlugin(enginePtr);
      try
      {
          auto netExec = plugin.LoadNetwork(cnn, {{"VPU_PLATFORM", "VPU_2480"}});
  #else
      try
      {
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R3)
          auto netExec = getCore(device).LoadNetwork(cnn, device, {{"VPU_PLATFORM", "VPU_2480"}});
  #else
          auto netExec = getCore(device).LoadNetwork(cnn, device, {{"VPU_MYRIAD_PLATFORM", "VPU_MYRIAD_2480"}});
  #endif
  #endif
          auto infRequest = netExec.CreateInferRequest();
      } catch(...) {
          return false;
      }
      return true;
  #endif
  }
  #endif  // !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)
  
  
  #ifdef HAVE_DNN_IE_NN_BUILDER_2019
  
  void InfEngineBackendNet::initPlugin(InferenceEngine::CNNNetwork& net)
  {
      CV_Assert(!isInitialized());
  
      try
      {
          AutoLock lock(getInitializationMutex());
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1)
          auto& sharedPlugins = getSharedPlugins();
          auto pluginIt = sharedPlugins.find(device_name);
          if (pluginIt != sharedPlugins.end())
          {
              enginePtr = pluginIt->second;
          }
          else
  #else
          InferenceEngine::Core& ie = getCore(device_name);
  #endif
          {
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1)
              auto dispatcher = InferenceEngine::PluginDispatcher({""});
              if (device_name == "FPGA")
                  enginePtr = dispatcher.getPluginByDevice("HETERO:FPGA,CPU");
              else
                  enginePtr = dispatcher.getPluginByDevice(device_name);
              sharedPlugins[device_name] = enginePtr;
  #else
              isInit = true;
  #endif
              std::vector<std::string> candidates;
              std::string param_pluginPath = utils::getConfigurationParameterString("OPENCV_DNN_IE_EXTRA_PLUGIN_PATH", "");
              if (!param_pluginPath.empty())
              {
                  candidates.push_back(param_pluginPath);
              }
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R3)
              if (device_name == "CPU" || device_name == "FPGA")
              {
                  std::string suffixes[] = {"_avx2", "_sse4", ""};
                  bool haveFeature[] = {
                      checkHardwareSupport(CPU_AVX2),
                      checkHardwareSupport(CPU_SSE4_2),
                      true
                  };
                  for (int i = 0; i < 3; ++i)
                  {
                      if (!haveFeature[i])
                          continue;
  #ifdef _WIN32
                      candidates.push_back("cpu_extension" + suffixes[i] + ".dll");
  #elif defined(__APPLE__)
                      candidates.push_back("libcpu_extension" + suffixes[i] + ".so");  // built as loadable module
                      candidates.push_back("libcpu_extension" + suffixes[i] + ".dylib");  // built as shared library
  #else
                      candidates.push_back("libcpu_extension" + suffixes[i] + ".so");
  #endif  // _WIN32
                  }
              }
  #endif
              bool found = false;
              for (size_t i = 0; i != candidates.size(); ++i)
              {
                  const std::string& libName = candidates[i];
                  try
                  {
                      InferenceEngine::IExtensionPtr extension =
                          InferenceEngine::make_so_pointer<InferenceEngine::IExtension>(libName);
  
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1)
                      enginePtr->AddExtension(extension, 0);
  #else
                      ie.AddExtension(extension, "CPU");
  #endif
                      CV_LOG_INFO(NULL, "DNN-IE: Loaded extension plugin: " << libName);
                      found = true;
                      break;
                  }
                  catch(...) {}
              }
              if (!found && !candidates.empty())
              {
                  CV_LOG_WARNING(NULL, "DNN-IE: Can't load extension plugin (extra layers for some networks). Specify path via OPENCV_DNN_IE_EXTRA_PLUGIN_PATH parameter");
              }
              // Some of networks can work without a library of extra layers.
  #if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2019R1)
              // OpenCV fallbacks as extensions.
              try
              {
                  ie.AddExtension(std::make_shared<InfEngineExtension>(), "CPU");
              }
              catch(const std::exception& e)
              {
                  CV_LOG_INFO(NULL, "DNN-IE: Can't register OpenCV custom layers extension: " << e.what());
              }
  #endif
              // Limit the number of CPU threads.
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1)
  #ifndef _WIN32
              enginePtr->SetConfig({{
                  InferenceEngine::PluginConfigParams::KEY_CPU_THREADS_NUM, format("%d", getNumThreads()),
              }}, 0);
  #endif  // _WIN32
  #else
              if (device_name == "CPU")
                  ie.SetConfig({{
                      InferenceEngine::PluginConfigParams::KEY_CPU_THREADS_NUM, format("%d", getNumThreads()),
                  }}, device_name);
  #endif
          }
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1)
          plugin = InferenceEngine::InferencePlugin(enginePtr);
          netExec = plugin.LoadNetwork(net, {});
  #else
          bool isHetero = false;
          if (device_name != "CPU")
          {
              isHetero = device_name == "FPGA";
              for (auto& layer : net)
              {
                  if (layer->type == kOpenCVLayersType)
                  {
                      isHetero = true;
  #if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2019R3)
                      // Not sure about lower versions but in 2019R3 we do not need this
                      layer->affinity = "CPU";
                  }
                  else
                  {
                      layer->affinity = device_name;
  #endif
                  }
              }
          }
          if (isHetero)
              netExec = ie.LoadNetwork(net, "HETERO:" + device_name + ",CPU");
          else
              netExec = ie.LoadNetwork(net, device_name);
  #endif
      }
      catch (const std::exception& ex)
      {
          CV_Error(Error::StsError, format("Failed to initialize Inference Engine backend (device = %s): %s", device_name.c_str(), ex.what()));
      }
  }
  
  bool InfEngineBackendNet::isInitialized()
  {
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1)
      return (bool)enginePtr;
  #else
      return isInit;
  #endif
  }
  
  void InfEngineBackendNet::reset()
  {
      allBlobs.clear();
      infRequests.clear();
      isInit = false;
  }
  
  void InfEngineBackendNet::addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs)
  {
      auto wrappers = infEngineWrappers(ptrs);
      for (const auto& wrapper : wrappers)
      {
          std::string name = wrapper->dataPtr->getName();
          name = name.empty() ? kDefaultInpLayerName : name;
          allBlobs.insert({name, wrapper->blob});
      }
  }
  
  void InfEngineBackendNet::InfEngineReqWrapper::makePromises(const std::vector<Ptr<BackendWrapper> >& outsWrappers)
  {
      auto outs = infEngineWrappers(outsWrappers);
      outProms.clear();
      outProms.resize(outs.size());
      outsNames.resize(outs.size());
      for (int i = 0; i < outs.size(); ++i)
      {
          outs[i]->futureMat = outProms[i].getArrayResult();
          outsNames[i] = outs[i]->dataPtr->getName();
      }
  }
  
  void InfEngineBackendNet::forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
                                    bool isAsync)
  {
      CV_LOG_DEBUG(NULL, "InfEngineBackendNet::forward(" << (isAsync ? "async" : "sync") << ")");
      // Look for finished requests.
      Ptr<InfEngineReqWrapper> reqWrapper;
      for (auto& wrapper : infRequests)
      {
          if (wrapper->isReady)
          {
              reqWrapper = wrapper;
              break;
          }
      }
      if (reqWrapper.empty())
      {
          reqWrapper = Ptr<InfEngineReqWrapper>(new InfEngineReqWrapper());
          try
          {
              reqWrapper->req = netExec.CreateInferRequest();
          }
          catch (const std::exception& ex)
          {
              CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
          }
          infRequests.push_back(reqWrapper);
  
          InferenceEngine::BlobMap inpBlobs, outBlobs;
          for (const auto& it : cnn.getInputsInfo())
          {
              const std::string& name = it.first;
              auto blobIt = allBlobs.find(name);
              CV_Assert(blobIt != allBlobs.end());
              inpBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second;
          }
          for (const auto& it : cnn.getOutputsInfo())
          {
              const std::string& name = it.first;
              auto blobIt = allBlobs.find(name);
              CV_Assert(blobIt != allBlobs.end());
              outBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second;
          }
          reqWrapper->req.SetInput(inpBlobs);
          reqWrapper->req.SetOutput(outBlobs);
  
          InferenceEngine::IInferRequest::Ptr infRequestPtr = reqWrapper->req;
          infRequestPtr->SetUserData(reqWrapper.get(), 0);
  
          infRequestPtr->SetCompletionCallback(
              [](InferenceEngine::IInferRequest::Ptr request, InferenceEngine::StatusCode status)
              {
                  CV_LOG_DEBUG(NULL, "DNN(IE): completionCallback(" << (int)status << ")");
  
                  InfEngineReqWrapper* wrapper;
                  request->GetUserData((void**)&wrapper, 0);
                  CV_Assert(wrapper && "Internal error");
  
                  size_t processedOutputs = 0;
                  try
                  {
                      for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs)
                      {
                          const std::string& name = wrapper->outsNames[processedOutputs];
                          Mat m = infEngineBlobToMat(wrapper->req.GetBlob(name));
  
                          try
                          {
                              CV_Assert(status == InferenceEngine::StatusCode::OK);
                              wrapper->outProms[processedOutputs].setValue(m.clone());
                          }
                          catch (...)
                          {
                              try {
                                  wrapper->outProms[processedOutputs].setException(std::current_exception());
                              } catch(...) {
                                  CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
                              }
                          }
                      }
                  }
                  catch (...)
                  {
                      std::exception_ptr e = std::current_exception();
                      for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs)
                      {
                          try {
                              wrapper->outProms[processedOutputs].setException(e);
                          } catch(...) {
                              CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
                          }
                      }
                  }
                  wrapper->isReady = true;
              }
          );
      }
      if (isAsync)
      {
          // Copy actual data to infer request's input blobs.
          for (const auto& it : cnn.getInputsInfo())
          {
              const std::string& name = it.first;
              auto blobIt = allBlobs.find(name);
              Mat srcMat = infEngineBlobToMat(blobIt->second);
              Mat dstMat = infEngineBlobToMat(reqWrapper->req.GetBlob(name));
              srcMat.copyTo(dstMat);
          }
  
          // Set promises to output blobs wrappers.
          reqWrapper->makePromises(outBlobsWrappers);
  
          reqWrapper->isReady = false;
          reqWrapper->req.StartAsync();
      }
      else
      {
          reqWrapper->req.Infer();
      }
  }
  
  bool InfEngineBackendLayer::getMemoryShapes(const std::vector<MatShape> &inputs,
                                              const int requiredOutputs,
                                              std::vector<MatShape> &outputs,
                                              std::vector<MatShape> &internals) const
  {
      InferenceEngine::ICNNNetwork::InputShapes inShapes = t_net.getInputShapes();
      InferenceEngine::ICNNNetwork::InputShapes::iterator itr;
      bool equal_flag = true;
      size_t i = 0;
      for (itr = inShapes.begin(); itr != inShapes.end(); ++itr)
      {
          InferenceEngine::SizeVector currentInShape(inputs[i].begin(), inputs[i].end());
          if (itr->second != currentInShape)
          {
              itr->second = currentInShape;
              equal_flag = false;
          }
          i++;
      }
  
      if (!equal_flag)
      {
          InferenceEngine::CNNNetwork curr_t_net(t_net);
          curr_t_net.reshape(inShapes);
      }
      std::vector<size_t> dims = t_net.getOutputsInfo()[name]->getDims();
      outputs.push_back(MatShape(dims.begin(), dims.end()));
      return false;
  }
  
  bool InfEngineBackendLayer::supportBackend(int backendId)
  {
      CV_LOG_DEBUG(NULL, "InfEngineBackendLayer::supportBackend(" << backendId << ")");
      return backendId == DNN_BACKEND_DEFAULT ||
             (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019);
  }
  
  void InfEngineBackendLayer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs,
                                      OutputArrayOfArrays internals)
  {
      CV_Error(Error::StsInternal, "Choose Inference Engine as a preferable backend.");
  }
  
  InferenceEngine::Blob::Ptr convertFp16(const InferenceEngine::Blob::Ptr& blob)
  {
      auto halfs = InferenceEngine::make_shared_blob<int16_t>({
                       InferenceEngine::Precision::FP16, blob->getTensorDesc().getDims(),
                       blob->getTensorDesc().getLayout()
                   });
      halfs->allocate();
      Mat floatsData(1, blob->size(), CV_32F, blob->buffer());
      Mat halfsData(1, blob->size(), CV_16SC1, halfs->buffer());
      convertFp16(floatsData, halfsData);
      return halfs;
  }
  
  void addConstantData(const std::string& name, InferenceEngine::Blob::Ptr data,
                       InferenceEngine::Builder::Layer& l)
  {
  #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
      l.getParameters()[name] = data;
  #else
      l.addConstantData(name, data);
  #endif
  }
  
  #endif // HAVE_DNN_IE_NN_BUILDER_2019
  
  #endif  // HAVE_INF_ENGINE
  
  bool haveInfEngine()
  {
  #ifdef HAVE_INF_ENGINE
      return true;
  #else
      return false;
  #endif  // HAVE_INF_ENGINE
  }
  
  void forwardInfEngine(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
                        Ptr<BackendNode>& node, bool isAsync)
  {
      CV_Assert(haveInfEngine());
  #ifdef HAVE_DNN_IE_NN_BUILDER_2019
      CV_Assert(!node.empty());
      Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
      CV_Assert(!ieNode.empty());
      ieNode->net->forward(outBlobsWrappers, isAsync);
  #else
      CV_Error(Error::StsNotImplemented, "This OpenCV version is built without Inference Engine NN Builder API support");
  #endif  // HAVE_INF_ENGINE
  }
  
  CV__DNN_INLINE_NS_BEGIN
  
  void resetMyriadDevice()
  {
  #ifdef HAVE_INF_ENGINE
      AutoLock lock(getInitializationMutex());
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1)
      getSharedPlugins().erase("MYRIAD");
  #else
      // Unregister both "MYRIAD" and "HETERO:MYRIAD,CPU" plugins
      InferenceEngine::Core& ie = getCore("MYRIAD");
      try
      {
          ie.UnregisterPlugin("MYRIAD");
          ie.UnregisterPlugin("HETERO");
      }
      catch (...) {}
  #endif
  #endif  // HAVE_INF_ENGINE
  }
  
  void releaseHDDLPlugin()
  {
  #ifdef HAVE_INF_ENGINE
      AutoLock lock(getInitializationMutex());
  #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1)
      getSharedPlugins().erase("HDDL");
  #else
      // Unregister both "HDDL" and "HETERO:HDDL,CPU" plugins
      InferenceEngine::Core& ie = getCore("HDDL");
      try
      {
          ie.UnregisterPlugin("HDDL");
          ie.UnregisterPlugin("HETERO");
      }
      catch (...) {}
  #endif
  #endif  // HAVE_INF_ENGINE
  }
  
  #ifdef HAVE_INF_ENGINE
  bool isMyriadX()
  {
      static bool myriadX = getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X;
      return myriadX;
  }
  
  bool isArmComputePlugin()
  {
      static bool armPlugin = getInferenceEngineCPUType() == CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE;
      return armPlugin;
  }
  
  static std::string getInferenceEngineVPUType_()
  {
      static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_DNN_IE_VPU_TYPE", "");
      if (param_vpu_type == "")
      {
  #if defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)
          param_vpu_type = OPENCV_DNN_IE_VPU_TYPE_DEFAULT;
  #else
          CV_LOG_INFO(NULL, "OpenCV-DNN: running Inference Engine VPU autodetection: Myriad2/X or HDDL. In case of other accelerator types specify 'OPENCV_DNN_IE_VPU_TYPE' parameter");
          try {
              bool isMyriadX_ = detectMyriadX_("MYRIAD");
              bool isHDDL_ = detectMyriadX_("HDDL");
              if (isMyriadX_ || isHDDL_)
              {
                  param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X;
              }
              else
              {
                  param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2;
              }
          }
          catch (...)
          {
              CV_LOG_WARNING(NULL, "OpenCV-DNN: Failed Inference Engine VPU autodetection. Specify 'OPENCV_DNN_IE_VPU_TYPE' parameter.");
              param_vpu_type.clear();
          }
  #endif
      }
      CV_LOG_INFO(NULL, "OpenCV-DNN: Inference Engine VPU type='" << param_vpu_type << "'");
      return param_vpu_type;
  }
  
  cv::String getInferenceEngineVPUType()
  {
      static cv::String vpu_type = getInferenceEngineVPUType_();
      return vpu_type;
  }
  
  cv::String getInferenceEngineCPUType()
  {
      static cv::String cpu_type = detectArmPlugin_() ?
                                   CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE :
                                   CV_DNN_INFERENCE_ENGINE_CPU_TYPE_X86;
      return cpu_type;
  }
  
  #else  // HAVE_INF_ENGINE
  
  cv::String getInferenceEngineBackendType()
  {
      CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support");
  }
  cv::String setInferenceEngineBackendType(const cv::String& newBackendType)
  {
      CV_UNUSED(newBackendType);
      CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support");
  }
  cv::String getInferenceEngineVPUType()
  {
      CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support");
  }
  
  cv::String getInferenceEngineCPUType()
  {
      CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support");
  }
  #endif  // HAVE_INF_ENGINE
  
  
  CV__DNN_INLINE_NS_END
  }}  // namespace dnn, namespace cv