Blame view

3rdparty/opencv-4.5.4/modules/dnn/src/opencl/region.cl 4.33 KB
f4334277   Hu Chunming   提交3rdparty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
  /*M///////////////////////////////////////////////////////////////////////////////////////
  //
  //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
  //
  //  By downloading, copying, installing or using the software you agree to this license.
  //  If you do not agree to this license, do not download, install,
  //  copy or use the software.
  //
  //
  //                           License Agreement
  //                For Open Source Computer Vision Library
  //
  // Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
  // Third party copyrights are property of their respective owners.
  //
  // Redistribution and use in source and binary forms, with or without modification,
  // are permitted provided that the following conditions are met:
  //
  //   * Redistribution's of source code must retain the above copyright notice,
  //     this list of conditions and the following disclaimer.
  //
  //   * Redistribution's in binary form must reproduce the above copyright notice,
  //     this list of conditions and the following disclaimer in the documentation
  //     and/or other materials provided with the distribution.
  //
  //   * The name of the copyright holders may not be used to endorse or promote products
  //     derived from this software without specific prior written permission.
  //
  // This software is provided by the copyright holders and contributors "as is" and
  // any express or implied warranties, including, but not limited to, the implied
  // warranties of merchantability and fitness for a particular purpose are disclaimed.
  // In no event shall the Intel Corporation or contributors be liable for any direct,
  // indirect, incidental, special, exemplary, or consequential damages
  // (including, but not limited to, procurement of substitute goods or services;
  // loss of use, data, or profits; or business interruption) however caused
  // and on any theory of liability, whether in contract, strict liability,
  // or tort (including negligence or otherwise) arising in any way out of
  // the use of this software, even if advised of the possibility of such damage.
  //
  //M*/
  
  #define Dtype float
  
  __kernel void logistic_activ(const int count,
                               __global const Dtype* src,
                               const int cell_size,
                               __global Dtype* dst)
  {
      for (int i = get_global_id(0); i < count; i += get_global_size(0))
      {
          int index = cell_size * i;
          Dtype x = src[index + 4];
          dst[index + 4] = 1.f / (1.f + exp(-x));
      }
  }
  
  __kernel void softmax_activ(const int count,
                              __global const Dtype* src,
                              __global const Dtype* biasData,
                              const int cell_size,
                              const int classes,
                              const int classfix,
                              const int rows,
                              const int cols,
                              const int anchors,
                              const float thresh,
                              __global Dtype* dst)
  {
      for (int index = get_global_id(0); index < count; index += get_global_size(0))
      {
          int box_index = index * cell_size;
          float largest = -FLT_MAX;
          __global const Dtype *input = src + box_index + 5;
          __global Dtype *output = dst + box_index + 5;
  
          for (int i = 0; i < classes; ++i)
              largest = fmax(largest, input[i]);
  
          float sum = 0;
          for (int i = 0; i < classes; ++i)
          {
              float e = exp((input[i] - largest));
              sum += e;
              output[i] = e;
          }
  
          int y = (index / (anchors * cols)) % rows;
          int x = (index / anchors) % cols;
          int a = index % anchors;
          float scale = dst[box_index + 4];
          if (classfix == -1 && scale < .5) scale = 0;
  
          float v1 = src[box_index + 0];
          float v2 = src[box_index + 1];
          float l1 = 1.f / (1.f + exp(-v1));
          float l2 = 1.f / (1.f + exp(-v2));
  
          dst[box_index + 0] = (x + l1) / cols;
          dst[box_index + 1] = (y + l2) / rows;
          dst[box_index + 2] = exp(src[box_index + 2]) * biasData[2 * a] / cols;
          dst[box_index + 3] = exp(src[box_index + 3]) * biasData[2 * a + 1] / rows;
  
          for (int i = 0; i < classes; ++i)
          {
              float prob = scale * output[i] / sum;
              output[i] = (prob > thresh) ? prob : 0;
          }
      }
  }